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Two-sided platforms typically generate revenue by matching prospective buyers and sellers and extracting

commissions from completed transactions. Disintermediation, where sellers transact offline with buyers to

bypass commission fees, can undermine the viability of these platforms. While transacting offline allows

sellers to avoid commission fees, it also leaves them fully exposed to risky buyers given the absence of

the platform’s protections. In this paper, we examine how disintermediation and information quality –

specifically, the accuracy of the signal sellers receive about a buyer’s type – jointly impact a platform’s

revenue and optimal commission rate. In a setting where transactions occur online-only, an increase in

information quality leads sellers to set more efficient prices and complete more transactions, which lifts

platform revenue. However, if sellers can transact offline, this effect may be reversed – additional information

about buyers can hurt platform revenue by reducing the risk sellers face offline, amplifying disintermediation.

Further, while intuition suggests platforms should counter disintermediation by lowering commission rates,

in a high-information environment a platform may be better off raising them. Lastly, while charging sellers

platform-access fees can hedge against losses from disintermediation, it can fall short of the revenue attained

under commission-based pricing when all transactions occur online. Overall, our findings provide insight into

the mechanisms through which disintermediation disrupts platform operations and offers prescriptions to

platforms seeking to counteract it.

1. Introduction

Online platforms that generate revenue through commission fees are vulnerable to disintermedi-

ation, where buyers and sellers matched by a platform transact off-platform to avoid paying the

commission. Disintermediation can lead to significant revenue losses – the talent outsourcing plat-

form ZBJ estimates that up to 90% of their service providers’ transactions may occur off-platform

(Zhu et al. 2018). In extreme cases, disintermediation can threaten the viability of the platform itself

– for example, the demise of home-cleaning platform HomeJoy in 2015 has been partly attributed

to disintermediation (Farr 2015). These risks are well-recognized by platforms: Airbnb explicitly

warns hosts of buyers attempting to pay through alternative channels (Airbnb 2023b), and the

freelance platform Upwork encourages users to report attempts at circumvention (UpWork 2023a).

Although disintermediation is difficult to detect, there is growing empirical evidence of it occurring

on multiple platforms (Lin et al. 2022, Karacaoglu et al. 2022, Gu 2022).

1



2

For sellers, the attractiveness of disintermediation depends on multiple features of the platform

environment. Naturally, the commission rate the platform imposes on sellers may play a major

role in their inclination to transact off-platform, as it can amount to a substantial share of sellers’

earnings.1 Although disintermediation allows sellers to bypass commission fees, it also entails giv-

ing up the benefits of transacting on the platform, such as insurance, receiving reviews, and the

convenience of a digital transaction. Crucial among these services are the platform’s policies that

shield sellers from risky or even fraudulent behavior by buyers. Such protections are commonplace:

Airbnb insures hosts against property damage by guests (Airbnb 2023a), Upwork holds payments

in escrow to safeguard freelancers (UpWork 2023c), and eBay protects sellers against various forms

of buyer fraud (eBay 2023). In deciding whether to disintermediate, sellers must therefore weigh

the benefits of avoiding commission fees against full exposure to risky buyers.

Whether a seller decides to transact off-platform depends on their assessment of buyer riskiness.

In most online marketplaces, the level of trust between a seller and buyer depends on the qual-

ity of information sellers obtain about buyers via the platform. Thus, to encourage on-platform

transactions, many platforms include communication tools and reputation systems for both buy-

ers and sellers. However, high information quality can also improve sellers’ ability to screen risky

buyers (Jin et al. 2018), diminishing the value of the platform’s protections. Under the threat of

disintermediation, the directional impact of information on platform revenue is therefore unclear

– while to some extent necessary to facilitate on-platform transactions, high information quality

may also increase the attractiveness of circumventing the platform entirely (Gu and Zhu 2021).

The quality of information that sellers obtain about buyers, whether through reputation systems

or direct communication, varies by platform and context. Ratings may be unreliable or prone to

inflation, reducing their usefulness in differentiating users (Nosko and Tadelis 2015), and users may

also be imperfect in their ability to interpret ratings (Tadelis 2016). Additionally, communication-

related policies differ across platforms: Airbnb algorithmically blocks email addresses and phone

numbers in their on-platform chat until bookings are confirmed, while Upwork prohibits sharing

contact information, but does not block it. As a consequence, vulnerability to disintermediation

may vary across platforms depending on their choice of information architecture. Therefore, a key

question is how platforms that are situated differently with respect to the level of information

available to their sellers perform under the threat of disintermediation.

How should platforms respond to disintermediation? Reducing commission rates may encourage

on-platform transactions, but may also needlessly sacrifice revenue if some degree of disinter-

mediation is inevitable. Fundamentally, disintermediation poses a challenge to commission-based

1 For example, Amazon charges sellers a ‘referral fee’ between 8% and 15% for most product categories, Airbnb hosts
pay a commission of 14-16% under a host-only fee structure, and Upwork charges a commission rate between 5% and
20%, depending on transaction volume.
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platforms due to a misalignment between the platform’s value proposition (connecting sellers to

buyers) and its pricing strategy (charging for completed transactions). Recognizing this gap, some

platforms eschew commission fees and instead charge sellers for access to buyers – for example,

the homeservices platform Thumbtack charges sellers for inquiries from potential buyers (“leads”)

(Thumbtack 2023), and caregiver platform Care.com charges service providers for the ability to

exchange messages with prospective clients (Care.com 2023). Clearly, alternatives to commission

fees such as charging sellers for access to buyers reduces the incentive to disintermediate, but their

revenue implications are less clear as some sellers may be unwilling to pay upfront. More impor-

tantly, the efficacy of a given commission rate or pricing strategy may also depend on information

quality, as a consequence of its effect on disintermediation.

Contributions. This paper examines how disintermediation and information quality jointly

impact a platform’s revenue, optimal commission rate, and choice of pricing strategy. In our model,

heterogenous sellers set their prices in an online transaction channel prior to being matched to a

buyer. The platform charges the seller a fixed fraction of the price if the transaction is completed in

the online channel. Alternatively, a seller may attempt to bypass the commission by negotiating an

off-platform price with the buyer and completing the transaction in an offline channel if doing so

is mutually beneficial. Buyers’ types are private information; in particular, “risky” buyers impose

higher transaction costs on sellers in both channels, and additionally withhold payment in the

offline channel. To capture information quality, we assume the platform has a technology that

generates, with varying degrees of accuracy, a noisy signal of the buyer’s type, which the seller

observes after selecting their online price and prior to their choice of the transaction channel.

Our analysis focuses on the following three questions:

1. How does the threat of disintermediation (i.e., the presence of an offline transaction channel)

alter the influence of information quality on platform revenue?

2. How does the threat of disintermediation impact the platform’s optimal commission rate?

3. Under what conditions can platforms recover the revenue lost to disintermediation by switch-

ing from commission-based to access-based pricing?

This agenda complements an extensive body of empirical work on disintermediation that has

emerged in recent years (Gu and Zhu 2021, Karacaoglu et al. 2022, Astashkina et al. 2022, He

et al. 2020, Gu 2022). In particular, Gu and Zhu (2021) show using experiments that the presence

of high quality information on a platform leads to more transactions, but simultaneously increases

the likelihood of disintermediation. We further explore this trade-off by studying how informa-

tion quality affects the platform’s revenue and commission rate, and also analyze the efficacy of

alternative pricing strategies proposed in the literature (Edelman and Hu 2016).
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Our results are summarized in Table 1. First, in the absence of the offline channel, platform

revenue weakly increases in information quality under any fixed commission rate. This occurs

because an increase in information quality improves sellers’ ability to screen buyers, which both

increases transaction volume and leads sellers to set more efficient prices online. However, the

threat of disintermediation can reverse this behavior: the presence of the offline channel can make

platform revenue strictly decrease in information quality. The intuition is that when sellers can

transact in an offline channel, an increase in information quality lowers the risk sellers face from

disintermediating, leading to more offline transactions and an erosion of platform revenue.

Second, one might assume naively that the prospect of disintermediation would compel the

platform to lower its commission rate. In some cases, however, it may be in the platform’s interest to

“double down” and increase its commission rate in response to users transacting offline. This result

is a consequence of which transactions the platform chooses to capture value from. Specifically, in

the presence of the offline channel, the platform must decide whether to prevent disintermediation

entirely, which requires restricting its commission rate, or to permit disintermediation for some

transactions and maximize revenue from those that remain online, which frees the platform to

increase its commission rate. We provide a precise characterization of when the latter strategy is

optimal.

Third, we examine the efficacy of access-based pricing, in which sellers are charged upfront

to join the platform instead of paying commission fees. In contrast to commissions, access fees

are robust to the potentially revenue-decreasing effect of information: platform revenue weakly

increases in information quality, regardless of whether sellers can disintermediate. However, in a

setting where disintermediation cannot occur, access fees can fall short of the revenue attainable

under commissions, suggesting that upfront pricing alone cannot fully recoup revenue losses from

disintermediation.

Our findings highlight how the threat of disintermediation can alter the role of information in

platform operations. Conventional wisdom suggests that an open and information-rich environment

can foster trust in the marketplace, and as a result, boost on-platform transactions (Resnick and

Zeckhauser 2002, Tadelis 2016). However, when disintermediation is rife, additional information

can backfire by encouraging buyers and sellers to transact off-platform, which has implications for

a platform’s revenue, choice of commission rate, and the pricing strategy itself. Unsurprisingly, our

results suggest that platforms that do not account for disintermediation in their design choices can

end up in outcomes that are highly sub-optimal.

1.1. Related Work

Disintermediation. In its most general sense, disintermediation refers to the circumvention

of market intermediaries, and has been studied in a number of contexts, including supply
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No Disintermediation With Disintermediation

For fixed commission,

platform revenue...
increases with α decreases in α on [α1,1]

Optimal commission...

increases in α
decreases in α on [ 1

2
, α2] if

there are enough high-quality sellers

is weakly higher under threat of disintermediation if α>α3

and there are enough high-quality sellers

Access fees generate...
higher revenue than commissions

if seller earnings are “balanced”
lower revenue than commissions

Table 1. Summary of results describing effect of information quality (α) on platform revenue and

optimal commission rate with and without threat of disintermediation.

chains (Ritchie and Brindley 2000, Federgruen and Hu 2016). Our work bears some similarity to

prior work on the cost-benefit trade-off of intermediation in supply chains and other operational

settings (e.g., Agrawal and Seshadri (2000), Belavina and Girotra (2012)), although our focus is

on platforms that mediate transactions between individual users, rather than firms.

Recently, there is a growing recognition of the threat posed by disintermediation (or platform

leakage) to a variety of two-sided platforms2. For the most part, the extant literature on plat-

form disintermediation is empirical, and uses novel identification approaches to quantify this phe-

nomenon (He et al. 2020, Gu and Zhu 2021, Gu 2022, Astashkina et al. 2022, Karacaoglu et al.

2022, Lin et al. 2022). For example, Gu and Zhu (2021) use a randomized control trial to find

evidence of disintermediation on a large outsourcing platform, Karacaoglu et al. (2022) use data

from a home cleaning platform and estimate that the platform loses out on 24% of potential trans-

actions due to disintermediation, and Lin et al. (2022) find the rate of disintermediation on Airbnb

to be around 5.4% based on data from Austin, Texas. Our work is especially related to Gu and Zhu

(2021), who find that providing more information about freelancer quality positively impacts the

volume of transactions, but also increases the likelihood of disintermediation. Our model provides

analytical support for the empirical results in Gu and Zhu (2021), and further sheds light on the

impact of information quality on a platform’s revenue and optimal commission rate.

On the modeling side, our paper builds on the framework developed in He et al. (2023) and

complements their findings; we briefly outline the key differences. First, while He et al. (2023) study

the causes of disintermediation, we are primarily interested in the role of information quality and

how it influences platform operations when sellers have access to an offline transaction channel.

Second, their paper investigates the impact of risky sellers underdelivering in two settings— when

platforms provide perfect information or no information at all. In contrast, the risk in our model

2 Edelman and Hu (2016) and Karacaoglu et al. (2022) outline the impact of disintermediation on a number of
platforms, including Uber, Rover, Upwork, Handy, eHarmony, and Zeel.
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stems from buyers reneging on payment, and we model information as a continuous parameter,

which generates additional insights. Finally, He et al. (2023) propose a number of mechanisms

that platforms can implement to avoid disintermediation (e.g., upskilling its sellers). We add to

this discussion by studying pricing as an instrument to counteract disintermediation. Hagiu and

Wright (2022) also present a model for platform disintermediation, although their setting differs

in a few notable ways: there is no private information on either side of the market, buyers are

homogenous and have zero bargaining power over the off-platform price, and sellers face no risks

from transacting offline.

Information disclosure in platforms. Our paper is related to a growing literature on how infor-

mation influences the decisions of platform users, which has consequences for social welfare or

platform revenue. Papanastasiou et al. (2018) show that strategically withholding information from

consumers can induce exploration of new or alternative products in a manner that ultimately

improves consumer surplus; similarly, Gur et al. (2023) consider how information can be used as

a lever to influence sellers’ prices, also with the aim of improving consumer surplus. In a similar

vein, Kanoria and Saban (2020) show that matching markets (e.g., dating platforms) can improve

welfare by hiding the quality of users. With respect to platform revenue, Bimpikis et al. (2020)

and Shi et al. (2022) describe mechanisms through which mislabelling high quality sellers can

benefit the platform, and Jin et al. (2018) and Johari et al. (2019) identify conditions under which

it is revenue-maximizing for platforms to filter out low quality users. More generally, there is a

burgeoning literature on information design in a variety of operational contexts (Bimpikis and

Papanastasiou 2019, Bimpikis et al. 2019, Lingenbrink and Iyer 2019, Candogan and Drakopoulos

2020, Drakopoulos et al. 2021, Liu et al. 2021, Ma et al. 2021, Anunrojwong et al. 2022, Bimpikis

and Mantegazza 2022). Our paper contributes to this literature by considering a new mechanism

through which information shapes platform revenue, namely, disintermediation.

Reputation systems. The success of many online platforms can be partially attributed to repu-

tation (i.e., review) systems that build trust among users and allow for efficient matching (Resnick

and Zeckhauser 2002, Cabral and Hortacsu 2010, Shi et al. 2022). At a high level, these systems

help overcome the information asymmetry between buyers and sellers on the platform, which leads

to more transactions and prices that accurately reflect quality (Moreno and Terwiesch 2014). How-

ever, an increase in trust on the platform can reduce the perceived importance of the platform’s

services, including policies that protect sellers from risky buyers or fraud (Edelman and Hu 2016,

Gu and Zhu 2021). Further, reputation systems may be noisy due to bias or rating inflation (Garg

and Johari 2021, Filippas et al. 2022). Our work aims to capture this interplay between informa-

tion, risk, and disintermediation, and is also motivated by a recognition that buyer-side reputation

systems are crucial for enabling sellers to operate efficiently at scale, including in online labor
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markets (Benson et al. 2020) and the sharing economy broadly (Fradkin et al. 2021, Jin et al.

2018).

Commissions vs. upfront pricing. Platform designers often have a wide range of pricing instru-

ments at their disposal, and characterizing the trade-offs between the different mechanisms is an

active area of study. For instance, there is a rich literature on advance selling that predates online

marketplaces (Xie and Shugan 2001, Randhawa and Kumar 2008, Cachon and Feldman 2011), and

it is now well known that a monopolist firm can often extract more revenue from subscriptions

than per-use pricing. However, in the case of two-sided platforms with heterogeneous users, the

effectiveness of upfront pricing may suffer by excluding users who are uncertainty averse (Edelman

and Hu 2016) or derive low utility from the platform (Birge et al. 2021, Cui and Hamilton 2022).

As a consequence, commissions remain the de facto pricing strategy in most modern marketplaces.

Naturally, a number of papers have looked at how platforms should set these commissions and

whether they should coupled with other mechanisms, e.g., a fixed fee (Benjaafar et al. 2019, Hu and

Zhou 2020, Feldman et al. 2022, Cachon et al. 2022). For instance, Cachon et al. (2022) consider

how pricing control (i.e., whether the platform or sellers set prices) impacts the performance of

commission and per-unit fees, and show that a two-part tariff that combines them performs well

in both centralized and decentralized marketplaces. More generally, Birge et al. (2021) identify

conditions under which it is optimal for platforms to use subscriptions or commissions and argue

that platforms can lose out on revenue by not charging payments from both sides of the market.

Our paper contributes to this literature by examining how the threat of disintermediation influences

both the optimal commission rate and the efficacy of upfront pricing. Our focus on access fees is

also motivated by recent interest in the interplay between pricing, information, and manipulation

on platforms (Belavina et al. 2020, Mostagir and Siderius 2022, Papanastasiou et al. 2022).

2. Model

We consider a platform with a unit mass of sellers. Each seller is one of two types according to

their quality. Let H and L denote the high- and low-quality seller types, respectively, and suppose

their qualities are given by qH > qL > 0. Further, let µ∈ [0,1] be the fraction of high-quality sellers.

Seller quality is public information and all sellers earn a reservation profit of 0 off the platform.

As in many two-sided marketplaces (e.g., online labor or rental platforms), we assume each seller

chooses their own price p for online transactions, which depends on their quality.

Each seller is randomly matched to a buyer. Buyers are heterogeneous in their quality sensitivity,

θ, where a buyer with sensitivity θ has valuation v = θq for a quality-q seller. We assume θ is

distributed uniformly in [0,1] and that the distribution is common knowledge; for convenience we

denote the uniform cdf by F (θ). Buyers can be one of two types: we use {r, s} (i.e., “risky” or
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“safe”) to denote the buyer types, which is private information. The buyer type influences sellers’

costs in two ways. First, a type-s buyer imposes lower transaction costs on sellers both online and

offline, cs < cr. For simplicity, we assume cs = 0 and cr = c > 0. Second, a type-s buyer pays sellers

in full in both transaction channels, whereas a type-r buyer withholds the entirety of the payment

if the transaction occurs offline.3 A buyer is type-s with probability λ, which is known to sellers

and the platform and is independent of the buyer’s quality sensitivity θ. We focus on a setting

where a minority of buyers are risky by assuming λ∈ [ 1
2
,1].

The platform selects a commission rate of γ ∈ [0, γmax]; for simplicity we set γmax = 1
2
.4 For a

transaction completed online at price p, the seller and platform receive (1−γ)p and γp, respectively.

The platform has a technology that generates a noisy signal σ of the buyer’s type, where σ ∈ {r, s}.

To reflect variability in information quality, we assume the signal correctly reveals the buyer’s type

with probability α∈ [ 1
2
,1].5 We assume α is exogenous and known to all parties.

Instead of transacting online at the seller’s posted price p, a buyer and seller can jointly decide

to transact offline at an alternative price, b. The offline price b is given by the Nash bargaining

solution to a cooperative game, discussed below in §2.1.

Timeline. The sequence of events is as follows:

1. The platform sets the commission rate γ.

2. Each seller chooses their online price p.

3. Each seller is randomly matched to a buyer. After observing the seller’s price p, the buyer

decides whether to contact the seller to initiate a transaction. (If the buyer does not make

contact, no transaction occurs.)

4. Each contacted seller observes a noisy signal σ of the buyer’s type, updates their belief of

the buyer’s type, and decides whether to accept or reject the buyer. (If the seller rejects, no

transaction occurs.)

5. If a seller accepts a buyer, both parties attempt to negotiate an offline price, b. The transaction

occurs offline at price b if the negotiation succeeds; otherwise, the transaction occurs online

at price p.

In the third step, we assume buyers are individually rational in that they only contact sellers to

initiate a transaction if the online price yields non-negative utility for the buyer (i.e., θq≥ p). This

reflects the process commonly observed in service platforms (e.g., TaskRabbit or Airbnb) in which

sellers post prices and are contacted by buyers only if their online price is acceptable.

3 Our results extend to a setting where transacting offline also incurs other costs for the seller, including the incon-
venience of transacting offline or the risk of being banned by the platform.

4 Our results continue to hold using γmax = 1− ϵ for any ϵ > 0 if Assumption 1 is modified to include qH ≥ 2c/ϵ.

5 The assumption that α≥ 1
2
is without loss of generality, because a signal with accuracy α< 1

2
is equivalent to one

with accuracy 1−α with the buyer type flipped.
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2.1. Offline Price Bargaining

We now formalize a simple bargaining game between a buyer and seller that determines whether

they disintermediate. Consider a seller with online price p who has accepted a buyer’s request

to transact. The buyer and seller then engage in cooperative bargaining to identify a mutually

beneficial offline channel price b, if such a price exists. We assume the offline price b is given by

the symmetric Nash bargaining solution (Nash 1953, Binmore et al. 1986), which is the price that

maximizes the product of the buyer’s and seller’s surpluses from disintermediation. The outcome

if price negotiation fails (i.e., the disagreement point) is to transact online at price p, which is set

by the seller prior to accepting the the buyer and is thus fixed at the time of negotiation.

To derive the offline price, we first consider the buyer and seller’s surplus from disintermediation

under an online-offline price pair (p, b), starting with the seller. Note the seller’s expected payment

online is simply (1 − γ)p. Because type-r buyers renege on payment in the offline channel, the

seller’s expected payment offline depends on their belief of the buyer’s type – accordingly, let

η|σ = Pr(j = s|σ) be the seller’s posterior belief the buyer is type-s after observing the signal σ.

The seller’s expected payment offline is then η|σb. Further, because the seller incurs cost c from

type-r buyers only, their expected cost in both channels is (1− η|σ)c. It follows that the seller’s

surplus from disintermediation is η|σb− (1− γ)p.

On the buyer side, a type-s buyer’s payoffs in the online and offline channels are θq−p and θq−b,

respectively, meaning their surplus from disintermediation is p− b. Further, although buyers’ types

are private information, type-r buyers have no incentive to signal their type during negotiation,

because doing so would preclude an offline transaction entirely. Type-r buyers therefore mimic

type-s buyers during bargaining.

The product of the buyer and seller’s surpluses from disintermediation is then

(p− b)(η|σb− (1− γ)p).

Note that the function above is strictly concave and quadratic in b. Solving for the unique maximizer

yields the offline price, which we denote by bσ(p) to highlight the dependence on the signal σ and

the online price p:

bσ(p) =
p(1− γ+ η|σ)

2η|σ
.

The expression for bσ(p) aligns with intuition: for a fixed price p, a higher commission rate

strengthen the buyer’s bargaining position and produce a lower offline price. Further, because

η|s > η|r, the offline price is higher for σ= r buyers than σ= s buyers, reflecting the increased risk

assumed by the seller.
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2.2. Model Discussion

We now briefly discuss our key modeling choices and their limitations.

Single-period and matching dynamics. We use a single-period model to capture interactions on

the platform, meaning buyers and sellers are assumed to have not previously interacted, and sellers

rely exclusively on the platform’s signal to assess buyer risk. This assumption allows us to isolate

how the quality of information obtained via the platform influences disintermediation, which is the

focus of our work. In practice, sellers may also obtain additional information based on previous

interactions with a buyer. Further, while repeated interactions between the same buyer and seller

are common in online platforms, empirical evidence suggests that a large portion of transactions

are due to first-time interactions (Astashkina et al. 2022, Lin et al. 2022), and that the risk of

disintermediation exists even if the buyer and seller have not previously met (Gu and Zhu 2021).

Further, because disintermediation occurs after buyers and sellers have already been matched, we

abstract away details of the platform’s matching algorithm and related congestion effects. As a

consequence, each seller in our model is matched to a buyer with probability 1. This assumption is

not critical to our analysis, and we conjecture our main results would continue to hold under more

general matching dynamics.

Model of buyer risk. We assume λ≥ 1
2
to focus on a functioning marketplace that is not over-

whelmed with risky buyers. Additionally, our model assumes that risky buyers pose two challenges

to sellers: first, they are more costly for sellers to transact with online, and second, they with-

hold payment when the transaction occurs offline. In other words, we assume buyers who pose

off-platform risks (e.g., delays in payment or fraud) are also more difficult for sellers to transact

with on-platform (e.g., by posing ill-specified tasks or communicating poorly). We note that all of

our results hold in a more abstracted setting where instead of withholding payment, risky buyers

simply pose large, additional costs on sellers in the offline channel. Naturally, sellers cannot always

identify such buyers because their type is private information and the platform’s signal is imperfect.

Observable seller quality. We assume each seller’s quality is public information. This assump-

tion aligns with the notion that sellers typically engage more frequently with the platform than

buyers, which gives the platform higher accuracy information about sellers (vs. buyers) that it

can pass on to buyers (e.g., in the form of reviews). As a consequence of sellers’ qualities being

observable, buyers in our model always agree to disintermediate if the offline price is lower than

the online price. In practice, it is conceivable that buyers also face risks when transacting offline

– for example, a service provider may underdeliver on the agreed quality. That said, our model

serves as a reasonable approximation for settings where payment occurs after service is provided,

which creates disincentives for sellers to underdeliver, and more generally makes disintermediation

riskier for sellers than buyers.
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2.3. Preliminary Analysis

We conclude this section by characterizing the sellers’ profit function, the platform’s revenue, and

the conditions under which disintermediation occurs.

Seller profit. Consider a seller with quality q. Because θ is uniformly distributed over [0,1]

and the buyer has a payoff of θq − p for an online transaction, only buyers with θ ≥ p/q contact

a quality-q seller. A quality-q seller’s expected profit from an online transaction conditioned on

observing the signal σ is then

πσ(p) =

[(
(1− γ)p− (1− η|σ)c

)
· F̄
(
p

q

)]+
. (1)

In the above expression, [x]+ =min(x,0), which reflects the seller’s ability to reject the buyer upon

observing σ and collect their reservation profit of 0.

For an offline transaction, the seller’s payment is random: conditional on observing σ, they receive

the bargained price bσ(p) with probability Pr(s|σ) = η|σ and nothing with probability Pr(r|σ) =

1−η|σ. If the buyer accepts price bσ(p) offline, the seller’s expected profit from an offline transaction

as a function of p is

π̃σ(p) =

[(
η|σbσ(p)− (1− η|σ)c

)
· F̄
(
p

q

)]+
. (2)

It can be shown that π̃σ(p)≥ πσ(p) if and only if bσ(p)≤ p, meaning the bargaining process produces

an offline price that is either favorable for the buyer and seller or unfavorable to both. Intuitively,

if disintermediation generates surplus for either party, it can always be shared with the other to

ensure an offline transaction occurs. As a consequence, the seller’s expected profit under an online

price of p and the signal σ can be written as

Πσ(p) =max{πσ(p), π̃σ(p)}.

Finally, because the seller sets their price before observing the signal σ, their expected profit is

Π(p) = Pr(σ= r) ·Πr(p)+Pr(σ= s) ·Πs(p),

and their optimal price is

p∗(α, q, γ) = argmax
p≥0

Π(p).

Platform revenue. Let S ⊆ {r, s} be the set of signals that sellers transact with online, which

depends on (α, q, γ). The platform’s expected revenue from a unit mass of quality-q sellers is then

r(α, q, γ) = γ
∑
σ∈S

Pr(σ|α) · p∗(α, q, γ) · F̄
(
p∗(α, q, γ)

q

)
. (3)
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Since µ denotes the fraction of sellers that are type-H, the platform’s total expected commission

revenue from all sellers is

R(α) = µ · r(α, qH , γ)+ (1−µ) · r(α, qL, γ).

Seller types. A seller with online price p accepts the request to transact from a buyer with

signal σ if and only if doing so is profitable (i.e., Πσ(p) ≥ 0). In the remainder of the paper, we

impose an assumption that ensures the two seller types are meaningfully different in terms of their

behavior on the platform. In particular, we assume the seller types are well-separated with respect

to quality:

Assumption 1 (Separation). The seller qualities qL and qH satisfy qL ≤ c(1−λ) and qH ≥ 4c.

The following lemma is an immediate consequence of Assumption 1:

Lemma 1. Under Assumption 1, for any value of γ ∈ [0, γmax] and α ∈ [ 1
2
,1], the type-H seller

accepts σ= r buyers and the type-L seller rejects σ= r buyers.

Assumption 1 restricts our attention to the interesting setting where transacting with a σ= s buyer

is profitable for both seller types but transacting with a σ= r buyer is profitable only for one (i.e.,

the high-quality) seller type.

Disintermediation threshold. For a given online price p, the buyer and seller choose to

disintermediate only if both prefer transacting offline at price bσ(p) to transacting online at price

p. The following lemma characterizes when this occurs.

Lemma 2. For each σ ∈ {r, s}, both the buyer and seller prefer the offline channel at price bσ(p)

over the online channel at price p if and only if γ ≥ γ̄σ, where γ̄σ = 1− η|σ.

Lemma 2 establishes that the offline channel is preferred by both the buyer and seller if and only if

the commission rate is sufficiently high, where the threshold γ̄σ is decreasing in the seller’s posterior

belief that the buyer is not risky (type-s).

It follows from the expression for γ̄σ that γ̄s < γ̄r, which implies sellers disintermediate with either

no buyers, only σ = s buyers, or all buyers. Figure 1 illustrates how these two thresholds evolve

with the signal accuracy α. In the extreme case where α= 1, sellers are able to perfectly distinguish

buyers, and thus always transact offline with type-s buyers (and always online with type-r buyers).

Since the platform trivially generates zero revenue in the case where sellers disintermediate with

all buyers, we assume in the remainder of the paper that γ ≤ γ̄r.
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Figure 1. The largest commission rate (γ) at which transactions remain online as a function of

information quality (α) – i.e., the probability the signal σ matches the buyer’s true type – when

25% of buyers are risky (λ= 0.75). Sellers transact offline with low-risk (σ = s) buyers for γ > γ̄s

and high-risk (σ = r) buyers for γ > γ̄r, where γ̄s < γ̄r. As information quality α increases, sellers

can more accurately distinguish between low- and high-risk buyers, causing γ̄s to decrease (due to

sellers’ increased confidence that a σ= s buyer will pay) and causing γ̄r to increase (due to sellers’

increased confidence that a σ= r buyer will withhold payment).

3. Information and Platform Revenue Under Fixed Commission

We first consider how disintermediation and information quality jointly shape platform revenue.

To establish a baseline, §3.1 addresses a setting where transactions occur online-only. In §3.2, we

introduce the threat of disintermediation by assuming sellers can also transact in an offline channel.

To isolate the role of information quality, we assume in this section that the platform’s commission

rate γ is fixed. Accordingly, we suppress dependence on γ in the notation.

3.1. Online-Only

Our first result establishes that in the total absence of disintermediation, the platform benefits

from sellers having more accurate information about buyer types.

Lemma 3. Suppose transactions occur online-only. For any γ ∈ [0, γmax], platform revenue R(α)

weakly increases on α∈ [ 1
2
,1].

The reliability of the buyer signal σ increases in information quality α, which generates two effects

on platform revenue. First, as α increases, a greater share of type-s buyers are correctly identified

as such to the sellers, which we call the trust effect. Second, as α increases, sellers set more efficient

prices, which we call the price effect. Next, we describe how these two information-related effects

combine to impact platform revenue.
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When only the online channel exists, the trust effect lifts revenue by increasing the volume of on-

platform transactions. To see why, note that the high-quality seller transacts with both buyer types

(Lemma 1), so their behavior is invariant to α. However, because the low-quality seller transacts

with type-s buyers only, the trust effect increases the likelihood a low-quality seller completes a

transaction by increasing the share of type-s buyers correctly labeled with σ= s. As a result, total

transaction volume from all sellers increases with information quality α.

Next, to understand the price effect, it is helpful to examine the optimal price of type-L sellers

(see Lemma 9 in the Appendix):

p∗ =
1

2

qL+ E[c|σ= s]

1− γ︸ ︷︷ ︸
ψ

 .

The first component in the optimal price, 1
2
qL, reflects that buyers’ valuations increase in a seller’s

quality. The second term, 1
2
ψ, is a “premium” charged by sellers due to the risk of transacting

with a type-r buyer mislabeled with the signal σ = s. The premium 1
2
ψ is a pricing inefficiency

that stems from the information asymmetry faced by the seller, which hurts platform revenue.6 As

information quality α increases, the signal σ becomes more informative to sellers, compelling them

to reduce the premium to the benefit of the platform.

In the baseline setting where transactions occur online-only, both the trust and price effects

boost platform revenue, resulting in Lemma 3. Next, we examine how the threat of disintermedi-

ation – represented by the existence of a second, offline transaction channel – alters each of these

information-related effects.

3.2. Online and Offline Channels

Our main result in this section is that the availability of the offline channel can reverse Lemma 3:

for a fixed commission rate γ, an increase in information quality α can hurt platform revenue.

Proposition 1. Suppose transactions can occur online or offline. Then for any γ ∈ [0, γmax],

there exists ᾱ ∈ ( 1
2
,1), and λ̄ ∈ ( 1

2
,1) such that if λ ≥ λ̄, the platform’s revenue R(α) strictly

decreases on (ᾱ,1).

Proposition 1 states that the platform’s revenue decreases with information quality in high infor-

mation environments (α ≥ ᾱ) without many risky buyers (λ ≥ λ̄). In the following corollary, we

more precisely characterize these two thresholds. Surprisingly, Proposition 1 holds for almost all

values of λ∈ [ 1
2
,1] – that is, even when there are many risky buyers.

6 To see why the premium hurts platform revenue, note the platform’s expected revenue from the type-L sellers is
(1−µ)γp(1− p

qL
). The price that maximizes platform revenue is thus qL

2
, which is the first component in the seller’s

chosen price p∗, and thus strictly lower than p∗.
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Corollary 1. The thresholds λ̄ and ᾱ in Proposition 1 satisfy λ̄ < 0.54, ᾱ= (1−γ)(1−λ)
(1−λ)(1−γ)+λγ for

γ ≤ 1−λ and ᾱ= λγ
(1−γ)(1−λ)+λγ for γ > 1−λ.

Proposition 1 can similarly be explained by the trust and price effects described in §3.1. In the

presence of the offline channel, the direction of the price effect is unchanged: An increase in infor-

mation quality pushes sellers toward more efficient (i.e., lower) prices, increasing platform revenue.

In contrast, when information quality is sufficiently high (α≥ ᾱ), the direction of the trust effect

is flipped, which pushes down on platform revenue.

To understand how the presence of the offline channel changes the trust effect, first note that

when α is low, all sellers transact online due to the unreliability of the buyer signal. In other words,

when there is sufficient risk associated with each buyer, sellers place a high value on the protections

(e.g., insurance or payment guarantees) afforded by the platform. In this environment, the behavior

in Lemma 3 is preserved, as shown in Figure 2.7 However, when information quality is high (α≥ ᾱ),

sellers transact offline with σ = s due to increased confidence they will not renege on payment,

at which point further increases in α only pull a greater share of transactions off the platform.

As a consequence, when the offline channel exists and information quality is high, the trust effect

hurts platform revenue by amplifying disintermediation, putting it in tension with the price effect.

Proposition 1 indicates that in the high information setting where sellers disintermediate with

σ= s buyers, the (revenue-decreasing) trust effect dominates the (revenue-increasing) price effect,

provided the share of non-risky buyers is not excessively low (λ≥ λ̄).

Combining Lemma 3 and Proposition 1 allows us to compare how disintermediation impacts

platforms with different information environments. In particular, platforms that are associated

with a more informative reputation system (larger α) may suffer significant revenue losses due to

disintermediation, and may consider lowering their commission rate in response (e.g., see Figure 2

for α ∈ [0.63,0.8]); we explore this further in §4. Individual platforms may also become more

informative over time—this can happen organically as more data on buyers are collected or if the

platform’s underlying reputation technology improves (e.g., see Fradkin et al. (2021)). Our results

suggest that disintermediation, and the ensuing revenue losses, may be a by-product of this process.

Finally, we remark that under low information quality, even intermediate commission rates can

lead to market failure as all transactions will occur offline (e.g., see Figure 1); this may provide

some insight into the collapse of platforms such as Homejoy.

7 See Lemma 13 in Appendix D for a complete characterization of how platform revenue depends on information
quality, including the case where α≤ ᾱ.
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Figure 2. The platform’s revenue as a function of information quality (α) for two values of the

commission rate (γ), under parameters λ= 0.7, c= 1, qH = 4c, qL = (1−λ)c, and µ= 0.1. At λ= 0.7,

30% of buyers on the platform are risky (type-r), and so an increase in information quality initially

leads to an improvement in the platform’s revenue as sellers are able to more accurately identify

low-risk buyers to transact with. However, once α ≥ ᾱ (where ᾱ ≈ 0.8 for γ = 0.1 and ᾱ ≈ 0.63

for γ = 0.2), sellers disintermediate with σ = s buyers, which causes revenue to drop sharply and

continue to decline as α increases further. Note for intermediate values of α, the smaller commission

rate yields higher revenue by pushing the disintermediation threshold ᾱ out further.

4. Disintermediation and Optimal Commission

In §3, we isolated the effect of information quality α on platform revenue by assuming the com-

mission rate γ was fixed. Given that a platform’s commission rate is one of its primary levers in

shaping revenue, one might naturally ask how a platform should adjust commissions in response

to disintermediation. This section focuses precisely on that question, with a spotlight on the role

of information quality.

Our main result, presented in §4.1, shows that the optimal commission rate when sellers can

transact offline can be higher than if disintermediation posed no threat at all. In §4.2, we examine

how disintermediation alters the role that information quality plays in shaping the platform’s

optimal commission rate and optimal revenue, analogous to §3.

4.1. Optimal Commission Under Disintermediation

By Lemma 2, sellers disintermediate if and only if the commission rate is sufficiently high. Intuition

would then suggest that the prospect of disintermediation should compel the platform to choose a

strictly lower commission rate (compared to the online-only setting) to encourage sellers to remain

on-platform. Our next result reveals that this prescription does not hold universally:
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Proposition 2. Let γ∗ and γ0 denote the platform’s optimal commission rate with and without

the offline channel, respectively. There exists α ∈ ( 1
2
,1) and µmin ∈ (0,1) such that if α ≥ α and

µ≥ µmin, the optimal commission rate is weakly higher under the threat of disintermediation:

γ0 ≤ γ∗.

In the presence of the offline channel, the platform can respond to disintermediation using one of

two strategies, which determines the optimal commission rate γ∗:

1. A back down strategy, in which the platform lowers the commission rate to prevent platform

participants from transacting offline.

2. A double down strategy, in which the platform raises the commission rate to maximize revenue

from participants that remain online (even if some decide to transact offline).

Proposition 2 states that the platform should adopt the high-commission, double down strategy

when information quality α and the share of high-quality sellers µ are both sufficiently high.

For the intuition behind Proposition 2, first suppose information quality is high (α≥ α). In this

setting, the signal σ is highly reliable, and thus sellers face minimal risk in transacting offline with

σ = s buyers. As a result, the back down strategy can lead to significant revenue losses since, in

a high information environment, the maximum commission rate under which no disintermediation

occurs is small (see Figure 1). In contrast, under the double down strategy, the platform forfeits

revenue from σ= s buyers and relies exclusively on σ= r buyers transacting online (who both seller

types are unwilling to transact with offline), and is thus free to choose a higher rate. Further, under

the double down strategy, the platform’s revenue is generated exclusively by high-quality sellers

transacting online with σ = r buyers. Therefore, for the double down strategy to collect enough

revenue, the fraction of high quality sellers cannot be too small, which produces the additional

condition µ≥ µmin.

In summary, if information quality is high and there are enough high-quality sellers, the platform

is better off setting a commission rate at least as high as in the online-only setting, extracting the

maximal revenue from the transactions that occur online, and absorbing the losses from disinter-

mediation. Next, we show that Proposition 2 can be sharpened to a strict inequality under stronger

conditions.

Corollary 2. There exists λ̄∈ ( 1
2
,1) such that if λ< λ̄ and qL ≤ (1−λ)c/2, then γ0 <γ

∗ over

some intervals α∈ (α, ᾱ) and µ∈ (µmin, µmax).

The intuition behind Corollary 2 is subtle, but the main thrust is that it describes an environment

where the platform sets a low commission rate γ0 in the online-only setting to ensure the prof-

itability of low-quality sellers. This is not a concern in the presence of disintermediation because

low-quality sellers transact fully offline when information quality is sufficiently high.
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What do our results thus far imply for platforms facing disintermediation? First, operating

with a large degree of trust (large α) and featuring many high quality sellers (large µ) are often

considered as markers of successful online platforms. Our analysis indicates that it is precisely these

platforms that are most vulnerable to disintermediation (Proposition 1) and, accordingly, more

likely to increase their commission rate in response (Proposition 2 and Corollary 2). Second, many

platforms have been criticized for their high commission rates (e.g., see Gurley (2013)), and some

have argued that high commission rates may cause disintermediation (Edelman and Hu 2016). Our

results lend support to the alternative view by showing that a high commission rate may in fact

be the optimal response to disintermediation.

4.2. Effect of Information Quality on Optimal Commission and Revenue

Analogous to the analysis in §3, we now examine how the threat of disintermediation alters the

role of information in shaping platform’s optimal commission rate and optimal revenue. We again

begin by considering a benchmark setting in which disintermediation cannot occur.

Lemma 4. Suppose transactions occur online-only. Then there exist thresholds α1 ∈ ( 1
2
,1) and

α2 ∈ [α1,1) such that (i) γ0 = γmax for α≤ α1 and α≥ α2 and (ii) γ0 <γ
max and is strictly increasing

for α∈ (α1, α2). Further, the platform’s optimal revenue R∗(α) weakly increases in α∈ [ 1
2
,1].

In the online-only setting, the platform’s optimal commission rate weakly increases in α almost

everywhere.8 This result is intuitive – as information quality increases, sellers set more efficient

prices and complete more transactions, due to the price and trust effects (described in §3), respec-

tively. These two effects lift platform revenue and allow the platform to set a higher commission

rate. Similarly, the platform’s optimal revenue R∗(α) weakly increases in α, analogous to Lemma

3. Our next result, Proposition 3, shows that Lemma 4 is potentially reversed by the threat of

disintermediation:

Proposition 3. Suppose transactions can occur online or offline. There exists µ̄ and ᾱ such

that if µ≥ µ̄, then γ∗(α) and R∗(α) strictly decrease in α on α∈ [ 1
2
, ᾱ].

In a low-information setting (α≤ ᾱ), the low-quality seller is unprofitable and does not participate,

so the platform targets the high-quality seller only. Because the high-quality seller generates ample

demand, the optimal strategy for the platform is to set the commission rate as high as possible

while keeping the high-quality seller online, which is precisely the threshold γ∗ = γ̄s given in Lemma

2. Next, as information quality α increases, so does the attractiveness of transacting offline with

8 The exception is α= α1, which is the point at which low-quality sellers becomes profitable. At this point, the optimal
commission rate γ0 drops sharply to capitalize on transactions from low-quality sellers.
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σ= s buyers, due to the higher reliability of the buyer signal. As a consequence, the threshold for

disintermediation γ̄s – and therefore the optimal commission γ∗ – decreases with α. This decrease

in the commission rate to prevent disintermediation also drives down optimal revenue R∗(α).

5. Platform Pricing: Commissions vs. Access Fees

Our results thus far suggest that under commission-based pricing, the threat of disintermediation

can make sellers’ access to buyer information costly for the platform, contrary to a setting where

transactions can only occur online. This invites the question of whether there exists an alternative

pricing strategy that is resistant to disintermediation and the revenue-decreasing effects of infor-

mation. In this section, we examine a natural candidate: charging sellers an upfront access fee to

join the platform, instead of extracting commissions from on-platform transactions.9

Intuitively, access fees can mitigate revenue losses from disintermediation by collecting payments

upfront and reducing sellers’ incentives to transact offline. What is less clear is their efficiency:

can access fees fully recoup the revenue that would otherwise be lost to disintermediation under

commission-based pricing? Our main result in this section answers in the negative – while access

fees dominate commissions in the setting where sellers can disintermediate, they can fall short of

the maximum possible commission revenue when transactions can only occur online. Below, we

provide a precise characterization of when access fees fail in this regard.

Under access-based pricing, each seller must pay the platform a fixed fee of ϕ > 0 to join the

platform. The use of a common fee ϕ for all sellers aligns with practice, and also follows naturally

from an assumption that sellers’ qualities are private information prior to joining the platform,

which precludes price discrimination by the platform. Sellers set their prices after joining, and the

remainder of the game proceeds as described in §2 (with γ = 0).

Let Πi
0 be the profit of a type-i seller on the platform in the absence of any commission or access

fees; for convenience, we call Πi
0 a type-i seller’s maximum potential earnings. Because sellers’

outside options are normalized to 0, a type-i seller pays the access fee ϕ if and only if Πi
0 ≥ ϕ.

Further, ΠH
0 > ΠL

0 because qH > qL. Therefore, for any ϕ ≤ ΠH
0 , either both seller types join the

platform, or only the type-H sellers joins. The platform’s revenue under an access fee of ϕ is then

Rϕ(α,ϕ) =


ϕ, if ϕ∈ [0,ΠL

0 ],

µϕ, if ϕ∈ (ΠL
0 ,Π

H
0 ],

0, if ϕ>ΠH
0 .

9 This pricing mechanism approximates the use of similar fees in practice, which aim to monetize matches between
sellers and buyers instead of transactions. For example, Thumbtack charges service providers whenever they are
contacted by prospective clients, and Care.com charges caregivers for the right to send messages to potential employers.
For consistency with the commission-based model in §2, we assume that the access fee allows the seller to complete
at most one transaction on the platform.
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It follows that the platform’s optimal access fee satisfies

ϕ∗ ∈ {ΠL
0 ,Π

H
0 }, (4)

and the platform’s optimal revenue is

R∗
ϕ =max{ΠL

0 , µΠ
H
0 }.

Let R∗
γ be the platform’s optimal revenue under commission-based pricing. Our first result estab-

lishes that access fees generate higher revenue than commission fees when sellers can disinterme-

diate.

Lemma 5. Suppose transactions can occur online or offline. Then access fees always generate

higher revenue than commission fees:

R∗
ϕ >R

∗
γ .

Further, for any ϕ> 0, the platform’s revenue Rϕ(α,ϕ) weakly increases on α∈ [ 1
2
,1].

Whether commissions or access fees generate higher revenue depends on which mechanism extracts

more of the sellers’ total potential earnings on the platform. For the intuition behind Lemma

5, note that under the optimal commission rate γ∗, either both seller types transact online, or

only high-quality sellers do (which occurs when the low-quality seller either disintermediates or is

unprofitable). If only high-quality sellers transact online under γ∗, the result is straightforward –

the platform can extract the entirety of high-quality sellers’ potential earnings by simply setting ϕ

to that amount, which commission fees cannot match.

The result is less immediate when both seller types transact online. At a high level, if both seller

types transact online under γ∗, then the commission rate γ∗ must be small enough such that the

low-quality seller is profitable and neither seller type disintermediates. This yields an upper bound

on the optimal commission revenue, which is shown to be exceeded by the revenue attained under

the optimal access fee. Lemma 5 also confirms that platform revenue never decreases in information

quality under access fees, in sharp contrast to commission fees as shown in Proposition 1.

Having confirmed that access fees outperform commissions when the offline channel exists, we

now address whether they can fully recover the revenue losses due to disintermediation. Our analysis

relies on the following characterization of the platform’s sellers:

Definition 1 (Relative Earnings). Let Πi
0 be the maximum potential earnings for a type-i

seller on the platform in the absence of any commission or access fees. The relative earnings on

the seller-side of the platform are then given by:

β =
(1−µ)ΠL

0

µΠH
0

.
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When the ratio β is close to 1, we say the sellers’ earnings are balanced. We now present the main

result of this section: in the setting where buyers and sellers cannot disintermediate, access fees

generate lower revenue than commission fees when relative earnings are moderately balanced and

the information quality α is not too low.

Proposition 4. Suppose transactions can occur online-only. There exist thresholds α ∈ ( 1
2
,1),

β1, and β2 such that for any α≥ α and β ∈ (β1, β2), the platform generates strictly higher revenue

through commissions than access fees:

R∗
γ >R

∗
ϕ.

Further, β1 ≥ 1/4 and β2 ≤ 5.

The effectiveness of any pricing strategy depends on how much of the sellers’ potential earnings

it can extract. Therefore, to understand Proposition 4, it is helpful to consider the platform’s

“uncaptured” revenue, i.e., the portion of the sellers’ potential earnings that is not extracted by

the access fee.

As shown in (4), the platform’s optimal access fee is either ΠL
0 or ΠH

0 . Under a fee of ϕ=ΠL
0 ,

the platform fully extracts the earnings of low-quality sellers, but not high-quality sellers, who

collectively enjoy an uncaptured surplus of µ(ΠH
0 − ϕ). Conversely, if ϕ=ΠH

0 , then the platform

fully extracts high-quality sellers’ earnings, but low-quality sellers do not join the platform – in

this case, the platform misses out on the potential earnings of low-quality sellers, (1−µ)ΠL
0 . When

β is moderate, the uncaptured revenue is large regardless of how the platform chooses ϕ, which

makes access fees less revenue-efficient than commission fees, resulting in Proposition 4. Lastly, to

see the role of the condition α≥ α, note that when α is low, low-quality sellers are unprofitable on

the platform and thus do not join. In this case, the platform can fully extract the earnings of all

participating (high-quality) sellers by setting ϕ=ΠH
0 .

In summary, combining Lemma 5 and Proposition 4 yields the following conclusion: charging

sellers access fees instead of commissions can help the platform recover some – but not all – of

the revenue that would otherwise be lost to disintermediation under commission-based pricing.

Notably, the platform may benefit from excluding low-quality sellers by setting a high access fee,

which is at odds with the notion that platforms should accommodate a diversity of sellers at varying

quality levels and price points.

Upfront pricing mechanisms such as subscriptions and access fees have drawn significant attention

in recent years, and pose a variety of advantages over commissions (Hu and Zhou 2020, Feldman

et al. 2022, Cachon et al. 2022, Cui and Hamilton 2022). Our study complements this line of work

by highlighting how access fees can correct for misalignment between a platform’s pricing strategy
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and its value proposition. Our results also shed light on the choice of different pricing strategies

by platforms in practice. Platforms that charge sellers for access to buyers (e.g., Thumbtack and

Care.com) may perceive disintermediation to be highly likely, whereas platforms that rely on

commission (e.g., Etsy) may believe the revenue losses from disintermediation to be minimal.

Finally, our work helps explain why the same platform may adopt different pricing strategies in

different markets – for example, Uber charges drivers commission fees in North America, but in

2022 unveiled access-based pricing with 0% commission for drivers in South Asia (Uber 2023).

This may be due to variability in the threat of disintermediation and the level of social trust

across markets (Astashkina et al. 2022) – for example, platforms may witness higher levels of

disintermediation in developing countries (Rampal 2023).

Although our focus has been on platform revenue, the platform’s choice of pricing strategy also

has implications for the welfare of platform participants. For labor platforms like Thumbtack that

charge for access to buyers, one might naturally assume it is in their best interest to have workers of

different quality levels join the platform in order to cater to a variety of jobs. However, Thumbtack’s

pricing strategy of charging sellers for “leads” (i.e., messages from prospective buyers) also results in

sellers paying fees that are not backed by a guaranteed transaction, which may generate discontent

from sellers who are not sufficiently profitable (Better Business Bureau 2023). Access fees may also

be a natural choice in dating (e.g., eHarmony) and caregiving (e.g., Care.com) platforms, especially

if the platform can benefit by keeping out low quality users (Johari et al. 2019).

Our findings are obtained under a model that abstracts away from additional factors that, in

practice, may influence a seller’s willingness to pay upfront for platform access. In particular,

we assume sellers engage in a single transaction at most, know their own quality, and face no

uncertainty about the demand state on the platform. We conjecture that our main insight – that

access fees are only a partial solution to disintermediation – is likely to persist when accounting

for additional features of a platform environment.

6. Discussion

In this paper, we considered how information quality and disintermediation jointly impact the

operations of a two-sided platform. We showed how an informative environment can be costly

for platforms – in particular, when risky buyers are scarce, having informed sellers can harm

revenue by promoting disintermediation. More generally, our results suggest that whether platforms

should strive for a high- or low-information environment depends on the ease with which platform

participants can disintermediate and the perceived risks of doing so.

In responding to disintermediation, commission-based platforms might consider adjusting rates

or adopting an alternative pricing strategy entirely. Despite the obvious costs of disintermediation,
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lowering commission rates in an attempt to thwart off-platform transactions may be ill-advised

– if disintermediation is inevitable, platforms may be better off setting high commission rates to

capitalize on the transactions that remain online. Alternatively, platforms may benefit by charging

sellers for access to buyers instead of levying commission fees; however, this can generate less

revenue than commission-based pricing if disintermediation poses little risk. Further, our finding

that neither commission fees nor access fees dominate the other may help explain why both arise

in practice, and also suggests that a platform’s choice of pricing strategy depends partly on the

extent to which disintermediation threatens its bottom line.

Our work modeled information quality (α) as exogenous to understand how disintermediation

impacts different platforms, given that some platforms have more reliable information signals than

others (Donaker et al. 2019). In practice, marketplace designers may have some limited ability

to influence the information available to sellers (Fradkin et al. 2021), for example, by enhancing

the platform’s reputation system or moderating sellers’ ability to communicate with buyers. Our

results suggest that in the face of disintermediation, platforms have an incentive to withhold infor-

mation – for instance, by making reputation systems uninformative so to discourage sellers from

disintermediating. Similarly, our results suggest platforms have a strong incentive to warn sellers

about the possibility of risky buyers (see, e.g., UpWork (2023b)), or even deliberately exaggerate

the risk of buyer fraud to deter sellers from disintermediating. Finally, our findings contribute to

the emerging literature on the use of information as an operational lever (Bimpikis et al. 2020,

Drakopoulos et al. 2021, Shi et al. 2022) by identifying a new rationale for controlling information,

namely, to reduce the attractiveness of disintermediation.

Our work abstracted away from several features of the platform environment that are likely

to produce additional insights if addressed formally. First, we simplified the mechanism through

which buyers search for sellers and assumed buyers and sellers are matched randomly. Although

disintermediation occurs after matching, it is conceivable that the matching mechanism impacts

a seller’s propensity for disintermediation (e.g., if high-quality sellers receive more requests from

buyers). While incorporating more sophisticated matching dynamics may alter the precise condi-

tions for disintermediation, we conjecture our qualitative insights would remain unchanged. Second,

a seller’s quality may be initially unknown but learned by a buyer following a transaction, and

buyers may be more likely to disintermediate with sellers they have previously transacted with.

Finally, our model was independent of context; in practice, the likelihood of disintermediation

may also depend on the service or product in question. More broadly, as intermediary platforms

become increasingly prevalent, new research questions regarding the role of information in platform

operations will inevitably emerge, and our work can serve as a basis for their investigation.
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Appendix

A. Exhibit: Disintermediation in the Wild

As discussed in §1, there has been significant interest in the topic of platform disintermediation in recent

years. Prior work has focused on quantifying the extent of platform disintermediation in a variety of contexts,

including online labor (Gu and Zhu 2021), the sharing economy (Lin et al. 2022), e-commerce (He et al.

2020), cargo delivery (Xie and Zhu 2023), home cleaning (Karacaoglu et al. 2022), and pet sitting (Farronato

et al. 2022).

In this section, we complement the empirical evidence in the work cited above by providing anecdotal

evidence of disintermediation on specific platforms. The purpose of this section is to convey the pervasiveness

of disintermediation and shed light on the manner in which buyers and sellers disintermediate from various

platforms.

• Airbnb: Airbnb is an online marketplace for short-term rentals. Broadly speaking, the platform offers

two alternative fee structures: (i) Split Fee: Hosts pay 3% of the total booking value and guests pay 14%

of the same; (ii) Host-only Fee: Hosts pay 14-16% of the booking value. Although Airbnb uses algorithmic

filters to block users from sharing contact details prior to booking the property, hosts and guests often find

creative ways to circumvent the algorithm, as illustrated in Figure 3a.

• Upwork: Formerly known as Elance-oDesk, Upwork is one of the world’s largest freelancing platforms.

As of March 2023, Upwork charges at flat commission of 10% to all freelancers. The negotiations between

freelancers and employers provide ample opportunity for taking transactions offline, although, as Figure 3b

indicates, the request to disintermediate can be rather explicit in some cases.

• Uber/Lyft: Ridesharing platforms such as Uber and Lyft can take up to 25% of the rider’s payment

as commission. When the rider’s cancellation fee is smaller than the commission11, both parties can benefit

by disintermediating. As illustrated in Ghose (2022), transacting off-platform can be particularly rewarding

on longer trips.

• GoFundMe: GoFundMe is a fundraising platform that is typically used for personal or charitable

causes. The platform extracts a 2.9% commission from each donation and along with a flat fee of $0.30.

Given the relatively low fee, there is limited incentive for disintermediation. However, in important causes or

10 https://twitter.com/Akashsakatn/status/1505179413658607622.

11 Unlike riders who pay a flat cancellation fee, drivers do not incur penalties for cancelling. However, if drivers exceed
a maximum cancellation rate, their account may get suspended.
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(a) Airbnb: A host messages a guest and shares his
mobile number. The host circumvents the platform fil-
ters by separating the digits with some additional text
(e.g., “90 and 154”). Source: Twitter10.

(b) Upwork: A job posting on Upwork where the employer
explicitly states that the payment will be made outside the
platform. Multiple attempts are made (e.g., “P-A-Y-P-A-L”) to
bypass Upwork’s filters.

Figure 3. Disintermediation attempts on Airbnb and UpWork.

when funding is tight, fundraisers may urge donors to donate outside the platform to maximize their funds,

as seen in Figure 4.

• Rover: Rover is a pet-sitting platform that charges a commission rate of 20%. Rover’s high fees have

been the source of significant discontent among its sitters12. Naturally, disintermediation appears to be

commonplace on the platform, sometimes even for the first transaction13. The following quote from a 2018

article on Rover sums up sitters’ concerns: “They take a huge cut from us but then don’t really have our

interests at heart . . . so I don’t mind taking their customers” (Lieber 2018).

• Openbay: Openbay is a two-sided marketplace that connects vehicle owners with mechanics and charges

a commission rate of 13%. The following comment by the Openbay CEO Rob Infantino in a 2017 summit

at the Harvard Business School hints at the extent of disintermediation on the platform (Karacaoglu et al.

2022):

12 https://www.rover.com/community/question/48718/why-do-you-guys-take-such-high-fees/.

13 https://www.reddit.com/r/RoverPetSitting/comments/10qd89i/clients dont want to pay me on rover/,
https://www.reddit.com/r/RoverPetSitting/comments/qpm7zv/first sitter wants payment outside of rover/,
https://twitter.com/vc/status/1409270449884651521.
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Figure 4. GoFundMe: A fundraiser shares an alternative channel (Venmo) for commission-

free donations. GoFundMe algorithmically detects the request to disintermediate and appends a

reminder of the platform’s protections (i.e., a money-back guarantee). Identifying details have been

redacted to protect privacy.

“We worry about this problem every single, day. [. . .] How do you prevent that from hap-

pening? You build value on both sides of the marketplace. [. . .] But the point is, disinter-

mediation is big; it’s a big problem. And we are constantly fighting it. We are working on

it [. . .] but that is a big, big problem for us.”

• Reverb: Reverb is an online marketplace for buying and selling musical equipment that charges sellers

a 5% commission fee. Anecdotal evidence14 suggests that disintermediation is common on the platform

particularly when a) the instrument is expensive; b) the transaction is local, i.e., in-person; c) sellers put the

listing on multiple channels and buyer simply use Reverb for discovering items.

B. Supporting Lemmas

Here we present several auxiliary lemmas useful for the proofs of the results in §2-§5.

Lemma 6. For α ∈ [ 1
2
,1], define ησ = Pr(σ) and η|σ = Pr(j = s|σ). Then ηr = (1 − α)λ + α(1 − λ),

ηs = αλ+ (1− α)(1− λ), η|r = (1− α)λ/ηr, and η|s = αλ/ηs. Further,
d
dα
ηr < 0, d

dα
ηs > 0, d

dα
η|r < 0, and

d
dα
η|s > 0.

Proof. Note λ= Pr(j = s) and α= Pr(j = s|σ = s) = Pr(j = r|σ = r) by definition. The expressions for ησ

and η|σ follow from the total probability rule and Bayes’ rule, respectively:

η|s =Pr(j = s|σ= s) =
αλ

αλ+(1−α)(1−λ)
,

η|r =Pr(j = s|σ= r) =
(1−α)λ

(1−α)λ+α(1−λ)
.

14 https://www.acousticguitarforum.com/forums/showthread.php?t=594676,
https://www.thegearpage.net/board/index.php?threads/is-reverb-cracking-down-on-offsite-selling.2384673/.
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Next, with some effort it can be shown that

∂ηr
dα

= 1− 2λ,
∂ηs
dα

= 2λ− 1,

and
dη|r
dα

=− (1−λ)λ

(α(1−λ)+ (1−α)λ)2
,

dη|s
dα

=
(1−λ)λ

((1−α)(1−λ)+αλ)2
.

The result follows because λ∈ [ 1
2
,1]. □

Lemma 7. (i) For any λ ∈ (0,1], 0 < γ̄s < γ̄r < 1 for α ∈ ( 1
2
,1] and γ̄r = γ̄s for α = 1

2
. (ii) For any

γ ∈ (0,1], there exists ᾱr ∈ (0,1] and ᾱs ∈ (0,1] such that γ ≥ γ̄r if and only if α ≤ ᾱr and γ ≥ γ̄s if and

only if α ≥ ᾱs. (iii) If γ < 1− λ, then ᾱr <
1
2
< ᾱs, if γ > 1− λ, then ᾱs <

1
2
< ᾱr, and if γ = 1− λ, then

ᾱs = ᾱr =
1
2
.

Proof. (i). Note γ̄σ ∈ (0,1] for each σ ∈ {r, s} because α ∈ [ 1
2
,1] and λ ∈ (0,1]. It remains to show γ̄r > γ̄s.

Note

γ̄r − γ̄s = η|s − η|r = λ

(
α

ηs
− (1−α)

ηr

)
. (5)

It remains to show αηr − (1−α)ηs > 0. Using the definitions of ησ (Lemma 6), we have

αηr − (1−α)ηs = α ((1−α)λ+α(1−λ))− (1−α) (αλ− (1−α)(1−λ))

= (1−λ)(α2 − (1−α)2)

> 0,

where the inequality follows because α ∈ [ 1
2
,1]. It is straightforward to verify that α = 1

2
implies ηr = ηs,

which combined with (5) implies γ̄r = γ̄s. (ii). Solving γ̄σ = γ for each σ ∈ {r, s} yields

ᾱr =
λγ

(1−λ)(1− γ)+λγ
, ᾱs =

(1−λ)(1− γ)

(1−λ)(1− γ)+λγ
. (7)

It is straightforward to verify that ᾱσ ∈ (0,1] for all γ ∈ (0,1] for each σ ∈ {r, s}. Next, note

∂γ̄r
∂α

=
(1−λ)λ

η2r
> 0,

∂γ̄s
∂α

=− (1−λ)λ

η2s
< 0,

which implies γ̄r is strictly increasing in α on (0,1] and γ̄s is strictly decreasing in α on (0,1]. Further,

because ᾱσ ∈ (0,1] for σ ∈ {r, s}, it follows that γ̄σ that for any γ ∈ (0,1], γ ≥ γ̄r if and only if α≤ ᾱr and

γ ≥ γ̄s if and only if α≥ ᾱs. (iii) The result can be shown algebraically using the expressions for ᾱr and ᾱs

given in (7). □

For use in Lemma 8 below, define

vσ(p) = ((1− γ)p− (1− η|σ)c)

(
1− p

q

)
, ṽσ(p) = (η|σbσ(p)− (1− η|σ)c)

(
1− p

q

)
, (8)

and

p0σ =
c(1− η|σ)

1− γ
, p̃0σ =

2c(1− η|σ)

1− γ+ η|σ
. (9)
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Lemma 8. (i) The seller’s expected profit from trading online at price p with a type-σ buyer is

πσ(p) =

{
0, if p≤ p0σ,

vσ(p), if p > p0σ,

where p0s < p0r for all α ∈ [ 1
2
,1], γ ∈ (0,1] and λ ∈ (0,1]. Further, for each σ ∈ {r, s}, πσ(p) > 0 for p ≥ p0σ.

(ii). The seller’s expected profit from trading offline at price bσ(p) with a type-σ buyer is

π̃σ(p) =

{
0, if p≤ p̃0σ,

vσ(p), if p > p̃0σ,

where p̃0s < p̃0r holds for all α ∈ [ 1
2
,1], γ ∈ (0,1] and λ ∈ (0,1]. Further, for each σ ∈ {r, s}, π̃σ(p) > 0 for

p≥ p̃0σ.

Proof. We prove the statements in order. For (i), note (1) can be written as

πσ(p) =

[
((1− γ)p− (1− η|σ)c)

(
1− p

q

)]+
= [vσ(p)]

+.

It is straightforward to verify that vσ(p) is strictly concave and quadratic in p and that p= q is the larger

solution to vσ(p) = 0. It can be shown that p0σ is the smaller solution to vσ(p) = 0 by plugging the expression

for η|σ given in Lemma 6 into vσ(p) and verifying algebraically that vσ(p
0
σ) = 0 for each σ ∈ {r, s}. It follows

that πσ(p) = 0 on p ∈ [0, p0σ] and πσ(p) = vσ(p)> 0 on p ∈ (p0σ,1], as desired. Next, to show p0s < p0r holds for

all α∈ [ 1
2
,1], γ ∈ (0,1] and λ∈ (0,1], note

p0r − p0s =
c(1− η|r)

1− γ
−
c(1− η|s)

1− γ
=

c

1− γ
(γ̄r − γ̄s)> 0,

where the strict inequality follows because γ̄r > γ̄s by Lemma 7. We prove (ii) next. Note (2) can be written

equivalently as

π̃σ(p) =

[
(η|σbσ(p)− (1− η|σ)c)

(
1− p

q

)]+
= [ṽσ(p)]

+.

It is straightforward to verify that vσ(p) is strictly quadratic and concave in p, and that p= q is the larger

solution to vσ(p) = 0. It can be shown that p̃0σ is the smaller solution to vσ(p) = 0 by plugging the expression

for η|σ given in Lemma 6 into vσ(p) and verifying algebraically that vσ(p
0
σ) = 0 for each σ ∈ {r, s}. It follows

that π̃σ(p) = 0 on p ∈ [0, p̃0σ] and π̃σ(p) = ṽσ(p)> 0 on p ∈ (p̃0σ,1], as desired. Next, to show p̃0s < p̃0r holds for

all α[ 1
2
,1], γ ∈ (0,1] and λ∈ (0,1], note

p̃0r − p̃0s =
2c(1− η|r)

1− γ+ η|r
−

2c(1− η|s)

1− γ+ η|s
.

It suffices to show that (1− η|r)(1− γ+ η|s)> (1− η|s)(1− γ+ η|r). Note

(1− η|r)(1− γ+ η|s)− (1− η|s)(1− γ+ η|r) = (2− γ)(η|s − η|r)> 0,

where the strict inequality follows because η|σ = 1 − γ̄σ for σ ∈ {r, s} by definition of γ̄σ and γ̄r > γ̄s by

Lemma 7. □
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Lemma 9. Consider a unit mass of sellers with common quality q > 0. Under the platform’s commission

rate of γ, the sellers’ profit function Π(p), optimal price p∗, optimal profit Π∗, and contribution to platform

revenue r(α, q, γ) under p∗, are characterized as follows.

(a) If the seller accepts both σ= r and σ= s online, then

Π(p) = πa(p) = ((1− γ)p− (1−λ)c)

(
1− p

q

)
,

p∗ = pa =
1

2

(
q+

(1−λ)c

1− γ

)
,

Π∗ = πa(pa) = (1− γ)q

(
1

2
− (1−λ)c

2q(1− γ)

)2

,

r(α, q, γ) = ra(α, q, γ) = γpaF̄

(
pa

q

)
.

(b) If the seller rejects σ= r and accepts σ= s online, then

Π(p) = πb(p) = ηs ((1− γ)p− (1− η|s)c)

(
1− p

q

)
,

p∗ = pb =
1

2

(
q+

(1− η|s)c

1− γ

)
,

Π∗ = πb(pb) = ηs(1− γ)q

(
1

2
−

(1− η|s)c

2q(1− γ)

)2

,

r(α, q, γ) = rb(α, q, γ) = γηsp
bF̄

(
pb

q

)
.

(c) If the seller accepts σ= r online and accepts σ= s offline, then

Π(p) = πc(p) =

(
ζp− (1−λ)c

)(
1− p

q

)
,

p∗ = pc =
1

2

(
q+

(1−λ)c

ζ

)
,

Π∗ = πc(pc) = ζq

(
1

2
− (1−λ)c

2qζ

)2

,

r(α, q, γ) = rc(α, q, γ) = γηrp
cF̄

(
pc

q

)
,

where ζ = ηr(1− γ)+ 1
2
ηs(1− γ+ η|s).

(d) If the seller rejects σ= r and accepts σ= s offline, then

Π(p) = πd(p) = ηs

(
1− p

q

)(
p(1− γ+ η|s)

2
− (1− η|s)c

)
,

p∗ = pd =
q

2
+

(1− η|s)c

1− γ+ η|s
,

Π∗ = πd(pd) = ηs
(1− γ+ η|s)

2
q

(
1

2
−

(1− η|s)c

q(1− γ+ η|s)

)2

,

r(α, q, γ) = rd(α, q, γ) = 0.

Proof. We prove statements (a) through (d) in order. The revenue expressions r(α, q, γ) follow immediately

from combining (3) with the expressions for the optimal price p∗ in the lemma statement. We therefore focus
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on characterizing Π(p), p∗, and Π∗. We will initially assume the first-order condition ∂
∂p
Π(p) = 0 holds at p∗

in all cases and confirm this to be true at the end of the proof.

(a). Because the seller accepts the buyer regardless of the signal, their expected cost is simply (1− λ)c.

Because the transaction is online, the seller’s profit is then Π(p) = πa(p), where

πa(p) = ((1− γ)p− (1−λ)c)

(
1− p

q

)
.

Because the profit maximizing price p∗ satisfies ∂
∂p
πa(p)|p=p∗ = 0, we have

∂

∂p
πa(p)

∣∣∣
p=p∗

= (1− γ)

(
1− p∗

q

)
− 1

q
((1− γ)p∗ − (1−λ)c) = 0,

which implies p∗ = pa, where

pa =
1

2

(
q+ c

1−λ

1− γ

)
.

It follows that the optimal profit is

Π∗ = πa(pa) =

(
1− pa

q

)
((1− γ)pa − (1−λ)c),

=

(
1

2
− (1−λ)c

2q(1− γ)

)(
(1− γ)

q

2
+

(1−λ)c

2
− (1−λ)c

)
,

= (1− γ)q

(
1

2
− (1−λ)c

2q(1− γ)

)2

.

(b). In this scenario, the seller simply rejects the buyer if σ = r. The seller’s profit in this case is then

Π(p) = πb(p), where

πb(p) = ηs ((1− γ)p− (1− η|s)c)

(
1− p

q

)
.

For the profit maximizing price, we have

∂

∂p
πb(p)

∣∣∣
p=p∗

= ηs

(
(1− γ)

(
1− p∗

q

)
− 1

q
((1− γ)p∗ − (1− η|s)c)

)
= 0

which implies p∗ = pb, where

pb =
1

2

(
q+ c

1− η|s
1− γ

)
.

The optimal profit is then given by

Π∗ = πb(pb) =

(
1− pb

q

)
((1− γ)pb − (1− η|s)c),

=

(
1

2
−

(1− η|s)c

2q(1− γ)

)(
(1− γ)

q

2
+

(1− η|s)c

2
− (1− η|s)c

)
,

= (1− γ)q

(
1

2
−

(1− η|s)c

2q(1− γ)

)2

.

(c). In this setting, the seller’s profit is given by Π(p) = πc(p), where

πc(p) =

(
1− p

q

)(
ηr ((1− γ)p− (1− η|r)c)+ ηs

(p
2
(1− γ+ η|s)− (1− η|s)c

))
=

(
1− p

q

)(
ζp− (1−λ)c

)
,

where the second equality follows by setting ζ = ηr(1− γ)+ ηs(1− γ+ η|s)/2 and noting∑
σ∈{r,s}

ησ(1− η|σ)c= ηr(1− η|r)c+ ηs(1− η|s)c= (1−λ)c,
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with the final equation following by definition of ησ and η|σ (Lemma 6). Note that because the seller accepts

σ = s offline and σ = r online, we have γ ∈ (γ̄s, γ̄r) by Lemma 7. Because γ̄σ = 1− η|σ by definition, this

implies η|s ≥ 1− γ and thus ζ ≥ 1− γ. Next, for the optimal price we have

∂

∂p
πc(p)

∣∣∣
p=p∗

= ζ

(
1− p∗

q

)
− 1

q
(ζp∗ − (1−λ)c) = 0,

which yields an optimal price of p∗ = pc, where

pc =
1

2

(
q+ c

1−λ

ζ

)
.

The optimal profit is then

Π∗ = πc(pc) =

(
1− pc

q

)
(ζpc − (1−λ)c),

=

(
1

2
− (1−λ)c

2qζ

)(
ζ
q

2
+

(1−λ)c

2
− (1−λ)c

)
,

= ζq

(
1

2
− (1−λ)c

2qζ

)2

.

(d). In this setting, because the seller rejects σ = r and accepts σ = s offline, the seller’s profit is Π(p) =

πd(p), where

πd(p) = ηs

(
1− p

q

)(
p(1− γ+ η|s)

2
− (1− η|s)c

)
.

For the optimal price, we have

∂

∂p
πd(p)

∣∣∣
p=p∗

= ηs

(
(1− γ+ η|s)

2

(
1− p∗

q

)
− 1

q

(
1− γ+ η|s

2
p∗ − (1− η|s)c

))
= 0

which implies p∗ = pd, where

pd =
q

2
+ c

1− η|s
1− γ+ η|s

.

The optimal profit is then

Π∗ = πd(pd) =

(
1− pd

q

)(
pd

1− γ+ η|s
2

− (1− η|s)c

)
,

=

(
1

2
−

(1− η|s)c

q(1− γ+ η|s)

)(
(1− γ+ η|s)

q

4
+

(1− η|s)c

2
− (1− η|s)c

)
,

=
(1− γ+ η|s)

2
q

(
1

2
−

(1− η|s)c

q(1− γ+ η|s)

)2

.

Finally, because no transactions occur online, the platform’s revenue is rd(pd) = 0.

We now verify that ∂
∂p
Π(p) = 0 must hold at p∗ in cases (a)-(d). Note px solves ∂

∂p
Π(p) = 0 for some

x∈ {a, b, c, d}, as established above. It suffices to show that if Π(p∗)> 0, then p∗ = px for some x∈ {a, b, c, d}.

We consider two cases: γ < γ̄s, and γ ∈ [γ̄s, γ̄r). If γ < γ̄s, then by Lemmas 2 and 8 the seller’s profit function

can be written as

Π(p) =


0, if p < p0s ,

πb(p), if p0s ≤ p < p0r ,

πa(p), if p0r ≤ p,
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where p0σ is defined in (9). Further, using the expressions for vσ(p) in (8), we have πa(p) = ηsvs(p)+ ηrvr(p)

and πb(p) = ηsvs(p). It is straightforward to verify that vσ(p) is strictly concave in p for σ ∈ {r, s}, and thus

so are πa(p) and πb(p). It follows that there are four candidate prices for p∗: pa, pb, p0s , or p
0
r . By Lemma 8,

πa(p0s) = πb(p0s) = 0, which eliminates p0s . Further, for p
∗ = p0r to hold, p0r must be a local maximizer of Π(p).

Because πa(p0r) = πb(p0r), p
∗ = p0r implies

∂

∂p
πb(p)

∣∣
p=p0r

> 0>
∂

∂p
πa(p)

∣∣
p=p0r

.

By concavity of πa and πb, the inequalities above imply pa < pb. However, because λ≤ η|s, it follows from

the expressions for pa and pb given in the lemma statement that pa ≥ pb. It follows that p∗ = p0r cannot hold.

Therefore, we must have p∗ = pa or p∗ = pb if γ < γ̄s. Next, for the case where γ ∈ [γ̄s, γ̄r), it follows from

Lemmas 2 and 8 that the seller’s profit function is

Π(p) =


0, if p < p̃0s ,

πd(p), if p̃0s ≤ p < p0r ,

πc(p), if p0r ≤ p,

(17)

where πd(p) = ηsṽs(p) and π
c(p) = ηsṽs(p) + ηrvr(p), and p̃σ and ṽσ are defined in (8) and (9), respectively.

Because vs(p) and ṽs(p) are concave, so are πc(p) and πd(p), which implies p∗ must be one of pc, pd, p̃0s , or

p0r . By definition of πc and πd it can be shown that Π(p) is continuous and that πc(p̃0s) = πd(p̃0s) = 0, which

implies p∗ = p̃0s cannot hold. It remains to show p∗ = p0r cannot hold. By parallel argument to the γ < γ̄s case,

p∗ = p0r implies
∂

∂p
πd(p)

∣∣
p=p0r

≥ 0≥ ∂

∂p
πc(p)

∣∣
p=p0r

(18)

and

πc(p0r) = πd(p0r)> 0. (19)

We show that (18) and (19) cannot hold simultaneously. Note πd(p)−πc(p) =−ηrvr(p). Then

∂

∂p

(
πd(p)−πc(p)

) ∣∣
p=p0r

=− ∂

∂p
ηrvr(p)

∣∣
p=p0r

=−ηr
(
1− γ−

c(1− η|r)

q

)
.

It follows that (18) implies

q <
c(1− η|r)

1− γ
= p0r ,

where the equality follows by definition of p0r . It remains to show that if q < p0r , then π
d(p0r)< 0. The result

follows algebraically by plugging p0r =
c(1−η|r)

1−γ
into the expression for πd(p) given in the lemma statement

and using q <
c(1−η|r)

1−γ
. Therefore, if γ ∈ [γ̄s, γ̄r), then either p∗ = pc or p∗ = pd. □

Lemma 10. Consider a seller with quality q > 0. Define the thresholds

q=
c(1− η|s)

1− γ
, q̄=

c(1−λ− k1(1− η|s))

(1− γ)(1− k1)
,

q′ =
2c(1− η|s)

1+ η|s − γ
, q′′ =

c

1− k2

(
1−λ

ζ
−

2k2(1− η|s)

1− γ+ η|s

)
,

where k1 =
√
ηs, k2 =

√
ηs(1− γ+ η|s)/2ζ, and ζ is as defined in Lemma 9. Suppose transactions can occur

only in the online channel for both σ= r and σ= s buyers. Then the seller
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(i) rejects σ ∈ {r, s} if and only if q≤ q,

(ii) rejects σ= r and accepts σ= s if and only if q < q≤ q̄, and

(iii) accepts both σ ∈ {r, s} if and only if q̄ < q.

Suppose transactions with the σ= r and σ= s buyer occur online and offline, respectively. Then the seller

(iv) rejects both σ ∈ {r, s} if and only if q≤ q′,

(v) rejects σ= r and accepts σ= s if and only if q′ < q≤ q′′, and

(vi) accepts both σ ∈ {r, s} if and only if q > q′′.

Proof. We first show statements (i)− (iii). For statement (i), because pa and pb are each maximizers of

strictly concave functions, it follows that pb ∈ [p0s , p
0
r) and π

b(pb)> 0 are necessary conditions for p∗ = pb and

pa ≥ p0r and πa(pa)> 0 are necessary conditions for p∗ = pa. Next, solving pa = p0r , p
b = p0r and pb = p0s in q

yields qa, qb, and q, respectively, where

qa =
c(1− 2η|r +λ)

1− γ
, qb =

c(1− 2η|r + η|s)

1− γ
.

Further, using the fact that λ ∈ [ 1
2
,1] and α ∈ [ 1

2
,1], it can be shown that 0 < q < qa < qb. Next, because

pa and pb are both increasing in q, it follows that neither p∗ = pa nor p∗ = pb can hold if and only if q ≤ q,

which implies the seller rejects both buyer types. Statement (i) follows. Next, for (ii) and (iii), it suffices to

show there exists q̄ > 0 such that p∗ = pa if q ≥ q̄ and p∗ = pb if q ∈ (q, q̄). Note that for q ≥ q, p∗ = pa if and

only if πa(pa)≥ πb(pb) and p∗ = pb if and only if πa(pa)< πb(pb). Using the profit expressions in Lemma 9,

πa(pa)≥ πb(pb) is equivalent to

(1− γ)q

(
1

2
− (1−λ)c

2q(1− γ)

)2

≥ ηs(1− γ)q

(
1

2
−

(1− η|s)c

2q(1− γ)

)2

.

Simplifying the inequality and setting k1 =
√
ηs yields(

1

2
− (1−λ)c

2q(1− γ)

)
≥ k1

(
1

2
−

(1− η|s)c

2q(1− γ)

)
.

Finally, rearranging for q gives us

q≥
c(1−λ− k1(1− η|s))

(1− γ)(1− k1)
= q̄.

Statements (ii) and (iii) follow. Finally, we show q̄ > q. Because q < qa as established above, it suffices to

show qa ≤ q̄. By a similar argument to part (i) we have p∗ = pb if q ∈ (q, qa) and p∗ = pa if q ≥ qb. It follows

that q > qb implies πa(pa) > πb(pb) and q < qa implies πa(pa) < πb(pb). Because πa(pa) = πb(pb) at q̄, we

conclude qa ≤ q̄.

The proof for (iv)− (vi) follows by parallel argument to (i)− (iii). Solving pc = p0r and pd = p̃0s in q yields

qc and q′′, respectively, where

qc =
2c(1− η|r)

1− γ
− c(1−λ)

ζ
.

Using the expression for ζ in Lemma 9, it is straightforward to verify that q′ < qc. Next, by parallel argument

to Lemma 10, it can be shown that Π(p) ≤ 0 for all p ≥ 0 if and only if q < q′. Statement (iv) follows.
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For statements (v) and (vi), we wish to show q′′ such that πc(pc)≥ πd(pd) if and only if q ≥ q′′. Using the

expressions from Lemma 9, πc(pc)≥ πd(pd) is equivalent to

ζq

(
1

2
− (1−λ)c

2qζ

)2

≥ ηs
(1− γ+ η|s)

2
q

(
1

2
−

(1− η|s)c

q(1− γ+ η|s)

)2

.

Letting k2 =
√
ηs(1− γ+ η|s)/2ζ and simplifying yields(

1

2
− (1−λ)c

2qζ

)
≥ k2

(
1

2
−

(1− η|s)c

q(1− γ+ η|s)

)
.

Re-arranging for q gives us

q≥ c

1− k2

(
1−λ

ζ
−

2k2(1− η|s)

1− γ+ η|s

)
= q′′.

Statements (v) and (vi) follow. Finally, we show q′′ ≥ q′. Because q′ < qc, it suffices to show qc ≤ q′′. Note

that pc is increasing in q (Lemma 9) and pc(qc) = p0r by definition of qc. It follows that if q < qc, then the

profit function Π(p) is strictly decreasing on p ≥ p0r , and thus we cannot have p∗ = pc by (17). Therefore,

q > qc is necessary for p∗ = pc, or equivalently, πc(pc)>πd(pd). Because πc(pc)>πd(pd) if and only if q > q′′,

it follows that qc ≤ q′′. □

For the following lemma, the functions ra(α, q, γ), rb(α, q, γ), and rc(α, q, γ) are as defined in the statement

of Lemma 9.

Lemma 11. Let Assumption 1 hold. Then ra(α, qH , γ) and r
c(α, qH , γ) both strictly increase in γ ∈ [0, γmax]

for all α∈ [ 1
2
,1]. Further, for any q > 0, d

dγ
rb(α, q, γ) strictly decreases in γ ∈ [0, γmax] and strictly increases

in α on α∈ [ 1
2
,1].

Proof. We show d
dγ
ra > 0 first. Using the expression for ra(α, q, γ) from Lemma 9 and differentiating in γ,

we have
dra

dγ
=
∂ra

∂p

dpa

dγ
+
∂ra

∂γ
= γ

(
1− 2pa

qH

)
c(1−λ)

2(1− γ)2
+ pa

(
1− pa

qH

)
.

Next, plugging in the expression for pa from Lemma 9 and simplifying yields

dra

dγ
=

1

4qH

(
q2H − c2(1−λ)2(1+ γ)

(1− γ)3

)
.

It follows that d
dγ
ra > 0 if and only if √

c2(1−λ)(1+ γ)

(1− γ)3
< qH .

Using the fact that γmax = 1
2
and qH ≥ 4c by Assumption 1, we have√

c2(1−λ)(1+ γ)

(1− γ)3
≤

√
c2(1−λ)(1+ γmax)

(1− γmax)3
= c
√
12(1−λ)< 4c≤ qH ,

as desired. Next, we show d
dγ
rc > 0. Consider the expression for rc(α, qH , γ) from Lemma 9:

rc(α, qH , γ) =
γηr
4
qH

(
1− (1−λ)2c2

q2Hζ
2

)
,
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where ζ = ηr(1− γ)+ 1
2
ηs(1− γ+ η|s). Differentiating in γ, we have

drc

dγ
=
ηr
4
qH

((
1− (1−λ)2c2

q2Hζ
2

)
− 2γ

(1−λ)2c2

q2Hζ
3

(
1− ηs

2

))
=
ηr
4
qH

(
1− (1−λ)2c2

q2Hζ
3

(
ζ +2γ

(
1− ηs

2

)))
.

In the above derivative, we used the fact that d
dγ
ζ = −ηr − ηs/2 = −1 + ηs/2. Further, we know that γ ≤

γmax = 1
2
. Since η|s ≥ 1

2
as well, this implies

ζ = ηr(1− γ)+
1

2
ηs(1− γ+ η|s)≥

1

2
.

Further, we know ζ ≤ 1 and ηs ≥ λ≥ 1
2
. Plugging these bounds into our expression for d

dγ
rc and using the

fact that qH ≥ 4c yields

drc

dγ
≥ ηr

4
qH

(
1− (1−λ)2c2

16c2 1
23

(
ζ +2γ

(
1− ηs

2

)))
≥ ηr

4
qH

(
1− (1−λ)2

2

(
1+

3

4

))
> 0.

Lastly, we address d
dγ
rb. By Lemma 9,

rb(α, q, γ) = q
γηs
4

(
1−

(
c2(1− η|s)

2

q2(1− γ)2

))
.

Differentiating with respect to γ gives us

drb

dγ
=
qηs
4

(
1−

(
(1− η|s)

2c2

q(1− γ)2

))
− q2ηs

4
2γ

(1− η|s)
2c2

q2(1− γ)3
=
qηs
4

(
1− (1+ γ)

(1− η|s)
2c2

q2(1− γ)3
.

)
Using the final expression on the right hand side above, it is straightforward to verify that d

dγ
rb strictly

decreases in γ. Similarly, (1− η|s) strictly decreases in α (Lemma 6), which implies d
dγ
rb strictly increases in

α. □

Lemma 12. Let Assumption 1 hold and suppose only the online channel exists. For all γ ∈ [0, γmax], the

type-H seller accepts both buyer types σ ∈ {r, s} and the type-L seller rejects the σ= s buyer.

Proof. We address the type-H seller first. By Lemma 10, the type-H seller accepts both buyer types if and

only if

qH ≥
c(1−λ− k1(1− η|s))

(1− γ)(1− k1)
,

where k1 =
√
ηs. We show that for any qH ≥ 4c (i.e., satisfying Assumption 1), the above inequality holds

and that the seller’s profit is strictly positive for all γ ∈ [0, γmax]. Recall γmax = 1
2
. Beginning with the term

in the right hand side, we have

c(1−λ− k1(1− η|s))

(1− γ)(1− k1)
≤ c(1−λ)

(1− γmax)(1− k1)
≤ 2c

(1−λ)

1−
√
λ
= 2c(1+

√
λ)< 4c≤ qH ,

as desired. In the above expressions, we used the fact that k1 =
√
ηs and ηs ≤ λ for any α∈ [ 1

2
,1]. It remains

to show the type-H seller’s profit is positive over γ ∈ [0, γmax]; that is, πa(pa) > 0 when qH ≥ 4c for all

γ ∈ [0, γmax]. Using the expression for πa(pa) in Lemma 9, we have

πa(pa) = (1− γ)qH

(
1

2
− (1−λ)c

2qH(1− γ)

)2

≥ (1− γ)qH

(
1

2
− (1−λ)c

8c(1− γmax)

)2

≥ (1− γ)qH

(
1

2
− (1−λ)

4

)2

> 0.
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In the above expressions, we used the facts that λ≥ 1
2
and γmax = 1

2
. Next, we show the type-L seller always

rejects the σ = s buyer. By Lemma 10, it suffices to show that if qL ≤ c(1− λ) (i.e., Assumption 1 holds),

then

qL ≤
c(1−λ− k1(1− η|s))

(1− γ)(1− k1)

for all γ ∈ [0, γmax]. Using the expression for η|s in Lemma 6, it can be shown that η|s ≥ λ. It follows that

c(1−λ− k1(1− η|s))

(1− γ)(1− k1)
≥ c(1−λ− k1(1−λ))

(1− k1)
=
c(1−λ)(1− k1)

(1− k1)
= c(1−λ)≥ qL,

as desired. □

C. Proofs for Section 2

For convenience, we first prove Lemma 2, and then use the result to prove Lemma 1.

Proof of Lemma 2. We show that trading offline at price bσ(p) yields a higher payoff for both buyer and

seller than trading online at price p if and only if γ ≥ γ̄σ, where γ̄σ = 1−η|σ by definition. Pick any α∈ [ 1
2
,1]

and p≥ 0. Next, using the expression for bσ(p), the seller’s surplus from disintermediation is

η|σ

(
p(1− γ+ η|σ)

2η|σ

)
− (1− γ)p=

p(γ+ η|σ − 1)

2
.

It follows that the seller’s surplus is positive if and only if γ ≥ 1− η|σ. Next, for the buyer’s surplus, we have

p− bσ(p) = p−
p(1− γ+ η|σ)

2η|σ
= p

(
η|σ − 1+ γ

2η|σ

)
.

Because p ≥ 0 and η|σ ≥ 0, it follows that p − bσ(p) ≥ 0 also holds if and only if γ ≥ 1 − η|σ. The result

follows. □

Proof of Lemma 1. We consider two cases: γ ≤ γ̄s and γ ∈ (γ̄s, γ̄r]. If γ ≤ γ̄s, then by Lemma 2 all

transactions occur in the online channel. The proof then follows by an identical argument to the proof of

Lemma 12. It remains to address the case where γ ∈ (γ̄s, γ̄r]. By Lemma 2, in this setting all transactions

with the σ= s buyer occur offline. We start with the type-L seller first. By Lemma 10, we know the type-L

seller rejects the σ= r buyer if

qL ≤ c

1− k2

(
1−λ

ζ
−

2k2(1− η|s)

1− γ+ η|s

)
.

Manipulating the left hand side yields

c

1− k2

(
1−λ

ζ
−

2k2(1− η|s)

1− γ+ η|s

)
≥ c

1− k2

(
1−λ

ζ
− k2

1−λ

ζ

)
= c

(1−λ)

ζ
≥ c(1−λ)≥ qL,

where above we have used η|s ≥ λ and ζ ≤ (1− γ+ η|s)/2 as per Lemma 9. We follow a similar approach for

the type-H seller. By Lemma 10, the type-H seller accepts the σ= r buyer if and only if

qH ≥ c

1− k2

(
1−λ

ζ
−

2k2(1− η|s)

1− γ+ η|s

)
,
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where k2 =
√
ηs(1− γ+ η|s)/2ζ. Because qH ≥ 4c by Assumption 1, it suffices to show the right hand side of

the inequality above does not exceed 4c. First, following the definitions given in Lemma 6, we have ηs ≥ ηr

and η|s ≥ 1− γ for γ ≥ γ̄s. Using these inequalities, we can write

k2 =

√
ηs(1− γ+ η|s)

2ζ
=

√
ηs(1− γ+ η|s)

2ηr(1− γ)+ ηs(1− γ+ η|s)
≥
√

1

2
. (20)

Next, because γ ≤ γmax = 1
2
and η|s ≥ 1

2
, we have ζ ≥ 1

2
. Combining with (20), it follows that

c

1− k2

(
1−λ

ζ
−

2k2(1− η|s)

1− γ+ η|s

)
≤ c

(1−λ)

ζ(1− k2)
≤ c(1−λ)

1
2
(1− k2)

≤ 2c < qH .

We complete the proof by showing that the type-H seller’s profit in this setting is strictly positive. By

Lemma 9, we have

πc(pc) = ζqH

(
1

2
− (1−λ)c

2qHζ

)2

> 0

where the strictly inequality follows because ζ ≥ 1
2
and qH ≥ 4c. □

D. Proofs for Section 3

For simplicity, throughout the remainder of the Appendix we use πx(α, q) to denote πx(px) under the

parameters (α, q) for each x∈ {a, b, c, d}, where πx(px) is defined in Lemma 9. Additionally, because γ is held

fixed in Lemma 3 and Proposition 1, we suppress dependence on it in this section. Since the commission

rate γ is fixed in Section 3, we abuse notation and use ra(α, q), rb(α, q), rc(α, q), rd(α, q) to describe the

platform’s revenue in the four cases listed in Lemma 9.

Proof of Lemma 3. The proof proceeds in two steps. First, we show that in the absence of the offline

channel, the platform’s revenue for any fixed γ is given by

R(α) =

{
µra(α, qH), if α∈ [ 1

2
, αL),

µra(α, qH)+ (1−µ)rb(α, qL), if α∈ [αL,1],

for some αL ∈ [ 1
2
,1). Second, we show ra(α, qH) is invariant to α and therefore non-decreasing in α, and that

rb(α, qL) is strictly increasing in α, which proves the lemma statement when combined with the result from

Step 1.

Step 1. By Lemma 12, type-H sellers transact with both buyer types. Because all transactions occur

online, it follows from Lemma 9 that the platform’s revenue from the type-H seller is ra(α, qH) for all

α ∈ [ 1
2
,1]. It remains to show there exists αL ∈ [ 1

2
,1) such that the type-L seller’s contribution to platform

revenue is rb(α, qL) if α≥ αL and 0 otherwise. By Lemma 12 type-L sellers always reject the σ = r buyer.

The seller’s expected profit is then

πb(α, qL) = ηs(1− γ)qL

(
1

2
−

(1− η|s)c

2qL(1− γ)

)2

= ηs(1− γ)qL

(
1

2
− (1−α)(1−λ)c

2αλqL(1− γ)

)2

︸ ︷︷ ︸
ω

.

Using the expression for ηs given in Lemma 6, it can be shown that ηs strictly increases in α. Further,

because the expression ω also strictly increases in α, it follows there exists some threshold αu such that
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πb(α, qL)≥ 0 if and only if α≥ αu. Further, because π
b(α, qL)|α=1 > 0, we have αu < 1. It follows that type-L

seller’s contribution to platform revenue is rb(α, qL) if α≥ αL and 0 otherwise. This completes the first step.

Step 2. By Lemma 9, the revenue ra(α, qH) can be written as

ra(α, qH) = γpaF̄

(
pa

qH

)
= γ

1

2

(
qH +

(1−λ)c

1− γ

)
1

2

(
1− (1−λ)c

qH(1− γ)

)
.

Clearly, d
dα
ra(α, qH) = 0. Next, using the expression for revenue from Lemma 9 we have

drb(α, q)

dα
= γ

(
∂ηs
∂α

pb
(
1− pb

q

)
+ ηs

∂

∂η|s

(
pb
(
1− pb

q

))
∂η|s
∂α

)
.

Using the expression for pb from Lemma 9 it can be shown that

∂

∂η|s

(
pb
(
1− pb

q

))
=
c2(1− η|s)

q(1− γ)2
> 0. (21)

Combining (21) with the fact that ∂
∂α
η|s > 0 and d

dα
ηs > 0 implies d

dα
rb(α, q)> 0, as desired. □

The following critical lemma provides a complete characterization of how platform revenue R(α) changes

in α for any fixed γ, from which Proposition 1 immediately follows.

Lemma 13. For each γ ∈ (0, γmax], there exists ᾱ ∈ [ 1
2
,1], λ ∈ [ 1

2
,1] and λ̄ ∈ (λ,1] such that the following

statements hold.

(i) If γ < 1− λ, the platform’s revenue R(α) weakly increases on [ 1
2
, ᾱ), decreases sharply at α= ᾱ, and

strictly increases (strictly decreases) on (ᾱ,1] if λ≤ λ (λ≥ λ̄).

(ii) If γ ≥ 1− λ, the platform’s revenue R(α) is zero on α ∈ [ 1
2
, ᾱ), increases sharply at α= ᾱ and strictly

increases (strictly decreases) on α∈ (ᾱ,1] if λ≤ λ (λ≥ λ̄).

Proof. We focus on proving statement (i). The proof for (ii) follows by parallel argument and is briefly

discussed at the end. In what follows, let ra(α, q), rb(α, q) and rc(α, q) be as defined in Lemma 9, where

dependence on γ is suppressed for clarity. The proof for (i) proceeds in three steps: First, we establish that

ra(α, qH) and rb(α, qL) both weakly increase on α ∈ [ 1
2
, ᾱs), where ᾱs is defined in Lemma 7. Second, we

show that for qH satisfying Assumption 1, there exists λ ∈ [ 1
2
,1] and λ̄ ∈ (λ,1] such that rc(α, qH) strictly

increases on (ᾱs,1] if λ≤ λ and decreases on (ᾱs,1] if λ≥ λ. Third, we use the results of the first two steps

to prove statement (i).

Step 1. Following the proof of Proposition 3, we have d
dα
ra(α, q) = 0 and d

dα
rb(α, q)> 0 for all α ∈ [ 1

2
,1].

It follows that d
dα
ra(α, q)≥ 0 and d

dα
rb(α, q)≥ 0 on α∈ [ 1

2
, ᾱs).

Step 2. Differentiating rc(α, q) in α yields

drc(α, q)

dα
= γ

(
∂ηr
∂α

pc
(
1− pc

q

)
+ ηr

∂

∂ζ

(
pc
(
1− pc

q

))
∂ζ

∂α

)
,

= γ

(
(1− 2λ)

(qζ)2 − (c(1−λ))2

4qζ2
+ ηr

c2(1−λ)2

2qζ3
∂ζ

∂α

)
,

= γ

(
(1− 2λ)

q

4
− (c(1−λ))2

4qζ2
+ ηr

c2(1−λ)2

2qζ3
∂ζ

∂α

)
. (22)
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By the definition of ζ in Lemma 9, we have

ζ = ηr(1− γ)+
1

2
ηs(1− γ+ η|s(α)) =

1

2
((1+ ηr)(1− γ)+αλ) ,

and therefore
∂ζ

∂α
=

1

2

(
(1− γ)

∂ηr
∂α

+λ

)
=

1

2
((1− γ)(1− 2λ)+λ) .

Next, we determine the sign of (d/dα)rc(α, q). We show that there exists λ ∈ ( 1
2
,1) and λ̄ ∈ (λ,1) such that

d
dα
rc(α, q)> 0 for all α∈ [ 1

2
,1] if λ≤ λ and d

dα
rc(α, q)< 0 for all α∈ [ 1

2
,1] if λ≥ λ̄. Using the expressions for

ζ and ∂ζ

∂α
above, we have

lim
λ→ 1

2

ζ =
1

4
(α+3(1− γ)),

lim
λ→ 1

2

∂ζ

∂α
=

1

4
,

lim
λ→1

ζ = 1− 1

2
(2−α)γ

lim
λ→1

∂ζ

∂α
=
γ

2
.

Combining the limits above with (22) then yields

lim
λ→1/2

drc(α, q)

dα
=

c2γ

q(α+3(1− γ))3
> 0 and lim

λ→1

drc(α, q)

dα
=−qγ

4
< 0

for all α∈ [ 1
2
,1]. The existence of λ and λ̄ follow by continuity of d

dα
rc(α, q) in λ.

Step 3. We now prove statement (i). By Lemma 1, the type-H seller accepts σ= r for all α∈ [ 1
2
,1], which

implies they accept σ = s as well. Next, the proof of Lemma 10 establishes that there exists a threshold q̄s

such that the type-L seller accepts σ = s if and only if qL ≥ q̄s, where q̄s strictly decreases in α. It follows

that there exists αℓ ∈ [ 1
2
,1] such that qL ≥ q̄s if and only if α≥ αℓ. Further, because γ < 1−λ, by Lemma 7

we have ᾱr <
1
2
< ᾱs < 1. Thus, there are two cases to consider: αℓ < ᾱs and αℓ ≥ ᾱs. We prove statement

(i) for both of these cases. In the first case, by Assumption 1 and Lemma 7, the platform’s revenue can be

written as

R(α) =


µra(α, qH), if α∈ [ 1

2
, αℓ),

µra(α, qH)+ (1−µ)rb(α, qL), if α∈ [αℓ, ᾱs),

µrc(α, qH)+ (1−µ)rd(α, qL), if α∈ [ᾱs,1].

(23)

Using the expressions in Lemma 9, it can be verified that ra(α, qH)> 0 and rc(α, qH)> 0 for all α ∈ [ 1
2
,1].

Next, because ra(α, q) is continuous in α and rb(α, q)≥ 0 for α≥ αℓ, we have

lim
α→α−

ℓ

R(α) = µra(αℓ, qH)≤ µra(αℓ, qH)+ (1−µ)rb(αℓ, qL) = lim
α→α+

ℓ

R(α).

Further, as established in Step 1, d
dα
rb(α, qL) > 0 and d

dα
ra(α, qH) = 0 on α ∈ [ 1

2
, ᾱs). It follows that R(α)

weakly increases on α∈ [ 1
2
, ᾱs). We now wish to show that R(α) jumps down at ᾱ, that is, limα→ᾱ−

s
R(α)>

limα→ᾱ+
s
R(α). Because rd(α, qL) = 0 (Lemma 9), it suffices to show limα→ᾱs

(ra(α, qH)−rc(α, qH))> 0. First,

it is straightforward to verify using the expressions for ᾱs from (7) and ζ from Lemma 9 that limα→ᾱs
ζ = 1−γ.

Therefore, by Lemma 9,

lim
α→ᾱs

pc = lim
α→ᾱs

1

2

(
q+

c(1−λ)

ζ

)
=

1

2

(
q+

c(1−λ)

1− γ

)
= pa.
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Because limα→ᾱs
pc = pa, plugging pa into the expressions for ra(α, q) and rc(α, q) from Lemma 9 yields

lim
α→ᾱs

(ra(α, q)− rc(α, q)) = γ

(
pa
(
1− pa

q

)
− ηrp

a

(
1− pa

q

))
= γpa

(
1− pa

q

)
(1− ηr)

> 0,

where the final inequality follows because ηr < 1 for λ ∈ [ 1
2
,1]. Therefore, limα→ᾱ−

s
R(α)> limα→ᾱ+

s
R(α), as

desired. The final component of statement (i) follows immediately by applying Step 2 to the expression for

R(α) given in (23). This completes the proof of statement (i) for the case where αℓ < ᾱs. For the case where

αℓ ≥ ᾱs, we can write the platform’s revenue as

R(α) =

{
µra(α, qH), if α∈ [ 1

2
, ᾱs),

µrc(α, qH)+ (1−µ)rd(α, qL), if α∈ [ᾱs,1],

and the result follows by parallel argument to the αℓ < ᾱs case.

We now prove statement (ii). By Lemma 7, ᾱs <
1
2
< ᾱr < 1. It follows from Lemmas 1 and 7 that the

type-H seller accepts σ = r offline for α ∈ [ 1
2
, ᾱr), the type-H seller accepts σ = r online for α ∈ [ᾱr,1], the

type-H seller accepts σ= s offline for all α∈ [ 1
2
,1], the type-L seller either accepts offline or rejects σ= s for

all α ∈ [ 1
2
,1], and the type-L seller rejects σ = r for all α ∈ [ 1

2
,1]. Combining these statements allows us to

write the platform’s revenue as

R(α) =

{
0, if α∈ [ 1

2
, ᾱr),

µrc(α, qH)+ (1−µ)rd(α, qL), if α∈ [ᾱr,1].

The result follows by an identical argument to the proof of Step 2, where ᾱs is substituted with ᾱr. □

Proof of Proposition 1. The proof follows from combining statements (i) and (ii) in Lemma 13. □

Proof of Corollary 1. The expression for ᾱ follows immediately from Lemma 13. Therefore, we focus on

proving the bound λ̄ < 0.54. It suffices for us to show that drc(α,q)

dα
< 0 for all α and γ if λ≥ 0.54. Consider

the term drc(α,q)

dα
< 0 from equation (22). We have

drc(α)

dα
= γ

(
(1− 2λ)

qH
4

+
(c(1−λ))2

4qHζ2
+ ηr

c2(1−λ)2

2qHζ3
dζ

dα

)
,

where ∂ζ

∂α
= 1

2
((1− γ)(1− 2λ)+λ) . Clearly, the above expression is maximized when qH takes on its

smallest value and γ takes on its largest value (and hence ζ is minimized). Substituting qH = 4c and γ = γmax

yields

drc(α)

dα
≤ γmax

(
(1− 2λ)c+

(c(1−λ))2

16cζ2
+ ηr

c2(1−λ)2

8cζ3
· 1
4

)
= cγmax

(
(1− 2λ)+

(1−λ)2

16ζ2
+ ηr

(1−λ)2

32ζ3

)
. (25)

Recall that ζ = ηr(1− γ) + ηs
2
(1− γ + η|s), where η|s =

αλ
αλ+(1−λ)(1−α)

. For a fixed λ, η|s is increasing in α

and attains its minimum value at α= 0.5. Using this, we get

ζ ≥ ηr(1− γmax)+
ηs
2
(1− γmax +λ)≥ 3

8
+
λ

4
.
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Combining this inequality with equation (25) and using the bound that ηr ≤ 1
2
yields

drc(α)

dα
≤ cγmax

(
(1− 2λ)+

(1−λ)2

16
(
3
8
+ λ

4

)2 +
(1−λ)2

64
(
3
8
+ λ

4

)3
)
.

Finally, substituting λ= 0.54 above, we get drc(α)

dα
< 0, which completes the proof. □

E. Proofs for Section 4

Proof of Proposition 2. We prove the result by constructing a subset of the parameter space (λ,µ,α)

where γ∗ = γmax and γ0 = γmax, which implies γ0 ≤ γ∗. The proof proceeds in the following four steps. First,

we choose the thresholds λ̄ and α and show 2ra(α, qH , γ̄s)≤ rc(α, qH , γ
max), where ra(α, q, γ) and rc(α, q, γ)

denote the platform’s revenue from sellers who transact fully online and sellers who only transact online

with risky buyers, respectively, as defined in Lemma 9. Second, we compare the platform’s revenues at two

candidate solutions, γ = γ̄s and γ = γmax, and we choose µmin so that R(α, γ̄s) ≤ R(α,γmax) at µ = µmin.

Third, we prove that γ∗ = γmax at α = α and µ = µmin, which implies γ0 ≤ γ∗. Fourth, we show γ0 ≤ γ∗

continues to hold for all α≥ α and all µ≥ µmin.

Step 1. For any fixed λ, set α such that γ̄s =min
(
1−λ
5
, qL
2c

)
. Note γ̄s is decreasing in α (Lemma 6). Our

choice of γ̄s implies that

α=max

(
4+λ

4+2λ
,

(1−λ)(2c− qL)

qLλ+(2c− qL)(1−λ)

)
.

Next, it is straightforward to verify using the definition of γ̄r in Lemma 6 that γ̄r decreases in λ. Pick λ̄ to be

the solution to γ̄r = γmax = 1
2
. It follows that γmax ≤ γ̄r for λ≤ λ̄. In the remainder of the proof, we assume

λ≤ λ̄ is fixed and that α is chosen so that γ̄s ≤min
(
1−λ
5
, qL
2c

)
.

Next, we show 2ra(α, qH , γ̄s)≤ rc(α, qH , γ
max). As an intermediate step, we show for γ > 0 and α ∈ [ 1

2
,1]

that

1−
(
(1−λ)c

qHζ

)2

≥ 4

5

(
1−

(
(1−λ)c

qH (1− γ)

)2
)
. (26)

where ζ = ηr(1− γmax)+ ηs
2
(1− γmax + η|s), as defined in Lemma 9. Note ζ ≥ 1− γmax = 1

2
. We then have

1−
(

(1−λ)c

qHζ

)2
1−

(
(1−λ)c

qH(1−γ)

)2 ≥
1− 4

(
(1−λ)c

qH

)2
1−

(
(1−λ)c

qH

)2 =
1− 4z

1− z
, (27)

where z =
(

(1−λ)c

qH

)2
. It is straightforward to verify that the expression on the right hand side of (27) decreases

in z on z ∈ [0, 1
4
]. Further, because λ∈ [ 1

2
,1] and qH ≥ 4c. we have

z =

(
(1−λ)c

qH

)2

≤
(
( 1
2
)c

4c

)2

=
1

64
.

Plugging this back into (27) yields

1−
(

(1−λ)c

qHζ

)2
1−

(
(1−λ)c

qH(1−γ)

)2 ≥ 1− 4z

1− z
≥

1− 1
16

1− 1
64

=
20

21
>

4

5
.
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Equation (26) follows from re-arranging the inequality above. We can now prove 2ra(α, qH , γ̄s) ≤

rc(α, qH , γ
max). Note

2ra(α, qH , γ̄s) = 2
qH γ̄s
4

(
1−

(
(1−λ)c

qH(1− γ̄s)

)2
)

≤ 2qH(1−λ)

20

(
1−

(
(1−λ)c

qH (1− γ̄s)

)2
)

=
qH(1−λ)γmax

4

4

5

(
1−

(
(1−λ)c

qH (1− γ̄s)

)2
)

≤ qH(1−λ)γmax

4

(
1−

(
(1−λ)c

qHζ

)2
)

(28)

≤ rc(α, qH , γ
max). (29)

Equation (28) follows from (26), and (29) follows because ηr ≥ 1−λ for all α.

Step 2. We now choose µmin such that R(α, γ̄s)≤R(α,γmax) under µ= µmin. Specifically, let µmin be the

smallest value of µ such that (1−µ)rb(α, qL, γ̄s) = µra(α, qH , γ̄s). Then, for every µ≥ µmin, we have

R(α, γ̄s) = (1−µ)rb(α, qL, γ̄s)+µra(α, qH , γ̄s)≤ 2µra(α, qH , γ̄s)≤ µrc(α, qH , γ
max) =R(α,γmax),

where the second inequality follows from the inequality established in Step 1.

Step 3. It follows from Step 2 that γ∗ = γ̄s cannot hold. Further, because r
c(α, qH , γ) is strictly increasing

in γ (Lemma 11), we cannot have γ∗ ∈ (γ̄s, γ
max). To establish that γ∗ = γmax, it remains to show γ∗ < γ̄s

cannot hold. We do so by showing ∂
∂γ
R(α,γ)|α=α,γ=γ̄s > 0, or equivalently,

∂

∂γ

(
µra(α, qH , γ)+ (1−µ)rb(α, qL, γ)

) ∣∣
α=α,γ=γ̄s

> 0, (30)

for every µ≥ µmin. Since the partial derivative above is strictly decreasing in γ (Lemma 11), if (30) holds

then R(α,γ) strictly increases on γ ∈ [0, γ̄s]. We know from Lemma 11 that ra(α, qH , γ) is strictly increas-

ing in γ so its partial derivative must be positive. In order to prove (30), it is suffices to show that

∂
∂γ

(rb(α, qL, γ)) |α=α,γ=γ̄s
> 0. Referring to the expression for the partial derivative in Lemma 11, we have:

∂

∂γ
rb(α, qL, γ)

∣∣
α=α,γ=γ̄s

=
qLηs
4

(
1− γ̄2

s c
2(1+ γ̄s)

q2L(1− γ̄s)3

)
≥ qLηs

4

(
1− (1+ γ̄s)

4(1− γ̄s)3

)
(31)

≥ qLηs
4

(
1−

( 6−λ
5

)

4( 4+λ
5

)3

)
(32)

≥ qLηs
4

(
1−

25( 11
2
)

4( 9
2
)3

)
(33)

> 0.

In (31) and (32), we used the facts that γ̄s ≤ qL
2c

and γ̄s ≤ 1−λ
5

, respectively. In Equation (33), we substituted

λ = 1
2
since that is where the expression attains its minimum value. It follows that γ∗ = γmax for every

µ≥ µmin.
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Step 4. We have thus far established that γ∗ = γmax for α= α and µ≥ µmin. We now show that γ∗ = γmax

continues to hold as α is increased from α, which would imply γ∗ ≥ γ0 for all α ≥ α and µ ≥ µmin. Note

that by the analysis in Step 3, there are only two candidate solutions for the optimal commission rate:

γ∗ ∈ {γ̄s, γmax}. Further, because R(α, γ̄s)≤R(α,γmax) by Step 2, to prove the result it is sufficient to show

that R(α, γ̄s)≤R(α,γmax) continues to hold for α≥ α. By (28), at α= α we have

R(α, γ̄s)≤ µ
qH(1−λ)γmax

4

(
1− (1−λ)2c2

q2Hζ
2

)
≤R(α,γmax).

Because ζ increases in α, the middle expression above strictly increases in α. Further, using the expression

for rc(α, q, γ) from Lemma 9, the second inequality can be shown to hold for all α. Therefore, it remains to

show R(α, γ̄s) strictly decreases on α≥ α. We do so by showing following two inequalities hold for all α≥ α:

∂

∂α
ra(α, qH , γ)

∣∣
γ=γ̄s

< 0,

∂

∂α
rb(α, qL, γ)

∣∣
γ=γ̄s

< 0.

For the first inequality, note

∂

∂α
(ra(α, qH , γ̄s)) =

∂

∂γ̄s
(ra(α, qH , γ̄s))

∂

∂α
γ̄s.

Further, by Lemma 9, note

ra(α, qH , γ̄s) =
γ̄sqH
4

(
1− (1−λ)2c2

q2H(1− γ̄s)2

)
.

By Lemma 11, ra(α, qH , γ) is strictly increasing in γ. Because ra(α, qH , γ̄s) is strictly increasing in γ̄s and γ̄s

is strictly decreasing in α, we conclude ∂
∂α
ra(α, qH , γ̄s)< 0. For the second inequality, note

rb(α, qL, γ̄s) = qL
γ̄sηs
4

(
1−

(
c2(1− η|s)

2

q2L(1− γ̄s)2

))
= qL

(1−α)(1−λ)

4

(
1−

(
c2γ̄2

s

q2L(1− γ̄s)2

))
.

In the second equation above, we used the fact that γ̄s = 1 − η|s, which implies γ̄sηs = (1 − α)(1 − λ).

Differentiating gives us

∂

∂α
rb(α, qL, γ̄s) =

qL
4

(
−(1−λ)

(
1− c2γ̄2

s

q2L(1− γ̄s)2

)
+2(1−α)(1−λ)

c2(1−λ)γ̄s
α2λq2L(1− γ̄s)

)
=
qL
4
(1−λ)

(
−1+

c2γ̄2
s

q2L(1− γ̄s)2
+2

c2γ̄2
s

αq2L(1− γ̄s)2

)
≤ qL

4
(1−λ)

(
−1+

1

4(1− γ̄s)2
+

1

2α(1− γ̄s)2

)
(34)

≤ qL
4
(1−λ)

(
−1+

1

4 (4+λ)2

25

+
1

2 (4+λ)3

25(4+2λ)

)
(35)

≤ qL
4
(1−λ)

(
−1+

25

81
+

500

729

)
(36)

< 0.

In the above series of expressions, (34) follows from γ̄s ≤ qL/2c, and (35) is due to γ̄s ≤ (1− λ)/5, which in

turn implies that 1− γ̄s ≥ (4 + λ)/5 and α≥ (4 + λ)/(4 + 2λ). Finally, (36) follows by observing that both

(4+λ) and (4+λ)3/(4+2λ) attain their minimum value over λ∈ [ 1
2
,1] at λ= 1/2. It follows that γ∗ = γmax
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for all α≥ α. □

Proof of Corollary 2. We continue from the the proof of Proposition 2. Additionally, we assume that qL ≤

c(1− λ)/2, as specified in the statement of the corollary. Note the platform’s revenue when only the online

channel exists is R0(α,γ) = µra(α, qH , γ)+ (1−µ)max{rb(α, qL, γ),0}. Therefore, to show γ0 < γ
max, it suf-

fices to identify (α,µ) such that ∂
∂γ
R0(α,γ)|γ=γmax < 0. Fix α= α and µ= µmin. To show ∂

∂γ
R0(α,γ)|γ=γmax <

0 under (α,µmin), it suffices to show that the following holds:

rb(α, qL, γ
max)≥ 0, (37)

∂

∂γ
(µminr

a(α, qH , γ)+ (1−µmin)r
b(α, qL, γ))|α=α,γ=γmax < 0. (38)

We show (37) holds first. Note rb(α, qL, γ
max) can be written as

rb(qL, α, γ
max) =

qLηsγ
max

4

(
1− γ̄2

s c
2

q2L(1− γmax)2

)
≥ qLηsγ

max

4

(
1−

q2L
4c2
c2

q2L(
1
2
)2

)
≥ 0,

where the first inequality follows because γ̄s ≤ qL
2c

by our choice of α. Next, using the expression for

(∂/∂)ra(α, qH , γ) from the proof of Lemma 11, we have

∂

∂γ
ra(α, qH , γ)|γ=γmax =

qH
4

(
1− 3

(1−λ)2c2

q2H(1− γmax)2

)
≤ ra(α, qH , γ̄s)

γ̄s
,

where the final step follows because γ̄s ≤ γmax and

ra(α, qH , γ̄s) =
qH
4
γ̄s

(
1− (1−λ)2c2

q2H(1− γ̄s)2

)
by Lemma 9. Next, for ∂

∂γ
rb(α, q, γ), we have

∂

∂γ
ra(α, qH , γ)|α=α,γ=γmax =

qLηs
4

(
1− γ̄2

s c
2(1+ γmax)

q2L(1− γmax)3

)
=
qLηs
4

(
1− 12

γ̄2
s c

2

q2L

)
, (39)

where the second equality follows because γmax = 1/2. Note γ̄s = min
(
1−λ
5
, qL
2c

)
. We consider both cases

to derive an upper bound for the right hand side of (39). First, suppose γ̄s = (1 − λ)/5. Then because

qL ≤ (1−λ)c/2, we have

1− 12
γ̄2
s c

2

q2L
≤ 1− 12

(
(1−λ)2

25
c2
)

4

(1−λ)2c2
=−23

25
< 0.

In the case where γ̄s = qL/2c, we have

1− 12
γ̄2
s c

2

q2L
≤ 1− 12

q2Lc
2

4q2L
=−2< 0.

In both cases, we see the right hand side of (39) is upper bounded by −23/25. Plugging this back into (39),

we have

∂

∂γ
ra(α, qH , γ)

∣∣
α=α,γ=γmax =

qLηs
4

(
1− 12

γ̄2
s c

2

q2L

)
≤ qLηs

4

(
−23

25

)
<
qLηs
4

(
γ̄2
s c

2

q2L(1− γ̄s)2
− 1

)
=−r

b(α, qL, γ̄s)

γ̄s

where the strict inequality above follows because(
γ̄2
s c

2

q2L(1− γ̄s)2
− 1

)
≥

(
q2L
4c2
c2

q2L(
4+λ
5

)2
− 1

)
≥
(
25

81
− 1

)
≥−23

25
.
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Using these bounds on ∂
∂γ
ra(α, q, γ) and ∂

∂γ
rb(α, q, γ), we can now show (38). Note

∂

∂γ
(µminr

a(α, qH , γ)+ (1−µmin)r
b(α, qL, γ))|α=α,γ=γmax <µmin

ra(α, qH , γ̄s)

γ̄s
− (1−µmin)

rb(α, qL, γ̄s)

γ̄s

=
1

γ̄s

(
µminr

a(α, qH , γ̄s) = (1−µmin)r
b(α, qL, γ̄s)

)
= 0,

where the final equation follows due to our choice of µmin in Step 2. It follows that (38) also holds. Therefore,

we have ∂
∂γ
R0(α,γ)|γ=γmax < 0 and thus γ0 <γ

max at α= α and µ= µmin.

We conclude by choosing ᾱ and µmax. First, it can be shown that both rb and ∂
∂γ
rb are strictly increasing in

α. Fixing µ= µmin, let ᾱ > α denote the value of α at which ∂
∂γ
(µra(α, qH , γ)+(1−µ)rb(α, qL, γ))|γ=γmax = 0.

Therefore, for every α ∈ (α, ᾱ), it must be the case that rb(α, qL, γ
max)> 0 and ∂

∂γ
(µminr

a(α, qH , γ) + (1−

µmin)r
b(α, qL, γ))|γ=γmax < 0. As a result, γ0 < γmax for α ∈ (α, ᾱ). Finally, fixing α ∈ (α, ᾱ), as µ increases,

there exists a threshold µmax > µmin at which ∂
∂γ
(µmaxr

a(α, qH , γ) + (1− µmax)r
b(α, qL, γ))|γ=γmax = 0. The

result follows. □

Proof of Lemma 4. The proof proceeds in four steps. First, we show the platform’s revenue can be written

as

R(α,γ) =max{µra(α, qH , γ), µra(α, qH , γ)+ (1−µ)rb(α, qL, γ)}. (40)

Second, we show there exists α1 ∈ ( 1
2
,1) such that γ0 = γmax for α≤ α1. Third, we show there exists α2 ∈

(α1,1) such that γ0 is increasing on (α1, α2) and γ0 = γmax for α ≥ α2. In the fourth step, we prove that

R∗(α) is weakly increasing in α.

Step 1. We begin by showing rb(α, qL, γ) ≤ 0 if and only if the type-L seller is unprofitable, i.e.,

πb(α, qL, γ)≤ 0. For convenience, define

ψ=
1

2
−

(1− η|s)c

2qL(1− γ)
.

By Lemma 9, we then have πb(α, qL, γ) = ηs(1− γ)qLψ and

rb(α, qL, γ) = γηsp
bF̄

(
pb

qL

)
= γηsp

b

(
1

2
−

(1− η|s)c

2qL(1− γ)

)
= γηsp

bψ.

Because ηs ≥ 0 and pb ≥ 0, we have rb(α, qL, γ)≤ 0 if and only if πb(α, qL, γ)≤ 0. It follows that under the

condition ψ≤ 0, we have

µra(α, qH , γ)≥ µra(α, qH , γ)+ (1−µ)rb(α, qL, γ).

In other words, R(α,γ) can be expressed as (40). Next, by Lemma 11, ra(α, qH , γ) is strictly increasing in γ

and therefore maximized at γmax. The platform’s optimal revenue can then be written as

R∗(α) =max

{
µra(α, qH , γ

max),

maxγ∈[0,γmax] (µr
a(α, qH , γ)+ (1−µ)rb(α, qL, γ)) .

Step 2. For convenience, define ha = µra(α, qH , γ
max) and hb(α) = maxγ∈[0,γmax](µr

a(α, qH , γ) + (1 −

µ)rb(α, qL, γ)), so that R∗(α) = max(ha, hb(α)). Note ha is invariant to α. We now show hb( 1
2
) < ha and

hb(1) > ha. For the first inequality, following Step 1 of the proof of Proposition 1, there exists αL ∈ ( 1
2
,1)
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such that πb(α, qL, γ) < 0 and thus rb(α, qL, γ) < 0 for α < αL. As a consequence, we conclude hb( 1
2
) < ha

since the contribution of the rb term is negative. Next, because η|s = 1 when α= 1, we have rb(α, qL, γ)> 0

at (α,γ) = (1, γmax), which implies that hb(1)> ha. Further, we observe that for any choice of the parame-

ters, rb(α, qL, γ) and therefore hb(α) is strictly increasing in α. Because hb( 1
2
)< ha, hb(1)> ha and hb(α) is

increasing in α, it follows there exists α1 such that hb(α)<ha for α<α1 and hb(α)>ha for α>α1. Further,

by continuity of ha and hb we have hb(α1) = ha and α1 ∈ ( 1
2
,1). Therefore, R∗(α) = ha for α≤ α1. Because

by Lemma 11, ra(α, qH , γ) is strictly increasing in γ, it follows that γ0 = γmax for α≤ α1.

Step 3. Let γb = argmaxγ≥0{µra(α, qH , γ) + (1 − µ)rb(α, qL, γ)}. Following the proof of Step 1, γ0 =

min{γb, γmax} for α ≥ α1. Next, following an identical argument to the proof of Lemma 15(i), γb can be

shown to be strictly increasing in α. It follows there exists α2 ≥ α1 such that γ0 = γb, γ0 strictly increases on

(α1, α2), and γ0 = γmax for α∈ (α2,1]. Lastly, we show α2 < 1. To see why this holds, note that rb(α, qL, γ)> 0

at (α,γ) = (1, γmax) as established in Step 2, which implies R(α,γ) = µra(α, qH , γ) + (1− µ)rb(α, qL, γ) for

(α,γ) = (1, γmax). By Lemma 11, we also have d
dγ
ra(α, qH , γ)> 0 for (α,γ) = (1, γmax), and thus d

dγ
R(α,γ)> 0

for (α,γ) = (1, γmax). Then by continuity of ra, d
dγ
ra, rb, and d

dγ
rb, there exists ϵ > 0 such that R(α,γ) =

µra(α, qH , γ) + (1− µ)rb(α, qL, γ) for (α,γ) = (1− ϵ, γmax) and d
dγ
R(α,γ)> 0 for (α,γ) = (1− ϵ, γmax). The

result follows.

Step 4. It remains to show R∗(α) weakly increases in α ∈ [ 1
2
,1]. As an intermediate step, we first show

µra(α, qH , γ)+ (1−µ)rb(α, qL, γ) is strictly concave in γ.

By Lemma 11, rb(α, q, γ) is strictly concave in γ. For ra(α, q, γ), using the expression in Lemma 9, we have

dra

dγ
=

1

4q

(
q2 − c2(1+ γ)(1−λ)2

(1− γ)3

)
.

Note (1+ γ)/(1− γ)3 strictly increases in γ. It follows that d
dγ
ra strictly decreases in γ and thus ra(α, q, γ)

is strictly concave in γ. Therefore, µra(α, qH , γ)+ (1−µ)rb(α, qL, γ) is strictly concave in γ.

We now show R∗(α) weakly increases in α∈ [ 1
2
,1]. By Proposition 4, there exists α1 ∈ ( 1

2
,1) and α2 ∈ [α1,1)

such that γ0 = γmax for α ≤ α1 and α ≥ α2, and γ0 < γmax for α ∈ (α1, α2). Note that if γ0 = γmax, then

d
dα
γ0 = 0, which implies

dR∗

dα
=

(
∂R

∂γ

dγ0
dα

+
∂R

∂α

)∣∣∣∣
γ=γmax

=
∂R

∂α

∣∣∣∣
γ=γmax

≥ 0,

where the inequality follows from Proposition 3. It follows that if α < α1 or α > α2, then R
∗(α) is weakly

increasing at α. Next, pick α∈ (α1, α2). Following the proof of Proposition 4, this implies γ0 <γ
max and that

the platform’s revenue at γ0 given by µra(α, qH , γ0)+ (1−µ)rb(α, qL, γ0). By Step 1, this function is strictly

concave in γ, which implies R(α,γ) is differentiable in γ at γ = γ0. It follows from the envelope theorem that

dR∗

dα

∣∣∣∣
γ=γ0

=
∂R

∂α

∣∣∣∣
γ=γ0

≥ 0,

where the inequality again follows from Proposition 3. We have therefore shown that R∗(α) is increasing

at α for α < α1, α ∈ (α1, α2), and α > α2. It remains to address α= α1 and α= α2. Following the proof of

Proposition 4, γ0 is continuous at α= α2. It follows that R(α,γ) is also continuous at α= α2, which implies

R∗(α) weakly increases on α≥ α1. It remains to show that limα→α−
1
R∗(α)≤ limα→α+

1
R∗(α). Following the

proof of Lemma 4, R∗(α) = µra(α, qH , γ0) for α ≤ α1 and R∗(α) = µra(α, qH , γ0) + (1− µ)rb(α, qL, γ0) for

α>α1, where r
b(α, qL, γ0)> 0 if and only if α>α1. The result follows. □
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Corollary 3. (Corollary of Lemma 4). Suppose transactions can occur online-only. For every qH ≥ 4c,

there exists µ̂∈ [0,1] such that for all µ≤ µ̂, γ0 <γ
max at α= α1 and γ0 strictly increases on α∈ (α1, α2).

Proof. Following the proof of Proposition 4, note α1 is the largest value of α such that µra(α, qH , γ
max)≥

maxγ (µr
a(α, qH , γ)+ (1−µ)rb(α, qL, γ)). Analogously, α2 is the smallest value of α on α ≥ α1 such that

γmax = argmaxγ∈[0,γmax] (µr
a(α, qH , γ)+ (1−µ)rb(α, qL, γ)). To prove the corollary, suppose by way of con-

tradiction that γ0 <γ
max at α1 for all µ∈ [0,1]. This implies the following two inequalities must hold:

rb(α1, qL, γ
max)≤ 0, (41)

d

dγ

(
µra(α, qH , γ)+ (1−µ)rb(α, qL, γ)

) ∣∣
α=α1,γ=γmax ≥ 0. (42)

Note by Proposition 4 that α2 < 1. Next, (41) can be written equivalently as

γmax qLηs
4

(
1−

(
(1− η|s)c

qL(1− γmax)

)2
)
≤ 0

which implies
(1− η|s)c

qL(1− γmax)
≥ 1. (43)

Using the expressions from the proof of Lemma 11, (42) is equivalent to

µ
qH
4

(
1− c2(1−λ)2(1+ γmax)

qH(1− γmax)3

)
+(1−µ)

qLηs
4

(
1−

c2(1− η|s)
2(1+ γmax)

qL(1− γmax)3

)
≥ 0

By applying (43) and using the fact that γmax = 1/2 and ηs ≥ 1/2, it follows that the inequality above implies

µ
qH
4

(
1− 12

c2(1−λ)2

qH

)
− (1−µ)

qL
4

≥ 0. (44)

We conclude that if α1 = α2 for all µ ∈ [0,1], then (44) must hold for all µ. However, note that (44) fails to

hold as µ→ 0, which yields a contradiction. We conclude there exists µ̂ such that γ0 < γmax at α= α1 for

µ≤ µ̂. That γ0 strictly increases on (α1, α2) follows from Proposition 4. □

The following two lemmas are useful towards proving Proposition 3.

Lemma 14. Suppose Assumption 1 holds. There exists µ̄ such that if µ≥ µ̄, the following two statements

hold. (i). There exists α∈ ( 1
2
,1) and ᾱ∈ (α,1) such that γ∗ = γ̄s if α≤ α and γ∗ = γmax if α≥ ᾱ. (ii). There

exists λ̄ such that if λ≥ λ̄, there exists α̃∈ (α, ᾱ) such that γ∗ = γ̄r for λ≥ λ̄ and α∈ (α̃, ᾱ).

Proof. We prove the statements in order. (i). For convenience, define

R1(γ) =

{
µra(α, qH , γ), if α∈ [ 1

2
, αL),

µra(α, qH , γ)+ (1−µ)rb(α, qL, γ), if α∈ [αL,1],

and R2(γ) = µrc(α, qH , γ). Following parallel arguments to the proof of Lemma 13, the platform’s revenue

function in the presence of the offline channel can be written as

R(γ) =


R1(γ) if γ < γ̄s,

R2(γ) if γ̄s ≤ γ < γ̄r,

0 if γ̄r ≤ γ,



52

where dependence of R1 and R2 on α is suppressed for clarity. By Lemma 11, ra(α, qH , γ) and r
c(α, qH , γ) are

both strictly increasing in γ on γ ∈ [0, γmax]. It follows that there exists µ̄ such that R1(γ) and R2(γ) strictly

increase in γ on [0, γmax] if µ≥ µ̄. Because R1(γ) and R2(γ) are both strictly increasing in γ for µ≥ µ̄, we

have γ∗ ∈ {γ̄s, γ̄r, γ̄max} for µ ≥ µ̄. Next, by definition of γ̄s (Lemma 7), we have limα→1 γ̄s = 0, which by

definition of R1 implies limα→1R1(γ̄s) = 0. With some effort, it can be verified that limα→1R2(γ̄r)> 0 and

limα→1R2(γ
max)> 0, which implies γ∗ ∈ {γ̄r, γmax}. Further, because limα→1 γ̄r = 1> γmax, it follows that

there exists ᾱ∈ ( 1
2
,1) such that γ∗ = γmax for α≥ ᾱ.

It remains to show there exists α< ᾱ such that γ∗ = γ̄s for α≤ α. We again start with γ∗ ∈ {γ̄s, γ̄r, γmax},

and show γ∗ = γ̄r and γ∗ = γmax cannot hold for sufficiently small α. Note for α≤ αL, R1(γ) = µra(α, qH , γ).

Further, using the expressions in Lemma 6 we have limα→1/2 γ̄s = limα→1/2 γ̄r = 1− λ. Using this fact and

the expressions for ra(α, q, γ) and rc(α, q, γ) in Lemma 9, it can be shown algebraically that

lim
α→1/2

(R1(γ̄s)−R2(γ̄r)) =
(1−λ)(c(1−λ)− qHλ)

2

8qHλ2
> 0.

Therefore, we cannot have γ∗ = γ̄r. Lastly, because limα→1/2 γ̄r = 1− λ and λ ∈ ( 1
2
,1), for sufficiently small

α we have γ̄r > γmax. Because R2(γ) is strictly increasing, we also have R2(γ̄r)>R2(γ
max), which implies

γ∗ = γmax cannot hold. The result follows by picking α appropriately.

(ii). Using the expression for γ̄r in Lemma 6 and the fact that γ̄r is increasing in α (Lemmas 2 and 6), it

can be shown that γ̄r ≤ 1
2
= γmax if and only if α≤ λ. Set λ̄= ᾱ. Because ᾱ > α, it follows that there exists

α̃∈ (α, ᾱ) such that γ̄r <γ
max and R2(γ̄r)>R1(γ̄s) for α∈ (α̃, ᾱ). The result follows. □

Lemma 15. Suppose γ∗ <γmax. Then the following results hold:

(i) If γ∗ < γ̄s, then either d
dα
γ∗ = 0 or d

dα
γ∗ > 0.

(ii) If γ∗ = γ̄s, then
d
dα
γ∗ < 0.

(iii) If γ∗ ∈ (γ̄s, γ̄r), then there exists λ ∈ ( 1
2
,1) and λ̄ ∈ (λ,1) such that d

dα
γ∗ < 0 if λ≤ λ and d

dα
γ∗ > 0 if

λ≥ λ̄.

(iv) If γ∗ = γ̄r, then
d
dα
γ∗ > 0.

Proof. We prove the statements in order. (i). Suppose γ∗ < γ̄s. It follows from Lemmas 1 and 7 that there

are two cases for the revenue function depending on whether the type-L seller accepts or rejects the σ = s

buyer. By Lemma 10, there exists q such that

R(α,γ) =

{
µra(α, qH , γ) if qL < q,

µra(α, qH , γ)+ (1−µ)rb(α, qL, γ) if qL ≥ q.

Further, because γ∗ < γ̄s, we must have d
dγ
R(α,γ)|γ=γ∗ = 0. By an application of the implicit function

theorem,
dγ∗

dα
=−

(
∂2R

∂γ∂α

)(
∂2R

∂γ2

)−1 ∣∣∣∣
γ=γ∗

.
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Because γ∗ is a local maximizer of R(α,γ), we must have d2

dγ2R|γ=γ∗ < 0. It follows that d
dα
γ∗ has the same

sign as d2

dγdα
R|γ=γ∗ . Next, by Lemma 9, ∂

∂α
pa = 0, which implies d

dα
ra = 0. Therefore qL < q implies d

dα
γ∗ = 0.

In the case where qL ≥ q, it follows that d2

dγdα
R, and therefore d

dα
γ∗, has the same sign as d2

dγdα
rb. We then

have
d2rb

dγdα
=

∂

∂α

(
∂rb

∂p

∂pb

∂γ
+
∂rb

∂γ

)
=

∂2rb

∂p∂α

∂pb

∂γ
+
∂rb

∂p

∂2pb

∂γ∂α
+

∂2rb

∂γ∂α
. (45)

Next, with some effort it can be shown that

∂2rb

∂p∂α
=−γ(2p− q)(2λ− 1)

q
,

∂rb

∂p
=
γ(2p− q)ηs

q
,

∂2rb

∂γ∂α
= p

(
1− p

q

)
(2λ− 1),

and
∂pb

∂γ
=
c(1− η|s)

2(1− γ)2
,

∂2pb

∂γ∂α
=− cλ(1−λ)

2η2s (1− γ)2
.

Next, for convenience let ψ= c(1−η|s)/(1−γ). Then by Lemma 9, we have pb = 1
2
(q+ψ) and 2pb− q=ψ.

Substituting for ψ and using the definitions of η|s and ηs, we can now re-write (45) equivalently as

∂2rb

∂γ∂α
=

1

2
(q+ψ)

(
1− 1

2q
(q+ψ)

)
− γψ2

2q(1− γ)

(
1+

λ

1−α

)
.

Next, using the expression above, with some effort it can be shown that

lim
α→1/2

∂2rb

∂γ∂α
= (1−µ)

(
1

4
q(2λ+1)+

c(1+ γ)(1−λ)2(1+2λ)

4q(1− γ)3

)
> 0,

lim
α→1

∂2rb

∂γ∂α
=

1

4
q(2λ+1)> 0,

∂3rb

∂γ∂α2
=− (1+ γ)(cλ(1−λ))2

2qη3s (1− γ)3
< 0.

Because (∂2rb/∂γ∂α) > 0 at both α = 1
2

and α = 1 and is strictly decreasing for all α, we must have

(∂2/∂γ∂α)rb > 0 for all α∈ [ 1
2
,1]. Therefore, d

dα
γ∗ > 0 for all α∈ [ 1

2
,1].

(ii). If γ∗ = γ̄s, then by definition of γ̄s in Lemma 7 we have

dγ∗

dα
=

d

dα

(
(1−α)(1−λ)

αλ+(1−α)(1−λ)

)
=− (1−λ)λ

η2s
< 0.

Therefore, if γ∗ = γ̄s, then
d
dα
γ∗ < 0.

(iii). Suppose γ∗ ∈ (γ̄s, γ̄r). The proof proceeds by parallel argument to Case 1. Similar to Case 1, it follows

from Lemmas 1 and 7 that there are two cases for the revenue function depending on whether the type-L

seller accepts or rejects the σ= s buyer. By Lemma 10, there exists q such that

R(α,γ) =

{
µrc(α, qH , γ) if qL < q,

µrc(α, qH , γ)+ (1−µ)rd(α, qL, γ) if qL ≥ q.

Note that rd(α, q, γ) = 0 by Lemma 9, meaning the platform’s revenue is simply R(α,γ) = µrc(α, qH , γ).

Because γ∗ ∈ (γ̄s, γ̄r), we must have d
dγ
R(α,γ)|γ=γ∗ = 0. By the implicit function theorem and the definition

of R(α,γ) above, the sign of d
dα
γ∗ is given by the sign of d2

dγdα
rc. First, using the price and revenue expressions

in Lemma 9, we have

drc

dγ
=
∂rc

∂p

∂pc

∂γ
+
∂rc

∂γ
,

= γηs

(
1− 2pc

q

)(
1− ηr

2

)(c(1−λ)

2ζ2

)
+ pc

(
1− pc

q

)
ηr,

= (1− ηs)
pc(pc − q)

q
+ ηs(1+ ηs)

γc(1−λ)ζ2(2pc − q)

4q︸ ︷︷ ︸
ω

, (47a)
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where the third line follows because ηs+ ηr = 1 by Lemma 6. For convenience, we define ω as the right hand

side of (47a). Next, using the expression for pc in Lemma 9, it can be shown that

∂ω

∂α
=
∂ω

∂ηs

∂ηs
∂α

+
∂ω

∂ζ

∂ζ

∂α

=

(
q

4
− c2(1+ ζ3γ(1+2ηs))(1−λ)2

4qζ2

)
∂ηs
∂α

− c2(2+ η2s ζ
3γ− ηs(2− ζ3γ))(1−λ)2

4qζ3
∂ζ

∂α
,

where ∂
∂α
ηs = 1 − 2λ and ∂

∂α
ζ = ( 1

2
) (λγ+(1−λ)(1− γ)). It is straightforward to verify from the expres-

sion above that limλ→1
∂
∂α
ω = q/4 > 0. Similarly, using the definitions of ηs and ζ from Lemmas 6 and 9

respectively, it can be shown that

lim
λ→1/2

∂ω

∂α
=−c

2

q

(
1

(α+3(1− γ))3
+

3γ

256

)
< 0.

By continuity of ∂
∂α
ω, it follows that there exists λ̄ ∈ ( 1

2
,1) and λ ∈ ( 1

2
, λ̄) such that if γ∗ ∈ (γ̄s, γ̄r), then

d
dα
γ∗ > 0 for λ≥ λ̄ and d

dα
γ∗ < 0 for λ≤ λ.

(iv). If γ∗ = γ̄r, then by definition of γ̄r in Lemma 7 we have

dγ∗

dα
=

d

dα

(
α(1−λ)

α(1−λ)+ (1−α)λ

)
=
λ(1−λ)

η2r
> 0.

The result follows. □

Proof of Proposition 3. We show γ∗ is decreasing first. By Lemma 14, there exists µ̄ and α such that

if µ ≥ µ, then γ∗ = γ̄s for α ≤ α. By Lemma 15, γ̄s is strictly decreasing in α. It follows that γ∗ strictly

decreases on α ∈ [ 1
2
, α]. Next, we show R∗(α) is decreasing on some interval α ∈ [ 1

2
, ¯̄α], differentiating R∗(α)

in α yields
dR∗

dα
=

(
∂R

∂γ

dγ∗

dα
+
∂R

∂α

)∣∣∣∣
γ=γ∗

.

We prove the result by showing there exists ¯̄α and µ̄ such that for µ ≥ µ̄ and α ≤ ¯̄α we have ∂
∂γ
R > 0,

d
dα
γ∗ < 0, and (∂/∂α)R = 0 at γ = γ∗. For ∂

∂γ
R, consider the following three statements: By Lemma 14

there exists µ̄∈ ( 1
2
,1) and α′ ∈ ( 1

2
,1) such that γ∗ = γ̄s if µ≥ µ̄ and α≤ α′; by Step 3 of the proof of Lemma

13 there exists α′′ ∈ ( 1
2
,1) such that R(α,γ) = µra(α, qH , γ) for α ≤ α′′; and by Lemma 11 ra(α, qH , γ)

strictly increases on γ ∈ [0, γ̄s]. Combining these three statements and setting ¯̄α = min{α′, α′′} implies

∂
∂γ
R > 0 at γ = γ∗ for α≤ ¯̄α and µ≥ µ̄. Next, for d

dα
γ∗, because γ∗ = γ̄s for µ≥ µ̄ and α≤ α′, by Lemma

15 we have d
dα
γ∗ < 0. Lastly, for ∂

∂α
R, because ∂

∂α
pa = 0 by Lemma 9, we have d

dα
ra(α, q, γ) = 0. Further,

because R(α,γ) = µra(α, qH , γ) for α≤ α′′ as established above, it follows that ∂
∂α
R(α,γ) = 0 for α≤ ¯̄α. The

proposition statement follows by setting ᾱ=min{α, ¯̄α}. □

F. Proofs for Section 5

Lemma 16. Let ϕL(α) = ΠL
0 and ϕH(α) = ΠH

0 . (i). Then for each seller type j ∈ {H,L}, access fee

ϕ > 0 and accuracy α ∈ [ 1
2
,1], a type-j seller joins the platform if and only if ϕ ≤ ϕj(α). Further, ϕH(α)

is invariant to α, ϕL(α) is strictly increasing in α, and 0 < ϕL(α) < ϕH(α) for all α ∈ [ 1
2
,1]. (ii). The

platform’s optimal revenue under access fees is given by R∗
ϕ =max{µΠH

0 ,Π
L
0 }.
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Proof. We first address the type-H seller, followed by the type-L seller. By Lemmas 1 and 9, the type-H

seller joins if and only if ϕ ≤ ϕH(α). Further, because
d
dα
ΠH

0 = 0 by Lemma 9, we have d
dα
ϕH(α) = 0. By

parallel argument to the type-H case, by Lemmas 1 and 9 the type-L seller joins if and only if ϕ≤ ϕL(α).

Further, by Lemma 6 we have ∂
∂α
ηs > 0 and ∂

∂α
η|s > 0, which implies d

dα
ΠL

0 > 0. It follows that d
dα
ϕL(α)> 0.

Finally, to see that 0<ϕL(α)<ϕH(α) for all α∈ [ 1
2
,1], note

ϕL(α)≤ lim
α→1

ϕL(α) = lim
α→1

ΠL
0 < lim

α→1
πb(α, qH ,0)≤ΠH

0 = ϕH(α),

where above we have used the fact that ϕL(α) increases in α (Lemma 16), the definition of ϕL(α), that

πb(α, q,0) increases in q, and that πb(α, qH ,0)<ΠH
0 for all α∈ [ 1

2
,1] by the expressions in Lemma 9. Lastly,

ϕL(α)> 0 can be verified by definition of ϕL(α) and Lemma 9.

(ii). By part (i), if ϕ ≤ πb(α, qH ,0) then both seller types join, which generates a revenue of ϕ. If

ϕ ∈ [ΠL
0 ,Π

H
0 ], then only the type-H seller joins the platform, which generates revenue µϕ. It follows that

ϕ∗ ∈ {ΠH
0 ,Π

L
0 } and thus R∗

ϕ =max{µΠH
0 ,Π

L
0 }. □

Lemma 17. Suppose for some γ ∈ [0, γmax] that only one type of seller transacts online. Then the plat-

form’s commission revenue under γ is strictly smaller than the optimal revenue from access fees:

Rγ(α,γ)<R
∗
ϕ.

Proof of Lemma 17. The proof proceeds in two steps. First, we show ra(α, qH , γ)<ΠH
0 for all γ ∈ [0, γmax].

Second, we use this inequality to prove the main result.

Step 1. Note for γ ∈ [0, γmax], we have

ra(α, qH , γ)≤ ra(α, qH , γ
max)

= γmaxqH

(
1− (1−λ)2c2

q2H(1− γmax)2

)
≤ γmaxqH · 9

7

(
1− (1−λ)c

qH

)2

(49)

= γmax 9

7
ΠH

0

<ΠH
0 ,

where the first line follows from Lemma 11, the second and fourth lines from Lemma 9, and the final line

because γmax = 1/2. To show that (49) holds, we have

1− (1−λ)2c2

q2
H
(1−γmax)2(

1− (1−λ)c

qH

)2 ≤
1− (1−λ)2c2

q2
H(

1− (1−λ)c

qH

)2 ≤
1− (1− 1

2
)2c2

16c2(
1− (1− 1

2
)c

4c

)2 =
9

7
,

where the second inequality above follows from maximizing the ratio over λ∈ [ 1
2
,1] and qH ≥ 4c, which occurs

at λ= 1
2
and qH = 4c. Therefore, ra(α, qH , γ)<ΠH

0 for all γ ∈ [0, γmax].

Step 2. We now show Rγ(α,γ)<R
∗
ϕ if only one seller type transacts online under γ. Following Lemma 2,

there are only two cases in which only one seller type transacts online: (1) if rb(α, qL, γ) = 0 and γ ≤ γ̄s, so the

type-H seller transacts with both σ = r and σ = s buyers online and the type-L seller does not participate,
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or (2) if γ > γ̄s, so the type-H seller transacts only with the σ = r buyer online and the type-L seller either

does not participate or transacts only offline with the σ= s buyer.

For case (1), let ϕ=ΠH
0 . Then

Rγ(α,γ) = µra(α, qH , γ)<µΠ
H
0 = µϕ≤R∗

ϕ,

where the first equality follows because rb(α, qL, γ) = 0, the strict inequality follows from Step 1, the second

equality follows because ϕ = ΠH
0 , and the final inequality follows by definition of Rϕ(α,ϕ) = µϕ. For case

(2), by Lemma 9 the platform’s revenue is given by rc(α, qH , γ). Using the expressions in Lemma 9, it is

straightforward to show algebraically that rc(α, qH , γ)< ra(α, qH , γ) for any γ ∈ [0, γmax]. The remainder of

the proof follows by parallel argument to case (1). □

Lemma 18. Define µ̂=ΠL
0 /Π

H
0 . Suppose for some µ ̸= µ̂ and γ, platform revenue under commission fees

is weakly larger than the optimal revenue under access fees: Rγ(α,γ)≥R∗
ϕ. Then Rγ(α,γ)≥R∗

ϕ also holds

for µ= µ̂.

Proof. To make dependence on µ explicit, we use Rγ(α,γ,µ) to denote the platform’s revenue under com-

mission rate γ and R∗
ϕ(µ) to denote the platform’s optimal revenue under access fees. First, suppose for some

µ ̸= µ̂ there exists γ such that Rγ(α,γ,µ)≥R∗
ϕ(µ). We show Rγ(α,γ, µ̂)≥R∗

ϕ(µ̂) must also hold. We consider

two cases: µ> µ̂ and µ< µ̂.

Case 1. Suppose µ> µ̂. Then it is straightforward to verify that R∗
ϕ(µ

′) = µ′ΠH
0 for all µ′ ≥ µ̂. Now suppose

µ is decreased to µ̂. Then

Rγ(α,γ, µ̂) =Rγ(α,γ,µ)+ [Rγ(α,γ, µ̂)−Rγ(α,γ,µ)]

=Rγ(α,γ,µ)+ [(µ̂−µ)ra(α, qH , γ)+ (µ̂−µ)rb(α, qH , γ)]

≥Rγ(α,γ,µ)+ [(µ̂−µ)πa(α, qH , γ)]

=Rγ(α,γ,µ)+ [R∗
ϕ(µ̂)−R∗

ϕ(µ)]

≥R∗
ϕ(µ)+ [R∗

ϕ(µ̂)−R∗
ϕ(µ)]

=R∗
ϕ(µ̂).

The first inequality follows because ra(α, qH , γ)< πa(α, qH , γ) for any γ ≤ γmax by Lemma 17. The second

inequality follows because Rγ(α,γ,µ) ≥ R∗
ϕ(µ) by assumption. Therefore, if Rγ(α,γ) ≥ Rϕ(α,γ) for some

µ> µ̂, Rγ(α,γ, µ̂)≥Rϕ(α,γ, µ̂) as well.

Case 2. Suppose µ< µ̂. Then R∗
ϕ(µ

′) = πb(α, qH ,0) for all µ
′ ≤ µ̂, which implies R∗

ϕ(µ̂) =R∗
ϕ(µ). Then

Rγ(α,γ, µ̂) =Rγ(α,γ,µ)+ [(µ̂−µ)ra(α, qH , γ)+ (µ̂−µ)rb(α, qH , γ)]≥Rγ(α,γ,µ)≥R∗
ϕ(µ) =R∗

ϕ(µ̂),

where the first inequality follows because ra(α, qH , γ)> r
b(α, qL, γ) by Lemma 9. The result follows. □

Proof of Lemma 5. We prove R∗
ϕ ≥ R∗

γ first. By Lemma 17, if only one seller type transacts online in

equilibrium — which corresponds to either rb(α, qL, γ
∗) = 0 (by Lemma 9) or γ∗ > γ̄s (by Lemma 2) — then
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access fees always generate higher revenue. As a result, it suffices to restrict attention to the case where

rb(α, qL, γ
∗)> 0 and γ ≤ γ̄s. In this setting, the platform’s revenue under commission rate γ can be written

as

R̃(α,γ) = µra(α, qH , γ)+ (1−µ)rb(α, qL, γ).

Therefore, to prove the result, it suffices to show R̃(α,γ)<R∗
ϕ for all γ ≤ γ̄s. Further, as a consequence of

Lemma 18, if R̃(α,γ)<R∗
ϕ holds for all γ ≤ γ̄s under µ= µ̂, then R̃(α,γ)<R∗

ϕ holds for all γ ≤ γ̄s for any

µ ∈ [0,1], where µ̂ is defined in Lemma 18. Moreover, under µ = µ̂, the platform’s optimal revenue under

access fees is

R̂ϕ = µΠH
0 =ΠL

0 ,

and the optimal access fee is also ϕ∗ =ΠL
0 . Therefore, it remains to show R̃(α,γ)< R̂ϕ for all γ ≤ γ̄s at µ= µ̂.

The remainder of the proof follows in three steps. First, for type-H sellers, we bound the ratio between

platform revenue under a commission rate γ and seller profit under the optimal access fee. Second, we do

the same for type-L sellers. Third, we prove the main result.

Step 1. Note ra(α, qH , γ) is the type-H seller’s contribution to platform revenue under the commission

rate γ, and ΠH
0 is the seller’s profit under the access fee ϕ∗. Then we have

ra(α, qH , γ)

ΠH
0

= γ
1− (1−λ)2c2

q2
H
(1−γ)2(

1− (1−λ)c

qH

)2 ≤ γ
1− (1−λ)2c2

q2
H(

1− (1−λ)c

qH

)2 ≤ γ
1− (1− 1

2
)2c2

16c2(
1− (1− 1

2
)c

4c

)2 = γ
9

7
.

The second inequality follows from the observation that the ratio is maximized when (1−λ)/qH is maximized

over λ∈ [ 1
2
,1] and qH ≥ 4c, which occurs at λ= 1/2 and qH = 4c.

Step 2. Similarly, consider the ratio rb(α, qL, γ)/Π
L
0 for fixed γ ≤ γ̄s. Further, note r

b(α, qL, γ)> 0 implies

q2L(1− γ)2 > γ̄2
s c

2 (Lemma 9), or equivalently,

γ̄s <
qL(1− γ)

c
≤ (1−λ)c(1− γ)

c
=

1− γ

2
.

Therefore, we must have γ̄s ∈ [γ, (1−γ)

2
]. This immediately rules out cases where γ ≥ (1− γ)/2, i.e., γ ≥ 1/3,

because rb(α, qL, γ)≤ 0 if γ ≥ 1/3. Next, we prove that for any γ ≤ 1/3, the following holds:

rb(α, qL, γ)

ΠL
0

≤

{
1

2−γ
0≤ γ ≤ 2−

√
3,

γ (1+γ)(1−3γ)

(1−γ)2(1−2γ)2
2−

√
3≤ γ ≤ 1

3
.

(50)

To see why this holds, first note that

rb(α, qL, γ)

ΠL
0

=
γq2L

(qL − γ̄sc)
2

(
1− γ̄2

s c
2

q2L(1− γ)2

)
.

For simplicity, let z = γ̄sc/qL. Then the above expression can be rewritten as

rb(α, qL, γ)

ΠL
0

=
γ

(1− z)2

(
1− z2

(1− γ)2

)
.

Fixing γ, let us differentiate the above ratio with respect to z to identify where it is maximized. Specifically,

we have

∂

∂z

(
rb(α, qL, γ)

ΠL
0

)
=

γ

(1− z)4

(
(1− z)2

(
−2

z

(1− γ)2

)
+2

(
1− z2

(1− γ)2

)
(1− z)

)
=

2γ

(1− z)3

(
1− z

(1− γ)2

)
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To determine the sign of the derivative, consider the range of possible values for z. For fixed γ, we know that

γ̄s ∈ [γ, 1−γ

2
]. Further, we know that c/qL ≥ 1/(1−λ)≥ 2 by Assumption 1. As a result, we have z ∈ [2γ,∞).

Therefore, we can conclude that:

argmax
z

(
rb(α, qL, γ)

ΠL
0

)
=

{
2γ if 2γ ≥ (1− γ)2 =⇒ γ ∈ [2−

√
3, 1

3
]

(1− γ)2 if 2γ ≤ (1− γ)2 =⇒ γ ∈ [0,2−
√
3].

Substituting z = γ̄sc/qL yields (50), as desired.

Step 3. We now show R̃(α,γ)< R̂ϕ for all γ ≤ γ̄s at µ= µ̂. Following the two cases established in Step 2,

first suppose γ ≤ 2−
√
3. In this case, we have

R̃(α,γ) = µ̂ra(α, qH , γ)+ (1− µ̂)rb(α, qL, γ)

≤ γ
9

7
µ̂ΠH

0 + γ
1

2γ− γ2
(1− µ̂)ΠL

0

<γ
9

7
µ̂ΠH

0 +
1

2− γ
ΠL

0

= µ̂πa(α, qH ,0)

(
γ
9

7
+

1

2− γ

)
≤ µ̂ΠH

0

(
(2−

√
3)

9

7
+

1√
3

)
< µ̂ΠH

0

=R∗
ϕ.

The sequence above uses the results from Steps 1 and 2, the definition of µ̂, and the observation that(
γ 9

7
+ 1

2−γ

)
strictly increases in γ on γ ∈ [0,2−

√
3]. Next, suppose γ ∈ [2−

√
3, 1

3
]. Again using the results

from Steps 1 and 2, we have

R̃(α,γ) = µra(α, qH , γ)+ (1−µ)rb(α, qL, γ)

<µra(α, qH , γ)+ rb(α, qL, γ)

≤ γ
9

7
µΠH

0 + γ
(1+ γ)(1− 3γ)

(1− γ)2(1− 2γ)2
ΠL

0

= µΠH
0

(
γ
9

7
+ γ

(1+ γ)(1− 3γ)

(1− γ)2(1− 2γ)2

)
︸ ︷︷ ︸

ω

<µΠH
0

=R∗
ϕ.

The final inequality follows because ω≤ 1 in the interval γ ∈ [2−
√
3, 1

3
]. It follows that R∗

ϕ ≥R∗
γ .

We now show Rϕ(α,ϕ) weakly increases in α. Define ϕm
u = limα→1 ϕL(α). Note ϕL(α) strictly increases in

α and ϕm
u <ϕH by Lemma 16. We therefore consider three cases: ϕ≤ ϕm

u , ϕ∈ (ϕm
u , ϕH ], and ϕ> ϕH . First, if

ϕ≤ ϕm
u , the type-H seller always joins the platform, and platform revenue depends on whether the type-L

seller joins. Because ϕL(α) strictly increases in α, there exists αL(ϕ)∈ [ 1
2
,1] such that revenue under access

fees can be written as

Rϕ(α,ϕ) =

{
µϕ, if α<αL(ϕ),

ϕ, if α≥ αL(ϕ).
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Because µ ≤ 1, Rϕ(α,ϕ) weakly increases in α. Next, if ϕ ∈ (ϕm
L , ϕH ], then the type-L seller never joins,

which implies Rϕ(α,ϕ) = µϕ for all α ∈ [ 1
2
,1], in which case Rϕ(α,ϕ) is invariant to α. Finally, if ϕ > ϕH ,

then neither seller joins, which implies Rϕ(α,ϕ) = 0 for all α ∈ [ 1
2
,1]. Therefore, in all three cases, platform

revenue is weakly increasing in α. □

Proof of Proposition 4. The proof proceeds in two steps. First, we construct thresholds α, µmin, and µmax

such that when α≥ α and µ ∈ (µmin, µmax), commissions outperform access fees: R∗
γ >R∗

ϕ. Second, we then

apply a simple transformation from the µ-space to the relative earnings parameter β, and prove the bounds

on β1 and β2.

Step 1. Define α to be the solution to γ̄s = 2qL/5c, where γ̄s is defined in Lemma 6. Because qL ≤ (1−λ)c

by Assumption 1 and γ̄s = 1−λ when α= 1/2, we have α> 1/2. We show that for any α≥ α, R∗
γ >R

∗
ϕ over

an interval (µmin, µmax). It suffices to show R(α,γmax)>R∗
ϕ, or equivalently,

µra(α, qH , γ
max)+ (1−µ)rb(α, qL, γ

max)>max
(
µΠH

0 ,Π
L
0

)
.

In what follows, we fix α≥ α and let µ̂=ΠL
0 /Π

H
0 . First, note that at this value of α, we have

2rb(α, qL, γ
max) =

qHηs
4

(
1− γ̄2

s c
2

q2L(1− γmax)2

)
≥ qLηs

4

(
1− γ̄sc

qL

)2

=ΠL
0 . (51)

The inequality above follows because (1−x)2 ≤ 1−4x2 for x∈ [0, 2
5
], which can be verified algebraically, and

because γ̄sc/qL ≤ 2/5 by our choice of α. Moreover, we claim (and prove below) that

2ra(α, qH , γ
max)

ΠH
0

> 1+ µ̂. (52)

We now show (51) and (52) imply R(α,γmax)>R∗
ϕ over some interval (µmin, µmax). To see why, note that

at µ= µ̂,

µ̂ra(α, qH , γ
max)+ (1− µ̂)rb(α, qL, γ

max)>
µ̂

2
ΠH

0 (1+ µ̂)+
(1− µ̂)

2
ΠL

0

=
µ̂

2
ΠH

0 +
µ̂

2
ΠL

0 +
(1− µ̂)

2
ΠL

0

=
ΠL

0

2
+

ΠL
0

2

=R∗
ϕ.

The first inequality follows from (51) and (52), and the second and third lines follow by definition of µ̂.

Therefore, for the given value of α, R(α,γmax)>R∗
ϕ under µ= µ̂. Further, because the inequality is strict,

it follows from the continuity of R(α,γmax) and R∗
ϕ that there exists µmin < µ̂ and µmax > µ̂ such that

R(α,γmax)>R∗
ϕ for all µ∈ (µmin, µmax), as desired.

It remains to show (52) holds. Note that by definition of µ̂, (52) holds if and only if

2ra(α, qH , γ
max)−ΠH

0 >ΠL
0 . (53)



60

Therefore, to prove (52) holds, it suffices to show (53). We can now write

2ra(α, qH , γ
max)−ΠH

0 =
qH
4

((
1− (1−λ)2c2

q2H(1− γmax)2

)
−
(
1− (1−λ)c

qH

)2
)

=
qH
4

(
2
(1−λ)c

qH
− 5

(1−λ)2c2

q2H

)
=
qH
4

2(1−λ)c

qH

(
1− 5(1−λ)c

2qH

)
≥ 1

4
· 2qL

(
1− 5(1−λ)c

2qH

)
(54)

>
1

4
qLλ (55)

≥ 1

4
qLηs

(
1−

(1− η|s)c

qL

)2

.

=ΠL
0 .

The first four lines follow algebraically and because γmax = 1
2
. Equation (54) follows because qL ≤ (1− λ)c

by Assumption 1 and (55) follows because 2 (1− 5(1−λ)c/2qH)>λ. To see why the latter inequality holds,

note that that qH ≥ 4c by Assumption 1, which implies

2

(
1− 5(1−λ)c

2qH

)
≥ 2

(
1− 5(1−λ)

8

)
= 2

(
3

8
+

5λ

8

)
>λ.

Step 2. We now re-state the result from Step 1 in terms of the parameter β and establish the bounds on

β1 and β2. Note that by Definition 1, β strictly decreases in µ. It immediately follows that for each α≥ α

there exists β1 and β2 such that R∗
γ >R∗

ϕ for all β ∈ (β1, β2). Next, we derive the bounds on β1 and β2. We

do so in three steps. First, we derive a bound on ra(α, qH , γ
∗)/rb(α, qL, γ

max). Second, we derive bounds on

the ratios ra(α, qH , γ
max)/ΠH

0 and rb(α, qL, γ
max)/ΠL

0 . Third, we use the results from the first two steps to

obtain our final bounds on β1 and β2.

Step 2.1. We show rb(α, qL, γ)/r
b(α, qL, γ

max)≤ 5/4 for any γ ∈ [0, γmax]. Pick any γ. Then we have

rb(α, qL, γ)

rb(α, qL, γmax)
=

2γq2L
q2L − 4γ̄2

s c
2

(
1− γ̄2

s c
2

q2L(1− γ)2

)
︸ ︷︷ ︸

ω1

≤ 50

9
γ

(
1− 4

25(1− γ)2

)
︸ ︷︷ ︸

ω2

<
5

4
. (56)

The first inequality above follows from the observation that the expression ω1 is maximized when γ̄s takes on

its minimum value over α≥ α= 2qL/5c, which is at 2qL/5c. The second inequality follows from maximizing

the expression ω2 over γ ∈ [0, γmax], where γmax = 1/2.

Step 2.2. We now prove the following two sets of inequalities:

1

2
≤ ra(α, qH , γ

max)

ΠH
0

≤ 30

49
(57)

1

2
≤ rb(α, qL, γ

max)

ΠL
0

≤ 2

3
. (58)

To see why these hold, note that using the expressions in Lemma 9 we can write

ra(α, qH , γ
max)

ΠH
0

=
q2Hγ

max

(qH − (1−λ)c)
2

(
1− (1−λ)2c2

q2H(1− γmax)2

)
rb(α, qL, γ

max)

ΠL
0

=
q2Lγ

max

(qL − γ̄sc)
2

(
1− γ̄2

s c
2

q2L(1− γmax)2

)
.
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The lower bound of 1/2 in (57) follows from (52) and the lower bound of 1/2 in (58) follows from (51).

Next, to derive the upper bound of 30/49 in (57), note that the ratio ra/πa attains its maximum value over

λ∈ [ 1
2
,1] and qH ≥ 4c at λ= 1/2 and qH = 4c. Substituting these values produces the bound. Lastly, for the

upper bound of 2/3 in (58), note that

rb(α, qL, γ
max)

ΠL
0

=
1− 4z2

2(1− z)2
, (59)

where z = γ̄sc/qL. Because α ≥ α and α was chosen to be the solution to γ̄s = 2qL/5c in Step 1, we have

z ∈ [0, 2
5
]. The maximizer of the right hand side of (59) on z ∈ [0, 2

5
] is z = 1/4, which yields the bound 2/3.

Step 2.3. We now prove there cannot be any instance where β < 1/4 or β > 5 such that R∗
γ >R∗

ϕ. First,

suppose β < 1/4. Then we have

R∗
γ = µra(α, qH , γ

∗)+ (1−µ)rb(α, qL, γ
∗)

≤ 5

4

(
µra(α, qH , γ

max)+ (1−µ)rb(α, qL, γ
max)

)
≤ 5

4

(
30

49
µΠH

0 +
2

3
(1−µ)πb(α, qH ,0)

)
=

5

4

(
30

49
+

2β

3

)
µΠH

0

<µΠH
0

≤R∗
ϕ.

The second line above follows from (56), the third line follows from (57) and (58), the fourth line follows by

definition of β, the fifth line follows because β < 1/4, and the final line follows because R∗
ϕ =max{µΠH

0 ,Π
L
0 }

by Lemma 16. Therefore, β < 1/4 implies R∗
γ <R∗

ϕ. Next, suppose β > 5. Following a parallel argument to

above, we have

R∗
γ = µra(α, qH , γ

∗)+ (1−µ)rb(α, qL, γ
∗)

≤ 5

4

(
µra(α, qH , γ

max)+ (1−µ)rb(α, qL, γ
max)

)
≤ 5

4

(
30

49
µΠH

0 +
2

3
(1−µ)πb(α, qH ,0)

)
<

5

4

(
30

49β
+

2

3

)
(1−µ)ΠL

0

<ΠL
0

≤R∗
ϕ.

The second line above follows from (56), the third line follows from (57) and (58), the fourth line follows by

definition of β, and the fifth line follows because β > 5 and µ≤ 1. Therefore, β > 5 implies R∗
γ <R∗

ϕ, which

is also a contradiction. The result follows. □


