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Urban infrastructure is vital for sustainable cities. In recent years, municipal governments have invested

heavily in the expansion of bike lane networks to meet growing demand, promote ridership, and reduce

emissions. However, re-allocating road capacity to cycling is often contentious due to the risk of amplifying

traffic congestion. In this paper, we develop a method for planning bike lanes that accounts for ridership

and congestion effects. We first present a procedure for estimating parameters of a traffic equilibrium model,

which combines an inverse optimization method for predicting driving times with an instrumental variables

method for estimating a commuter mode choice model. We then formulate a prescriptive model that selects

paths in a road network for bike lane installation while endogenizing cycling demand and driving travel

times. We conduct an empirical study on the City of Chicago that brings together several datasets that

describe the urban environment – including the road and bike lane networks, vehicle flows, commuter mode

choices, bike share trips, driving and cycling routes, demographic features, and points of interest – with the

goal of estimating the impact of expanding Chicago’s bike lane network. We estimate that adding 25 miles

of bike lanes as prescribed by our model can lift cycling ridership from 3.6% to 6.1%, with at most an 9.4%

increase in driving times. We also find that three intuitive heuristics for bike lane planning can lead to lower

ridership and worse congestion outcomes, highlighting the value of a holistic and data-driven approach to

urban infrastructure planning.

1. Introduction

Urbanization is accelerating globally. By 2050, an estimated 68% of the world’s population is

expected to live in cities, up from 55% in 2018 (UN 2019). Urbanization brings numerous benefits,

including improved access to employment opportunities, education, and social services. However,

these benefits are typically accompanied by increased traffic congestion, which threatens the sus-

tainability of cities (Bertinelli and Black 2004, Çolak et al. 2016). In addition to its negative effects

on the environment and health, congestion is estimated to incur economic losses of $85 billion

annually across U.S. cities (US DOT 2009).

Alleviating traffic congestion is likely to require a multi-faceted solution, including increased

adoption of sustainable travel modes (e.g., walking, cycling, public transit) and associated invest-

ments in urban infrastructure (US DOT 2017). In alignment with these goals, in 2021 the U.S.
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Congress enacted the Infrastructure Investment and Jobs Act (IIJA), a $1.2 trillion spending pack-

age that, among other priorities, allocates funding to promote sustainable transportation and invest

in the necessary infrastructure (The White House 2021, 117th Congress 2021). Urban infrastruc-

ture is also a concern globally – one of the 17 Sustainable Development Goals proposed by the

United Nations is to make cities “inclusive, safe, resilient and sustainable”, which requires a robust

transportation infrastructure (UN 2015).

Increasing cycling ridership has been proposed as a solution to reducing traffic congestion

(Thorsten and Rudolph 2016, Hamilton and Wichman 2018). Cycling is one of the most sustainable

modes of urban transport – it causes minimal environmental damage, is cost effective compared

to car ownership, and promotes health through physical activity. Widespread cycling ridership is

also associated with substantially increased road safety for all users, with fatal crash rates being

estimated to be 44% lower than the US average in cities with abundant bike lanes (Marshall and

Ferenchak 2019). Demand for cycling is also growing rapidly – from 2001 to 2017, the number of

cycling trips in the US is estimated to have doubled from 1.7 billion to 3.6 billion (National House-

hold Travel Survey 2017), and U.S. cities saw a 21% surge in cycling trips during the COVID-19

pandemic (LA Times 2020).

To meet growing demand and promote cycling adoption, municipal governments have recently

invested heavily into the installation of new bike lanes.1 For example, between 2014 to 2019,

New York City increased its total bike lane mileage from 900 to 1,240 (DOT 2019), and in 2021

Chicago announced a plan to expand their bike lane network by 100 miles over the following

two years (Chicago DOT 2021). The U.S. federal government has also committed to improving

cycling infrastructure nationwide – the Transportation Alternatives Program, which receives federal

funding for bike lanes and pedestrian paths, has seen its budget increase from $850 million to $1.44

billion annually under the IIJA (Mills 2021).

Despite the benefits of boosting cycling ridership, the expansion of bike lane networks remains

contentious because it necessarily reduces road capacity for automotive vehicles.2 Intuition suggests

this re-allocation may have the undesirable effect of amplifying congestion (BBC 2021), making

bike lane planning a thorny issue for city planners (Khany 2022). Despite major investments in

bike lanes and the related controversy, few previous studies have attempted to rigorously model or

estimate the effect of bike lanes on congestion. Doing so is non-trivial due to the opposing forces

alluded to above: While adding bike lanes might increase the attractiveness of cycling and take

1 There is evidence that installing bike lanes increases cycling adoption (Parks et al. 2012, Strauss and Miranda-
Moreno 2013, Monsere et al. 2014, Mitra et al. 2017, Khany 2022).

2 In special cases, road capacity for automotive vehicles can be preserved by instead removing on-street parking, albeit
with negative impacts on businesses and residences (Federal Highway Administration 2006).
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cars off the road, they also risk exacerbating congestion by reducing capacity in critical segments

of the road network. As a result, modeling the net impact of bike lanes on congestion requires

careful accounting of these competing effects.

The effect of bike lanes on congestion and cycling ridership also depends on planning decisions.

Although bike lanes may not necessarily worsen congestion (Johnson and Johnson 2014), they

may only have a minimal effect on cycling ridership if the locations are poorly chosen. However,

data-driven models for bike lane planning remain scarce, leading city planners to rely primarily on

ad-hoc approaches that do not rigorously account for the impacts on ridership (Khany 2022).

1.1. Contributions

Where should bike lanes be built to promote cycling ridership while mitigating congestion effects?

We address this question by developing a method for quantifying the effect of bike lanes on cycling

ridership and congestion, which we extend to a prescriptive model that generates recommendations

for bike lane expansion. Our modeling approach is informed by discussions with city planners,3

and is illustrated through an extensive empirical study using data from the City of Chicago.

Our method consists of three main steps. In the first step, we estimate a congestion (i.e., driving

travel time) function from features of the road network and observed vehicle flows. While there is

a rich literature on traffic equilibrium models (following the celebrated work of Wardrop (1952),

Beckmann et al. (1956), and Dafermos (1980)), few previous studies attempt to estimate the con-

gestion functions that lie at the foundation of such models. Our procedure is based on the paradigm

of inverse optimization, which refers to estimation of an optimization model’s parameters from

(potentially noisy) observations of its solutions (Chan et al. 2021); accordingly, we assume traffic

data are observations of Wardrop equilibrium network flows.4 The estimation procedure is asymp-

totically optimal in that it provably recovers the ground-truth model as the size of the network

grows large, under appropriate conditions. The main computational hurdle is that enforcing the

Wardrop equilibrium conditions makes the estimation problem a challenging non-convex optimiza-

tion problem. To obtain solutions, we consider an approximation based on Lagrangian relaxation

that admits a multi-convex structure, which allows us to generate reliable estimates through an

iterative solution procedure.

In the second step, taking the congestion parameters as input, we estimate a multinomial logit

mode choice model in which driving and cycling utilities depend on the locations of bike lanes and

predicted equilibrium travel times, among other covariates. In particular, we use an instrumental

3 Department of Transportation, City of Chicago, and Transportation Planning Division, City of Vancouver, British
Columbia.

4 In particular, our estimator takes the form of a mathematical program with equilibrium constraints (MPEC), and
thus falls into the optimization-based framework for structural estimation proposed by Su and Judd (2012).
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variables approach to address endogeneity in the locations of existing bike lanes and driving travel

times, closely following established methods from the literature (Berry et al. 1995, Davis 2006,

Kabra et al. 2020, He et al. 2021).

In the third step, we embed the estimated traffic congestion and mode choice models into a pre-

scriptive “path selection” model that identifies paths in the road network for bike lane installation.

The model endogenizes the mode choice of all commuters and driving travel times, making it a

mixed-integer nonlinear program. To obtain solutions, we employ a piecewise linear approximation

technique that yields a mixed-integer linear program, and we bound the suboptimality due to the

linearization as a function of network and demand parameters.

We use our method to conduct an empirical study using data from the City of Chicago. Our study

combines multiple datasets, including Chicago’s road and bike lane network, observed traffic flows,

commuter mode choices, bike share trips, taxi trips, driving and cycling routes, demographics, and

points of interest in the city. We estimate that adding 25 miles of bike lanes as prescribed by our

model can increase cycling ridership from 3.6% to 6.1% in downtown Chicago, without increasing

the travel time of any driving route by more than 9.4%.

To evaluate our modeling approach, we benchmark against three intuitive heuristics for bike

lane planning. In particular, we quantify the value of endogenizing congestion effects by comparing

against a “traffic-agnostic” model, and find that ignoring traffic dynamics when designing bike

lanes can needlessly worsen congestion. We also quantify the value of optimization in our setting

by evaluating two heuristics that discard the network structure of the problem, and find that they

can lead to smaller gains in cycling ridership with worse congestion outcomes.

1.2. Related Literature

Our paper contributes to the literature on inverse optimization, transportation network design,

and cycling infrastructure planning. Each of these topics has a large extant literature, so we focus

here on the most closely related work.

Inverse optimization on networks. Inverse optimization methods aim to learn parameters

of an optimization model from observations of its optimal solutions. Many inverse optimization

methods take a statistical learning perspective, where the model to be fit to observational data is

itself a constrained optimization model (e.g., Bertsimas et al. (2015), Aswani et al. (2018), Esfahani

et al. (2018), Chan et al. (2019)). Our estimation problem takes the form of an inverse optimization

model because we interpret vehicle traffic data to be noisy observations of equilibrium network

flows, which can be posed as the solution to a convex optimization problem (Dafermos and Sparrow

1969). Below, we focus on prior work in inverse optimization in the context of traffic equilibria and

network problems, and refer the reader to Chan et al. (2021) for a comprehensive review of the

broader inverse optimization literature.
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Given a network with a set of origin-destination (OD) demands and a known congestion function

on each edge, a traffic assignment model describes the flow of traffic through the network (Patriks-

son 2015). The standard equilibrium concept in traffic models is Wardrop equilibrium, which states

that no user can unilaterally decrease their travel time by taking an alternative route (Wardrop

1952). While there is an extensive literature on traffic modeling dating back to Wardrop (1952),

the inverse problem of estimating traffic models from observational data has only recently been

considered (Chow et al. 2014, Bertsimas et al. 2015, Thai et al. 2015, Zhang and Paschalidis 2017,

Zhang et al. 2018, Allen et al. 2021).

Among this work, our paper is closest to Bertsimas et al. (2015) and Thai et al. (2015), who

also propose methods for estimating congestion functions on a network from observed traffic flows.

Our method differs from Bertsimas et al. (2015) primarily in the specification of the loss function –

Bertsimas et al. (2015) assume that the observed flows approximately satisfy Wardrop equilibrium,

and minimize a loss function that measures the degree to which equilibrium conditions are violated.

In contrast, we enforce the Wardrop equilibrium conditions exactly, and assume that traffic flows are

noisy observations of true (unobserved) equilibrium flows, resulting in a loss function that measures

the error between the observed and true vehicle flows. The main consequence of these differing

loss functions is that Bertsimas et al. (2015) obtain an estimation problem that is convex (due to

relaxing the equilibrium conditions), whereas our estimation problem is non-convex. However, we

show in this paper that our estimates are statistically consistent, which (as shown by Aswani et al.

(2018)) is not the case for the convex approach in Bertsimas et al. (2015). In other words, in the

trade-off between computational tractability and optimality, the method of Bertsimas et al. (2015)

prioritizes tractability of the estimation problem, whereas we pursue asymptotic optimality of the

estimates.

Our estimation procedure also has similarities to Thai et al. (2015) – we highlight two key

differences. First, we estimate a congestion function that can depend on an arbitrary number of

road features (e.g., length, width, number of lanes, location), whereas Thai et al. (2015) estimate

a single road capacity parameter. Second, Thai et al. (2015) use a link-flow formulation of traffic

assignment, whereas we use a path-flow formulation, which restricts the number of possible paths

users can take between each OD pair (Patriksson 2015). Our approach yields far fewer decision

variables in the resulting inverse optimization problem, which allows it scale more gracefully to

realistically sized road networks.

Our paper also contributes to a broader literature on inverse network flow problems (Burton

and Toint 1992, Xu and Zhang 1995, Zhang et al. 1995, Zhang and Ma 1996, Zhang and Cai 1998,

Ahuja and Orlin 2001, Zhao et al. 2015, Chan et al. 2022). To the best of our knowledge, ours is
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the first inverse optimization method specifically for network flow problems that provably recovers

ground-truth, data-generating parameters.

Transportation network planning. The design of transportation networks is a fundamental

area of research in the transportation literature. Seminal papers include Dantzig et al. (1979),

Abdulaal and LeBlanc (1979) and Magnanti and Wong (1984); we refer the reader to Farahani et al.

(2013) for a comprehensive review. Our work is closest to the subset of literature that considers

multiple travel modes, which often introduces a discrete choice component to the traffic assignment

problem (Lee and Vuchic 2005, Fan and Machemehl 2006, Cipriani et al. 2006, Beltran et al. 2009,

Szeto et al. 2010, Gallo et al. 2011, Miandoabchi et al. 2012, Bertsimas et al. 2020).

Our work differs from the majority of the multi-modal network design literature in two ways.

First, demand endogeneity plays a significant role in our work – we assume the addition of bike

lanes increases cycling utility, and can either increase or decrease driving utility depending on

the net impact on congestion. In contrast, few previous papers consider a setting where a central

planner modifies network topology and the modal-split depends on the constructed network (Lee

and Vuchic (2005) and Cipriani et al. (2006) are notable exceptions). A related paper in this regard

is by Wei et al. (2021), who consider the impact of adjusting transit schedules on both traffic

congestion and demand. The main difference is we focus on altering network structure (i.e., bike

lane locations), whereas Wei et al. (2021) address scheduling of transit times on a given network.

Second, because network design problems are usually non-convex, they are often solved using

fast heuristics that return local optimal solutions, such as genetic algorithms (Farahani et al.

2013). In contrast, our solution technique is based on a mixed-integer linear programming (MILP)

approximation of the network design problem. The advantage of our approach is that it allows us

to bound the approximation error and obtain provably near-optimal solutions.

Cycling infrastructure planning. Cycling infrastructure planning has gained attention due to

the worldwide adoption of bike-share systems and increased emphasis on sustainability by municipal

governments. In particular, operational data made available by bike-share systems enables a better

understanding of biking demand and travel patterns (Singhvi et al. 2015, Scott et al. 2021) and

improved design of bike-share station networks (Kabra et al. 2020, He et al. 2021). However, in

the area of bike lane planning, where the computational challenges are prominent and different

heuristic methods have been explored (Mauttone et al. 2017, Liu et al. 2019), few papers integrate

real world data sets into the planning models. Bao et al. (2017) develop a bike lane planning model

built on bike trajectory data, in which an exponential scoring function is used to guide bike lane

planning. Recently, Liu et al. (2021) propose an integer optimization model to combine cycling

demand data with bike lane network design in a way that balances demand coverage and lane

continuity. However, both papers ignore the endogeneity of cycling demand and congestion effects.
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Our work presents a systematic method for bike lane planning that brings together travel-time

estimation and network optimization to rigorously account for the interaction between vehicle

traffic and bike lane construction.

1.3. Outline

We provide here a brief overview of the paper. §2 outlines model fundamentals, including our

approach for modeling the traffic equilibrium, congestion (i.e., driving times), and commuters’

mode choices. §3 describes the data environment and presents an estimation method for recovering

parameters of the traffic model from features of the road network, observed vehicle flows, and

origin-destination demands. Notably, our focus is on a setting where equilibrium travel times are

unobserved; this requires endogenizing travel time within the estimator, resulting in a mathematical

program with equilibrium constraints (MPEC). §4 presents a prescriptive model for bike lane

expansion, an approximation scheme to improve computational tractability, and a corresponding

upper bound on the approximation error. §5 presents an empirical study for the City of Chicago.

§6 discusses policy implications and concludes.

2. Model: Traffic Congestion and Commuters’ Mode Choices

This section outlines a traffic model where congestion and travel mode choice both depend on

the presence of bike lanes in the road network. Specifically, §2.1 formalizes the road network, §2.2

presents a model of traffic congestion, and §2.3 describes how commuters choose among alternative

travel modes (e.g., driving vs. cycling) based on driving travel times and the bike lane network.

2.1. Road and Bike Lane Network

Let I be a set of nodes, each of which can be an origin, destination, or both. Let W index the set

of all origin-destination (OD) pairs. Each OD pair is a pair of nodes (i, j) such that i, j ∈ I, i 6= j

that commuters wish to travel between; following the literature, for conciseness we index all pairs

using w ∈ W. Let S be the set of segments, where each segment s ∈ S connects two nodes. Let

M = {C,D,O} be the set of travel modes, where C, D, and O represent cycling, driving, or an

outside option capturing all other modes (e.g., walking and public transit). We call a concatenation

of adjacent segments a path; let PDw be the set of possible driving paths that connect OD pair w.

For tractability, we assume there is a single cycling path pCw that connects OD pair w. Let SDp be

the set of all segments that lie on driving path p∈PDw , w ∈W and SCw be the segments on cycling

path p = pCw , w ∈W. For ease of reference, we use PD =∪w∈W {PDw } and PC =∪w∈W {pCw} to

denote all possible driving and cycling paths, and SD =∪p∈PD {SDp } and SC =∪w∈W {SCw } to

denote all road segments used for driving and cycling, respectively.

Let x ∈ {0,1}|S| be a binary vector denoting the existence of bike lanes on each segment of the

network, where xs = 1 if and only if segment s contains a bike lane. We let x̃ denote the status
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quo bike lane. We assume each commuter is infinitesimal throughout. Let dD ∈ R|W|, dC ∈ R|W|

and dO ∈R|W| be the demand for each mode over all OD pairs, and let d = (dC ,dD,dO). Next, we

consider how a fixed driving demand vector dD induces vehicle traffic through the network.

2.2. Wardrop Equilibrium and Traffic Congestion

Commuters who travel by driving for OD pair w choose among the paths in PDw ⊆PD. Accordingly,

let φp be the mass of commuters who choose path p ∈ PD, and let vs be the mass of drivers on

segment s ∈ SD. We refer to φp and vs as path and segment flows, respectively. For conciseness,

let φ∈R|PD| and v ∈R|SD| be the vectors of φp and vs, respectively. Then for fixed dD, (φ,v) are

feasible flows if they satisfy ∑
p∈PDw

φp = dDw , w ∈W, (1a)

vs =
∑

{p∈PD|s∈SDp }

φp, s∈ SD, (1b)

(φ,v)≥ 0. (1c)

For convenience, we define

Ω
(
dD
)

= {(φ,v) | (φ,v) satisfies (1)} (2)

to be the set of all feasible flows given driving demand dD. The equations in (1) assumes a restricted

set of candidate driving paths PDw for each OD pair w, meaning drivers cannot travel along an

arbitrary sequence of segments. This path-flow formulation is widely used in the literature to

improve tractability (e.g., Fisk (1980), Dafermos (1980, 1982)).5

Next, we describe how driving travel times depend on vehicle flows, the road network, and the

presence of bike lanes. With a slight abuse of notation, let qs(x) be a vector of features on the road

segment s (e.g., the road’s length, width, number of vehicle lanes, or location), where the features

may be altered by the presence of bike lanes. We define for each segment a congestion function αs,

which depends linearly on segment features:

αs (x,θ) = θ>qs (x) . (3)

We refer to θ as the congestion parameter that influences travel times. The travel time on road

segment s is then given by

tDs (x,θ, vs) = αs (x,θ) · vs +Ts, (4)

5 An alternative approach is the link-flow formulation, which requires variables for each segment and OD pair in the
network (Patriksson 2015). However, the link-flow representation leads to a less tractable estimation problem in large
networks as a result of using |W| · |S| variables to represent traffic flows, whereas the path-flow formulation leads to
|P|+ |S| variables.
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where Ts is the free-flow travel time. We impose the mild assumption that αs (x,θ) > 0, which

implies driving times strictly increase in traffic flow vs.
6 The total travel time along each path

p∈PD is then given by

tDp (x,θ,v) =
∑
s∈SDp

tDs (x,θ, vs) . (5)

Next, we consider how drivers on OD pair w select among the paths in PDw . Following Wardrop’s

first principle, we assume that drivers select paths such that no driver on any OD pair w can

reduce their travel time by unilaterally selecting an alternative path (Wardrop 1952). To capture

this equilibrium condition, let v∗(x,θ) and φ∗(x,θ) denote equilibrium segment and path flows,

respectively, and let tDw (x,θ) denote the equilibrium travel time on OD pair w. Then Wardrop’s

first principle is equivalent to the following set of conditions:

tDw (x,θ)− tDp (x,θ,v∗(θ))

{
= 0, if φ∗p(x,θ)> 0
≤ 0, if φ∗p(x,θ) = 0

}
, p∈PDw , w ∈W. (6)

For ease of exposition in the remainder of the paper, we define

Ψ(x,dD,θ) = {(φ,v)|(φ,v)∈Ω
(
dD
)

and (φ,v) satisfies (6)} (7)

to be the set of feasible flows that satisfy Wardrop’s first principle. That is, (φ,v) are equilibrium

flows if and only if (φ,v) ∈ Ψ(x,dD,θ). Note that Ψ(x,dD,θ) depends on the observable road

segment features qs(x) and the parameters θ via the congestion functions αs(x,θ).

The traffic model outlined above rests on the strong assumption that every driver chooses the

fastest route in equilibrium and ignores all other route characteristics, which may not hold in

practice. Nonetheless, our empirical results suggest that Wardrop equilibrium provides a reasonable

approximation of network-level traffic dynamics (see Figure 7 in Appendix A), even if it does

not accurately reflect individual drivers’ route choices, which aligns with prior empirical work

(Yildirimoglu and Kahraman 2018). In Appendix G, we discuss a variation of our model based

on the stochastic user equilibrium (SUE) problem (Prashker and Bekhor 2004), in which drivers

account for route characteristics other than travel time and have idiosyncratic preferences over

routes.

6 The most well-known congestion function takes the form of tDs (x, vs) = Ts · (1 + α(vs/ms)
4), where typically α =

0.15 (United States Bureau of Public Roads 1964). Our use of a linear congestion function is primarily to improve
the tractability of the estimation problem. Linear congestion functions have appeared elsewhere in the literature
(Roughgarden and Tardos 2002, Lin et al. 2011, Swamy 2012).
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2.3. Commuter Mode Choice

We now describe how commuters select among alternate travel modes. Following the literature on

mode choice (e.g., Domencich and McFadden (1975), Abdulaal and LeBlanc (1979)), we assume

the mode-specific demands dmw are determined by a multinomial logit (MNL) choice model. Let

umw (x,θ) be the utility of a commuter who wishes to travel by mode m on OD pair w. Then the

utility of driving, cycling and outside options on OD pair w is

uDw (x,θ) = βD0 +βD1 · tDw (x,θ) + (β̃D)>XD
w + ξDw + εDw , (8a)

uCw(x) = βC0 +βC1 · tCw +βC2 · ρw (x) + (β̃C)>XC
w + ξCw + εDw , (8b)

uOw (x) = βO1 · tOw + (β̃O)>XO
w + εOw . (8c)

The driving utility uDw (x,θ) depends on the driving time tDw (x,θ) and a vector of additional covari-

ates XD
w .7 Note that the equilibrium conditions (6) imply for each w ∈W, the driving time is the

same for all p∈PDw , and (8b) implies that all drivers on OD pair w share the same utility regardless

of their selected path, which depends primarily on the travel time.

The cycling utility uCw(x) depends on the cycling time tCw , bike lane coverage ρw (x) (i.e., the

proportion of the path that is covered by a bike lane), and additional covariates XC
w . Cycling time

and bike lane coverage have both been observed to be significant factors in cycling adoption (Hood

et al. 2011, Broach et al. 2012).8 For tractability, we assume that for each OD pair w ∈ W all

cyclists travel along the same path pCw .

To define bike lane coverage, let `s be the length of segment s. Then the coverage for OD pair

w is given by

ρw (x) =
1

Lw

∑
s∈SCw

`s ·xs, (9)

where SCw is the set of segments that lie on cycling path pCw . Note that cycling utility does not

depend on the congestion parameter θ, which influences driving times only. Lastly, we assume

the utility of the outside option depends on the travel time by public transit tOw and additional

covariates XO
w .

In the utility functions above, ξDw and ξCw are unobservable components of utility for driving and

cycling that are common to all users for OD pair w. For instance, ξDw may include factors that

influence the inconvenience of driving for the OD pair w, such as the presence of traffic lights along

7 The covariates XD
w , XC

w , and XO
w may include attributes of each mode, socio-economic characteristics of commuters,

or other contextual information (Hensher and Greene 2003).

8 Cycling traffic has not yet been found to be a significant factor in cycling utility (Hood et al. 2011, Broach et al.
2012), so we assume cycling is free from congestion effects.
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the driving routes. Similarly, ξCw may represent unobservables associated with the degree of bike-

friendliness, such as pavement smoothness along the cycling route. The εmw ’s are idiosyncratic error

terms that are independent and identically distributed and follow an extreme value distribution.

Let d̃w be the total demand across all travel modes for OD pair w. Based on the utilities defined

in (8), the demand for mode m on OD pair w is then given by

dmw (x,θ) = d̃w ·Pm
w = d̃w ·

eu
m
w (x,θ)

euCw(x) + euDw (x,θ) + euOw
, (10)

where Pm
w is the share of consumers choosing mode m between w. We assume d̃w is exogenous and

does not depend on x or θ. Note that the MNL model (10) implies d̃w =
∑

m∈M dmw (x,θ). Having

defined how the equilibrium traffic assignment depends on x, θ and β, in §3 we address how to

estimate the parameters (θ,β) from data.

The specification of the commuter choice model above captures the key trade-offs in our study,

namely, the impact of congestion and bike lane coverage on the cycling and driving utilities.

Notably, we do not include vehicle flows in the cycling utility function, which may be a significant

variable (e.g., if traffic alters cyclists’ perceptions of safety). In particular, because the vehicle

flows v∗ are endogenous, including them in the cycling utility would introduce a large number

of non-convex, bi-linear terms into the §4 optimization model (as a result of v∗ being multiplied

with other decision variables in the formulation), which would greatly undermine the computa-

tional tractability of the optimization step. As a consequence, we assume throughout that cyclists’

utilities are independent of vehicle flows.

3. Estimation

Our estimation procedure consists of two steps. In the first step, we estimate the congestion param-

eters θ that define the Wardrop equilibrium from observed road network features and associated

traffic flows. In the second step, we use the estimate of θ and the status quo bike lane network x̃

as inputs for estimating the mode choice parameters β.

This section is organized as follows. In §3.1, we define an estimation problem for recovering the

congestion parameters θ from appropriate road network and vehicle flow data. In §3.2, we show

that the estimation problem for θ can be posed as an inverse optimization model and present

an accompanying solution procedure. In §3.3, we address estimating the mode choice parameters

β, taking the estimated values of θ as input; in particular, we note endogeneity challenges in

estimating β, which we address through the use of instrumental variables in our empirical study.
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3.1. Estimation of Wardrop Congestion Parameters

The estimation procedure for θ takes road segment-level data of the form

(qs, zs), s= 1, . . . , n, (11)

where qs are the features of segment s, zs is a noisy observation of the equilibrium vehicle flow on

segment s, and n is the number of segments in the network (equivalently, |S|). Additionally, for

each OD pair w ∈W, the procedure takes as input the observed driving demand dDw , the driving

path sets PDw , and the free-flow travel time for each path p∈PDw (i.e.,
∑

s∈SDp
Ts).

Notably, our focus is on a setting where the path-level equilibrium driving times (tDp in (5))

are not observed; instead, these variables are endogenized within the estimation procedure. If the

path-level driving times tDp are observed, then θ can be estimated more directly by linear regression

or a generalized method of moments (GMM) estimator. We briefly discuss the relative merits of

our approach compared to more standard methods at the end of §3.2.

Because our focus here is on estimating the congestion parameter θ for a given road and bike

lane network, we assume x and d are fixed and suppress dependence on them throughout this

section.

We first define the following loss function:

Ln(θ) =minimize
φ,v

‖v− z‖22 (12a)

subject to (φ,v)∈Ψ(θ), (12b)

where ‖·‖2 is the `2-norm. Intuitively, the loss Ln(θ) measures the error between the observed flows

z and the flows v, where the constraint (φ,v)∈Ψ(θ) forces v to satisfy Wardrop equilibrium under

θ. In other words, the loss Ln(θ) is a measure of distance between the observed traffic flows and

the equilibrium flows implied by θ. The estimate is then obtained by minimizing the loss function

over a parameter set Θ:

θ̂n ∈ argmin
θ∈Θ

Ln(θ). (13)

The estimation problem (13) can be viewed as an analog to non-linear least squares regression

(Jennrich (1969), Wu (1981)). The main distinction between (13) and traditional non-linear least

squares regression is that the response variables z are not observations of a non-linear function

in closed form, but are instead noisy observations of equilibrium segment flows v∗(θ) which are

implicitly defined. As a result, enforcing the equilibrium conditions (12b) makes solving (13) com-

putationally non-trivial.

To see the intuition behind how θ is identified, note that variation throughout the network in the

OD driving demands dDw and road segment features qs induces variation over the road segments in
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the observed vehicle flows zs and travel times tDs . Because all travel times are determined by the

common congestion function αs(θ) given in (3), this variation in OD driving demands and segment

features combined with the structure of the road network helps pin down θ.

Under appropriate conditions, it can be shown that the sequence of estimates θ̂n from solving

(13) are statistically consistent, in that they converge to ground-truth, data-generating parameters

as the size of the network tends to infinity. In Appendix A.1, we present sufficient conditions for

the consistency of the estimates θ̂n, including an identifiability condition related to the structure

of the road network.

3.2. Inverse Optimization Formulation and Solution Method

Next, we present an exact reformulation of the estimation problem (13) and describe a corre-

sponding solution method. Our reformulation relies on expressing (13) as an inverse optimization

problem (Chan et al. 2021). In particular, we leverage a classical result that shows the vehicle

flows in Wardrop equilibrium can be attained at the solution to a convex optimization problem

(Dafermos and Sparrow 1969). As a consequence, the problem of estimating θ from data of the

form (11) amounts to solving an inverse optimization problem. In general, inverse optimization

problems are themselves mathematical programs, and are often non-convex as a consequence of

enforcing optimality or equilibrium conditions, which is the case in our setting as well.

To express (13) as an inverse optimization problem, we develop an explicit representation of the

equilibrium conditions (φ,v)∈Ψ(θ). To that end, consider the following “Wardrop least-squares”

formulation:

minimize
θ,φ,v,b

‖v− z‖22 (14a)

subject to ∇φg (φ,θ)
>
φ−

(
dD
)>

b = 0, (14b)∑
{w∈W|p∈PDw }

bw ≤∇φpg (φ,θ) , p∈PD, (14c)

(WLS)
∑
p∈PDw

φp = dDw , w ∈W, (14d)

vs =
∑

{p∈PD|s∈SDp }

φp, s∈ SD, (14e)

θ ∈Θ, (14f)

where

g(φ,θ) =
∑
s∈S

1

2
·αs(x,θ) ·

 ∑
{p∈PD|s∈SDp }

φp

2

+Ts ·

 ∑
{p∈PD|s∈SDp }

φp

 . (15)

We now present a result that establishes an equivalence between the estimation problem given in

(13) and the optimization problem WLS:
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Proposition 1. Let θ∗ be attained at an optimal solution to WLS. Then θ∗ ∈ argminθ∈ΘLn(θ).

All proofs are contained in Appendix H. At a high level, Proposition 1 relies on a well-known

result which shows that equilibrium network flows (φ,v) ∈Ψ(θ) correspond to the solution to a

convex optimization problem (Dafermos and Sparrow 1969). Expressing the optimality conditions

of that convex program as a variational inequality and invoking linear programming duality9 then

yields the constraints (14b) and (14c), which are together equivalent to the Wardrop equilibrium

conditions (6). This implies that a solution (θ,φ,v,b) that satisfies (14b)-(14e) must also satisfy

(φ,v)∈Ψ(θ), which yields the equivalence between (13) and (14). We note here that formulation

(14) is also a mathematical program with equilibrium constraints (MPEC), and as a consequence

falls into the general MPEC-based framework for structural estimation proposed by Su and Judd

(2012).

The key challenge in obtaining solutions to (14) is that constraint (14b) is a non-linear equality

constraint, which are known to pose numerical difficulties with respect to finding feasible solutions

(Hearn and Ramana 1998). To overcome this, we dualize constraint (14b) by introducing a penalty

parameter λ> 0 and the auxiliary variable ε, which yields the following approximation of WLS:

minimize
θ,φ,v,b,ε

‖v− z‖22 +λ · ε (16a)

(WLS-A) subject to ∇φg (φ,θ)
>
φ−

(
dD
)>

b≤ ε, (16b)

(14c)− (14f).

In the approximation WLS-A, the loss (16a) can be interpreted as a linear combination of the “flow

error” ‖v− z‖22 and the “Wardrop error” ε.10

In addition to circumventing the numerical issues of WLS, the approximation WLS-A has the

advantage of being a multi-convex optimization problem, meaning the decision variables can be

partitioned into separate blocks such that the optimization problem is convex in one block of

variables when the others are held fixed (Xu and Yin 2013). Specifically, using (15), it can be shown

that fixing (θ,b) in WLS-A yields a convex subproblem in (φ,v), and vice versa. As a result, locally

optimal solutions can be obtained using an iterative block coordinate descent method, which is

the standard approach to solving multi-convex optimization problems (see e.g., Bertsekas (1997),

Xu and Yin (2013), and Hong et al. (2017)). Details on our implementation of block coordinate

descent on the approximate inverse optimization problem WLS-A are provided in Appendix A.3. In

9 See Aghassi et al. (2006) for details on the on the reformulation of variational inequalities using linear programming
duality.

10 Note that multiplying both sides of (14c) by φ yields ∇φg (φ,θ)>φ−
(
dD
)>

b ≥ 0, which implies the Wardrop
error ε is always non-negative.
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Appendix F, we numerically evaluate the validity of the approximation using synthetic data that

mimic the empirical data distribution from our case study in §5.

As noted earlier, our method is tailored for a setting where the equilibrium path-level driving

times tDp are unobserved, which requires endogenizing them within the estimation procedure. If

suitable data for tDp is available, then θ can be directly estimated from (4) and (5) through linear

regression or a generalized method of moments (GMM) estimator, without the need to enforce

Wardrop equilibrium conditions during estimation. Compared to these standard econometric tech-

niques, our method has milder data requirements, but comes at the cost of a more complex esti-

mation procedure and a higher computational burden. Our method also naturally handles missing

observations for the segment-level vehicle flows zs, which would need to be imputed if applying

regression or GMM, even if the path times tDp are observed. Lastly, our MPEC-based method

does not easily allow for statistical inference (e.g., confidence intervals for θ),11 which is otherwise

straightforward for linear regression and GMM under appropriate conditions.

3.3. Estimation of Commuter Mode Choice Model

Given the congestion parameters θ, estimating the mode choice model parameters β outlined in

§2.3 follows from standard methods. Specifically, let θ̃ be the estimate from solving WLS-A. Then

the corresponding equilibrium segment flows v∗(θ̃) are given by solving a convex optimization

problem (see the proof of Proposition 1 in Appendix H). Let x̃ encode the status quo bike lane

network under which the observed mode shares dmw are generated. It follows from (6) that the

equilibrium travel time for each OD pair w ∈W is given by

tDw (x̃, θ̃) = min
p∈PDw

{
tDp

(
x̃, θ̃,v∗(θ̃)

)}
. (17)

Therefore, the status quo bike lane network x̃ and the estimate θ̃ together pin down the travel times

tDw (x̃, θ̃), and thus the driving utilities uDw (x̃, θ̃). Similarly, the cycling utility under the existing

bike lane network is given by uCw(x̃), where the coverage ρw(x̃) is determined by (9).12

Because we observe commuters’ mode choices aggregated as OD-level mode shares (i.e., Pm
w ),

we estimate β following the literature of linear logit models (Theil 1969, McFadden et al. 1973,

Malhotra 1984, Cooper 1993). Specifically, by taking the logarithm of both sides of (10), we obtain

log
(
PD
w

)
− log

(
PO
w

)
=
(
uDw (x,θ)−uOw(x,θ)

)
11 In general, obtaining confidence intervals from MPEC-based estimators is both analytically and computationally
challenging, and is a relatively open question (see, e.g., Reich and Judd (2020)).

12 In practice, estimating the mode choice model requires us to specify, for each w ∈W, the set of possible driving
paths PDw and the cycling path pCw . This can be done by querying route planning software such as Google Maps,
which we do in §5.
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= βD0 +βD1 · tDw (x,θ) + (β̃D)>XD
w − (βO1 · tOw + (β̃O)>XO

w) + ξDw , (18a)

log
(
PC
w

)
− log

(
PO
w

)
=
(
uCw(x,θ)−uOw(x,θ)

)
= βC0 +βC1 · tCw (x,θ) +βC2 · ρw (x) + (β̃C)>XC

w − (βO1 · tOw + (β̃O)>XO
w) + ξCw ,

(18b)

which makes the estimation of β amenable to linear regression. However, the use of ordinary least

squares (OLS) regression may lead to biased estimates of βD1 and βC2 due to potential endogeneity

of the driving travel time tDw (x,θ) and bike lane coverage ρw(x), respectively. In particular, the

demand for driving influences the driving time tDw (x,θ), leading to correlation between tDw (x,θ)

and the error term ξDw . Similarly, there may be correlation between the error term ξCw and bike

lane coverage ρw(x), due to, for example, city planners selecting the locations of bike lanes based

on existing cycling demand. In our empirical study, we address these sources of endogeneity using

instrumental variables, which follows prior work on cycling infrastructure planning (Kabra et al.

2020, He et al. 2021) and is discussed further in §5.3.

4. Bike Lane Path Selection with Ridership and Congestion Effects

Equipped with estimates of θ and β, we now present a prescriptive model for planning a bike lane

network x from the perspective of a city planner. §4.1 formulates the main optimization model

for selecting bike lanes, §4.2 develops an approximation scheme, and §4.3 discusses additional

constraints that can be included to limit the impact on traffic congestion.

4.1. Optimization Model for Bike Lane Path Selection

Our prescriptive model seeks to maximize cycling ridership while satisfying constraints on bike

lane continuity, budget, and the traffic equilibrium. Next, we describe each component of the

prescriptive model, starting with the constraints.

Continuity. Continuity of bike lanes is often a priority of city planners (Federal Highway Admin-

istration 2006, Bao et al. 2017). To that end, we consider bike lane design decisions at the path

level: let y ∈ {0,1}|W| represent binary decision variables where yw = 1 if and only if a bike lane

is installed along the entirety of cycling path pCw . For notational convenience, let SCw be the set of

segments that lie on path pCw . Because xs = 1 if and only if a bike lane is located on segment s, we

enforce coherence between x and y using the constraints

xs ≥ yw, s∈ SCw , w ∈W, (19a)

xs ≤
∑

{w∈W|s∈SCw }

yw, s∈ S. (19b)

Bike lane budget. Let L=
∑

s∈S `s be the total length of all road segments eligible for bike lane

construction. We assume the city planner can expand the bike lane network by at most B miles
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where B ∈ [0,L]. This bike lane budget may be due to financial, scheduling, or other logistical

constraints – we abstract away from those specifics and focus on total mileage, which yields the

constraint ∑
s∈S

`s ·xs ≤B. (20)

Note that the model can accommodate pre-existing bike lanes by adding the constraints xs = 1

for all road segments where a bike lane already exists, and dropping those segments from the

summation in (20) so they do not consume the bike lane budget B.

Traffic equilibrium. For ease of exposition, let d = (dC ,dD,dO) represent all mode-specific

demands. To endogenize traffic congestion and cycling ridership within the optimization model, we

include constraints that force the network flows (φ,v) to abide by Wardrop equilibrium and the

demands d to follow the MNL mode choice model. To that end, we define

Γ(x) = {(d,φ,v) | d satisfies (10) and (φ,v)∈Ψ(x,dD,θ)}. (21)

The set Γ(x) represents all equilibrium traffic assignments under the bike lane network x, in

addition to the parameters θ and β. We can then capture the effect of a candidate bike lane plan

x on the ensuing commuter mode choice and congestion by enforcing the equilibrium condition

(d,φ,v)∈ Γ(x). (22)

As discussed in §4.2 below, enforcing this equilibrium condition will be the main computational

challenge in solving the optimization model.

Cycling ridership. Lastly, we assume the city planner’s goal is to maximize total cycling ridership,

which is consistent with the strategic goals of several municipal transportation planning agencies.

For example, Chicago’s DOT states that “ridership is the key criterion for evaluating the success

of bicycle infrastructure” (Chicago DOT 2020), and New York City aims to have “1 out of every

10 trips in NYC be taken by bicycle by 2050” (DOT 2019). Noting that total cycling ridership is

given by
∑

w∈W d
C
w(x), the model for the bike lane path selection problem (BL) can be written as

maximize
x,y,d,φ,v

∑
w∈W

dCw (23a)

subject to xs ≥ yw, s∈ SCw , w ∈W, (23b)

xs ≤
∑

{w∈W|s∈SCw }

yw, s∈ S, (23c)

(BL)
∑
s∈S

`s ·xs ≤B, (23d)

(d,φ,v)∈ Γ(x), (23e)

x∈ {0,1}|S|, (23f)

y ∈ {0,1}|W|. (23g)
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The formulation above is computationally challenging because the decision variables x,y are binary

and the traffic equilibrium condition (23e) is non-convex and non-linear as a result of depending on

multinomial logit choice probabilities (see (10)). In the next section, we show that BL can be approx-

imated as a mixed-integer linear program (MILP), which yields a formulation that is amenable to

commercial optimization solvers, and we characterize the approximation error explicitly.

4.2. Linear Approximation and Suboptimality Bound

The approximation of BL consists of two steps: First, we reformulate (23) exactly by leveraging an

equivalence between the equilibrium condition (23e) and a related convex optimization problem.

Second, we present a linearization technique to approximate the remaining non-convex terms as

piecewise linear functions, which yields a MILP.

Reformulation of equilibrium conditions. To reformulate (23) exactly, we first present a result

that shows the equilibrium traffic assignments Γ(x) is equivalent to the set of optimal solutions to

a convex optimization problem.

Proposition 2 (User equilibrium). For any bike lane network x, (d,φ,v)∈ Γ(x) if and only if

(d,φ,v) solves the convex optimization problem

minimize
d,φ,v

S(x,θ,d,v) (24a)

subject to d̃w =
∑
m∈M

dmw , w ∈W, (24b)

(φ,v)∈Ω
(
dD
)
, (24c)

where

S (x,θ,d,v) =
∑
w∈W

 ∑
m∈{O,C}

∫ dmw

0

(−umw (x)) · dd+

∫ dDw

0

−
(
βD0 + (β̃D)>XD

w

)
· dd

−βD1 ∑
s∈S

(∫ vs

0

tDs (x,θ, v) · dv
)

(25a)

+
∑
w∈W

∑
m∈M

dmw · log (dmw ) . (25b)

Further, the equilibrium mode demands d and traffic flows v attained at a solution to (24) are unique.

For conciseness, we suppress the dependence of the function S (·) on θ in the remainder of

this section. Proposition 2 follows closely from Abdulaal and LeBlanc (1979), Dafermos (1982)

and Fisk (1980).13 Following the literature, we refer to formulation (24) as the user equilibrium

problem because it specifies equilibrium mode choices and driving routes. The objective S (x,d,v) is

composed of two parts: a system-wide generalized cost term (25a), which is the sum of “disutilites”

(i.e., negative of utilities) of all commuters, and an entropy term (25b). Note that S (x,d,v) is

13 Our formulation differs in that (1) Abdulaal and LeBlanc (1979) only considers two modes, public transit and
driving, without specifying mode-split functions, (2) Dafermos (1982) assumes consumers adopt the travel mode with
the lowest cost, and (3) Fisk (1980) focuses on the mode of driving only.
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related to the observable road segment features q(x) and traffic flow v via the driving time function

tDs (x,θ, vs). Further, because tDs (x,θ, vs) strictly increases in vs, S (x,d,v) is strictly convex in

(d,v).

Proposition 2 allows us to replace the equilibrium condition (23e) in the bike lane path selection

model BL with the equivalent condition

(d,φ,v)∈ argmin
d,(φ,v)∈Ω(dD)

S(x,d,v), (26)

This substitution transforms problem (BL) into a bi-level optimization problem (Dempe 2002). At

a high level, the advantage of this substitution is that it allows us to sidestep use of the non-convex

function (10) in the path selection model and instead work with the convex problem (26), which is

more tractable with respect to linearization. Further, as discussed below, the linearization of (26)

yields a bi-level program with a linear lower level problem, which can be reformulated exactly as

a MILP (Fortuny-Amat and McCarl 1981).

The uniqueness result in Proposition 2 is important in that it ensures that the equilibrium mode

shares (i.e., cycling ridership) are identified from the bike lane network x alone. This uniqueness

allows us to address the network design problem without requiring additional assumptions on the

ensuing equilibrium.

Linearization and MILP reformulation. Next, we describe a linearization technique that

approximates BL as a MILP. Note that the upper-level objective function and constraints (23a)-

(23d), (23f), and (23g) are all linear, so we focus on approximating (23e), which by Proposition

2 is equivalent to the user equilibrium problem (24). First, note that by evaluating each term in

S (x,d,v) defined in (25), it can be re-written as

S (x,d,v) =
∑
w∈W

−
(
uOwd

O
w +uCwd

C
w +

(
βD0 + (β̃D)>XD

)
dDw

)
−βD1

∑
s∈S

(Ts · vs)−βD1
∑
s∈S

1

2
αs (x) · v2

s︸ ︷︷ ︸
ξs(vs)

+
∑
w∈W

∑
m∈M

dmw log (dmw )︸ ︷︷ ︸
ψ(dmw )

,
(27)

where, for fixed x, the non-linearity is due to the final two terms, labeled ξs (vs) and ψ (dmw ). Each

of these terms is convex in v and d, respectively, which allows us to approximate them using

well-known techniques from linear programming (see, e.g., §1.3 of Bertsimas and Tsitsiklis (1997)).

To linearize S(x,d,v), we approximate ξs (vs) with a piecewise linear function, where

ξrs (vs) = αs (x) · vrs · vs−
1

2
·αs (x) · (vrs)

2
(28)

is the rth line segment and vrs is the rth sample point. We choose each sample point vrs such

that the slopes αs(x) · vrs are equidistant in the interval αs (x) · [v, v̄], where v̄ = maxs∈S {vs} and
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v= mins∈S {vs}. Note that linearity of αs(x) implies ξrs(vs) is also linear in x, which is important for

approximating BL as a MILP. Similarly, we approximate ψ (dmw ) with a piecewise linear function,

where

ψrw (dmw ) = [1 + log (drw)] · dmw − drw (29)

is the rth line segment and dr is the rth sample point. We choose each sample point drw such that

the slopes are equidistant in the interval
[
1 + log (dw) ,1 + log

(
d̄w
)]

, where d̄w = maxm∈M {dmw } and

dw = minm∈M {dmw } . Next, let Rξ and Rψ index the linear segments used to approximate ξs(vs) and

ψ(dwm), respectively. Then using (28) and (29), the linear approximation of the user equilibrium

problem (24) can be written as

minimize
d,φ,v,ψ,ξ

SL(x,d,v,ψ,ξ) (30a)

subject to d̃w =
∑
m∈M

dmw , w ∈W, (30b)

(φ,v)∈Ω(dD), (30c)

ξs ≥ ξrs(x, vs), r ∈Rξ, s∈ S, (30d)

ψmw ≥ψrw (dmw ) , r ∈Rψ,w ∈W,m∈M, (30e)

where
SL(x,d,v,ψ,ξ) =

∑
w∈W

−
(
uOwd

O
w +uCwd

C
w +

(
βD0 + (β̃D)>XD

)
dDw

)
−βD1

∑
s∈S

Ts · vs−βD1
∑
s∈S

ξs +
∑
w∈W

∑
m∈M

ψmw .
(31)

The linear approximation of BL is then given by

maximize
x,y,d,φ,v,ψ,ξ

∑
w∈W

dCw (32a)

(BL-A) subject to (23b)− (23d), (32b)

(d,φ,v,ψ,ξ) = argmin
d,φ,v,ψ,ξ

SL(x,d,v,ψ,ξ), (32c)

subject to (30b)− (30e).

Theorem 1 presents our main result of this section, which characterizes the error due to the

linearization. Let C(x) =
∑

w∈W d
C
w(x) be the cycling ridership under bike lane plan x (i.e.,

the objective of BL). Further, define α = min
s∈S,x∈{0,1}|S| {αs (x)}, d = minw∈W

{
d̃w

}
, and d̄ =

maxw∈W

{
d̃w

}
.

Theorem 1 (Suboptimality bound). Let x∗ and x̄ be optimal solutions to the exact bike lane

planning formulation BL and the approximation BL-A, respectively. Then

C (x∗)−C(x̄)≤ 2 ·µ1 ·
√
|W|

(
µ2 ·

√
|S|

|Rξ| − 1
+µ3 ·

√
3 · |W|
|Rψ| − 1

)
, (33)

where µ1 = max
{
d̄,− 1

βD1 ·α

}
, µ2 = maxs∈S {−βD1 ·αs(x) · (v̄− v)}, and µ3 = log

(
d̄
)
− log (d).
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From Theorem 1, it can be seen that the error bound depends on the size of the road network

(via |S| and |W|), variation in traffic flows (µ2) and variation in mode demands (µ3), and that

the dependence on the number of linear segments is O

(
1

|Rξ| +
1

|Rψ|

)
. For practically-sized road

networks, the optimality gap in Theorem 1 can be made small using a modest number of linear

segments. For example, in our empirical study in §5, we use |Rψ| = |Rξ| = 15, which yields an

optimality gap in the cycling share of 3.2% (see Appendix D.1 for details).

Finally, to solve BL-A, we leverage the fact that a bi-level program with a linear lower-level

problem can be expressed exactly as a MILP (Fortuny-Amat and McCarl 1981). The complete

formulation and additional technical details are contained in Appendix D.

4.3. Limiting Congestion

In practice, city planners are sensitive to the effect of bike lanes on increasing congestion (Khany

2022). Our model can accommodate these considerations via constraints on the increase in driving

times. While there does not exist a universal measure of traffic congestion, we provide two possible

examples of how congestion may be limited within our framework. The first approach is to ensure

that the total demand-weighted driving time is increased by at most a factor of τ , which can be

enforced by adding to BL-A the constraint∑
w∈W

dDw · tDw (x,v)≤ (1 + τ)
∑
w∈W

d̃Dw · tDw (x̃, ṽ) , (34)

where d̃Dw , x̃ and ṽ are the status quo driving demand, bike lane network and traffic flows, prior

to the addition of any new bike lanes.

Alternatively, we may require that the worst case increase in driving times over all possible

routes is at most a factor of τ . This can be enforced via the following constraints:

tDp (x,v)≤ (1 + τ) · tDp (x̃, ṽ) , p∈PD. (35)

The choice of congestion control depends on the priorities of city planners. In particular, constraint

(35) may be especially useful if planners wish to avoid sharp spikes in congestion in any part of

the network, which can generate backlash and erode public support for bike lanes. In our empirical

study, we adopt this latter set of constraints, which allows for more granular control of congestion

impacts. Note that Theorem 1 applies to the formulation (32), and may no longer hold if either of

the constraints (34) or (35) are added.

5. Empirical Study: Expanding Chicago’s Cycling Infrastructure

We choose Chicago for our study because it is the one of the most congested cities in the United

States (Inrix 2020), and also because expanding cycling infrastructure is a major policy priority in
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Chicago, which in 2021 announced plans to add 100 miles of bike lanes in the following two years

(Chicago DOT 2021). Chicago has experienced rapid growth in the demand for cycling – from

2000 to 2018, the share of daily commuters that cycled more than tripled from 0.5% to 1.8% (US

Census Bureau 2020).

New bike lanes are typically planned based on current ridership and population density, with

little consideration of potential congestion effects (Chicago DOT 2020). Further, there are few

extant methods for estimating the effect of changes to urban infrastructure on traffic congestion.

To that end, the goal of this empirical study is two-fold: (1) to estimate the effect of expanding

Chicago’s cycling infrastructure on cycling ridership and traffic congestion, and (2) to compare the

performance of our recommended bike lane network with alternative methods that ignore ridership

and congestion effects. More broadly, our study demonstrates how data-driven methods might

support city planners in making decisions regarding urban infrastructure.

The remainder of this section is organized as follows. §5.1 provides an overview of the data used

in the study and describes how the data enter into our modeling framework. §5.2 specifies the

traffic congestion model and presents the estimates of the congestion parameters θ, which are val-

idated through an out-of-sample travel time prediction task. §5.3 specifies the mode choice model,

describes its estimation using instrumental variables, and presents estimates of the mode choice

parameters β. §5.4 presents the results from the bike lane optimization model, which are estimates

of the change in cycling ridership and traffic congestion resulting from our model’s prescriptions.

Lastly, §5.5 validates our method through a comparison with three intuitive benchmark methods

for bike lane planning.

5.1. Data Description and Sources

Our study focuses on a contiguous region of downtown Chicago, depicted as the shaded area in

Figure 1. We select this region due to the availability of detailed bike share trip data, which we

use to estimate the mode choice parameters β. When estimating the congestion parameter θ, we

make use of vehicle traffic flow data from the entire City of Chicago (larger area in Figure 1), so

to maximize the data available to the estimation procedure. Next, we provide an overview of the

data used in our study and their sources.

1. Road network topology and features. To construct the road network, we first retrieve

the locations of 801 census tracts within the City of Chicago from 2010 U.S. census data (Chicago

Data Portal 2010). We construct the node set I by assuming a node exists at the geometric centroid

of each census tract. We construct the set of road segments S by querying OpenStreetMap (OSM

2021), which resulted in a total of 31,815 road segments within Chicago’s city boundaries.

We also obtained data on three road features at the segment level: length (`s), number of lanes

(ns), and lane width (ws). These characteristics are used to construct the feature vector qs for each
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Figure 1 Study region: City of Chicago.

road segment, which is an input to the estimation procedure described in §3.1. Segment length ls

and number of lanes ns were extracted from OpenStreetMap. The lengths of the road segments are

primarily determined by the city’s well-defined block pattern (City of Chicago Planning and Policy

Division 2003). Lane widths ws are imputed based on guidelines from the Illinois Department of

Transportation Bureau of Local Roads and Streets Manual (Illinois DOT 2018), which provides

recommendation of lane widths based on road classification and traffic counts.

2. Bike lane network. We extract Chicago’s bike lane network as of 2018 (Chicago Data Portal

2018). We match the segments of the bike lane network with the constructed road network, which

allows us to construct the status quo bike lane network x̃, representing a total of length of 265

miles. We assume bike lanes have a width of 1.5 meters in accordance with the Local Roads and

Streets Manual (Illinois DOT 2018).

3. Vehicle traffic flows. We collect vehicle flow data throughout the network from the Highway

Performance Monitoring System (HPMS) (FHA 2018), which correspond to the observed flows z

in the estimation procedure described in §3.1. This dataset contains information on the Average

Annual Daily Traffic (AADT) that flows through major road segments. We focus on average traffic

flows during the morning rush hour (6am-10am) in the year 2018. We examine morning rush hours
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because they represent a sizeable share of all traffic (24% of all vehicle flows, Illinois Department

of Transportation (2018)), and commuters are the main beneficiaries of improvements to cycling

infrastructure (Chicago DOT 2020). We match the road segments in the HPMS dataset onto the

OpenStreetMap network using the ST-Matching algorithm proposed by Lou et al. (2009). Because

HPMS does not contain traffic data for low volume road segments, we obtain AADT data for a

subset of 12,447 segments in the network (out of 31,815).

We note here that the vehicle flow data are annual averages for each hour of the day, and that

we do not observe day-to-day variations in traffic. While daily vehicle flows would provide useful

variation, the use of annual average flows is well-suited for our purposes because of our focus on

urban infrastructure planning, which are long-term and usually permanent decisions. Further, we

focus on traffic congestion during morning rush hours, which is primarily commuter traffic and

thus relatively stable.

4. Travel mode choices. To construct the mode-specific demands dmw for each OD pair w ∈W,

we first obtain commuter flow data from the Origin-Destination Employment Statistics dataset

maintained by the Longitudinal Employer-Household Dynamics (LEHD) (US Census Bureau 2018).

The dataset specifies total commuting flows between pairs of census tracts, which correspond to

the total commute demand d̃w in the mode choice model. We only focus on OD pairs with a strictly

positive number of commuters and where the origin and destination census tracts are distinct.14

This resulted in a total of 146,847 OD pairs in our study region with strictly positive demand (out

of a possible 801×800 = 640,800 OD pairs, where 801 is the number of census tracts), denoted by

W.

We retrieve census tract-level mode shares from the 2014 - 2019 American Community Survey

(ACS) (US Census Bureau 2020), which specifies mode shares of driving, cycling, and all other

options for commuters residing within each census tract. Multiplying the mode shares with the

total commuter volume provides an estimate of the total demand for each mode of transport

originating at each census tract. Because the census data only defines mode demands at the origin

of each OD pair, we determine OD demands for driving (dDw ) by imputing destinations jointly

while estimating θ. Appendix F presents experimental results using synthetic data that show this

procedure generates accurate estimates of θ.

5. Bike share trips. We computed the cycling demand dCw for each OD pair w using cycling

trip data made available by Chicago’s bike share system Divvy (Divvy 2021). The Divvy trip data

contains information on individual bike rentals, including timestamps indicating the beginning and

14 Within-census tract trips account for approximately 7% of all commuter trips. These trips cannot be accounted for
in our model because they correspond to a distance of zero. With respect to cycling specifically, approximately 6.2%
(47,919 out of 791,034) Divvy trips are made within census tract, with the median cycling time being 4.5 minutes.
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end of each rental, and the addresses of the bike share stations where each rental was taken from

and returned to. We selected all trips taken in 2018 during the morning rush hour period (6am

to 10am), resulting in a total of 791,034 bike share trips. We geocoded the addresses of all Divvy

stations and matched them to Chicago’s census tracts to determine, for each origin census tract,

the share of Divvy trips that arrived at each destination tract. Then for each origin census tract,

we multiplied the destination trip-shares obtained from Divvy data with the total cycling demand

originating at each census tract (obtained from the 2014 - 2019 ACS commute data described

above) to determine the OD cycling demand dCw . A visualization of all Divvy stations in our study

region is presented in Figure in Appendix B.15

6. Demographics and points of interest. Our mode choice model includes several covariates

corresponding to demographics and characteristics of the urban environment. In particular, for each

census tract i∈ I, we retrieved the median household income (hii), the vehicle ownership rate (i.e.,

fraction of households with at least one vehicle) (voi) and population density (pdi), all obtained

from the 2014 - 2019 ACS data. We also queried the Google Places API to identify “points of

interest” in each census tract, including parks, restaurants, shopping malls, supermarkets, bakeries,

bars, universities, hospitals, and libraries. The presence of each of these points of interest at the

origin and destination of OD pair w are included as covariates in the mode choice model using a

dummy variable, and are collectively represented by the binary vector piw. Further, we also obtain

the number of public transportation stations (subways, buses, trains, and light rails) in each census

tract by querying the Google Places API. We include the total count of transit station in the origin

census tract of each OD pair w, denoted by tsw, as a covariate in the outside option utility (see

§5.3).

7. Driving routes, cycling routes, and public transit time. For each OD pair w, we

constructed the path sets PDw and the cycling path pCw by querying the Google Directions API

(Google Maps 2021). Specifically, we constructed PDw by obtaining the top three recommended

driving routes for the given OD pair, using census tract centroids for the start and end locations,

and matching the returned routes to the road network.16 In addition to providing routes, the Google

Directions API also returns the travel time along each route; we queried the API at 12am to obtain

the free-flow driving time parameters tDs , s∈ S, along with the public transit time tOw .

15 Our computation of dCw makes the assumption that for each origin census tract, the distribution over destination
census tracts is the same for Divvy and non-Divvy cyclists; violations of this assumption would introduce errors into
our results. However, this is less likely to be a strong assumption in our setting given that our study region contains
a high concentration of Divvy stations, as shown in Figure 8 in Appendix B.

16 Our assumption that all commuter demand begins and ends at the centroid of a census tract is an approximation
of true commute patterns. For context, the average radius of a census tract in the full area of Figure 1 is 500 meters,
and the mean and median straight-line distances between OD pairs with positive demand are 9,062 and 7,868 meters,
respectively.
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Similarly, for each OD pair w, we determined the cycling path pCw and the corresponding cycling

time tCw by retrieving the topmost recommended cycling path from the Google Directions API. We

then constructed SCw (the set of road segments that constitute the cycling path pCw) by matching

the recommended cycling route with the road network. This matching process also allowed us to

compute the bike lane coverage ρw(x̃) for each path pCw .

To capture the effect of elevation changes on cycling utility, we also determined the average

elevation change (aecw) along each cycling path pCw , w ∈W, which is a measure of the total vertical

distance, either uphill or downhill, that must be traversed by cyclists on the cycling path. For

each path w, we computed elevation changes by dividing each cycling path into 99 equally-distant

segments and querying the altitude at each end point from the Google Elevation API, which

generated the elevation vector [elw,1, · · · , elw,100]. The average elevation change for path w is then

given by aecw =
∑99
i=1 |elw,i+1−elw,i|

99
, given in units of meters.

8. Taxi trips. We validate our estimates of the congestion parameter θ using taxi trip data from

Chicago. These records report the origin and destination census tracts, and duration of all taxi

trips made within city boundaries (Chicago Data Portal 2021). For consistency with the traffic flow

data described above, we selected all taxi trips taken during morning rush hours (6am to 10am)

on weekdays in 2018 between our set of OD pairs W, resulting in 1,408,833 trips between 3,698

OD pairs. The taxi trip data serves as an out-of-sample dataset for evaluating our model’s ability

to predict driving travel times in the network.

5.2. Estimation and Validation of Congestion Parameter θ

We now describe the estimation of the congestion parameters θ, beginning by specifying the con-

gestion functions αs(x,θ). First, for each road segment s∈ S, we construct the feature vector

qs (xs) =


(

1, `s, ns ·ws, `s
ns·ws

)
, if xs = 0,(

1, `s, ns ·ws−∆w, `s
ns·ws−∆w

)
, if xs = 1,

(36)

where `s is the segment’s length, ns is the number of lanes, and ws is the width of each lane.

Following the Illinois Local Roads and Streets Manual (Illinois DOT 2018), we assume the presence

of a bike lane (xs = 1) narrows the road segment by 1.5 meters on each side, which implies ∆w= 3

meters. For each s∈ S, the congestion function is then given by

αs(xs,θ) = θ>qs(xs) = θ0 + θ1 · `s + θ2 (ns ·ws−∆w ·xs) + θ3

(
`s

ns ·ws−∆w ·xs

)
. (37)

Following the model outlined in §2.2, the segment travel time is then

tDs (xs,θ, vs) = αs(xs,θ) · vs +Ts, (38)
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where θ= (θ0, θ1, θ2, θ3) is the parameter vector to be estimated.17 As noted in §5.1, only the driving

demand at the origin of each OD pair is available from the American Community Survey data. We

therefore slightly modify WLS-A by jointly imputing the driving demand dDw with the congestion

parameter θ (see Appendix A for details). In Appendix F, we present numerical evidence that this

modification of WLS-A continues to produce reasonable estimates of θ.

Because AADT counts are not available for all possible road segments, we measure the flow error

‖v− z‖22 only over the segments for which traffic flow data is available (|Sobs|= 12,447), assuming

Wardrop equilibrium holds over the full network (|S|= 31,815). To evaluate the trade-off between

the flow error ‖v−z‖22 and the Wardrop error ε, we re-solved the estimation problem for each value

of the penalty parameter λ in {1.0,1.5,2.0,2.5,3.0}× 103. We validate the model fit at each value

of λ by measuring how well it predicts the the travel time of taxi trips in Chicago (see §5.1).18 In

particular, we matched each of the 1,408,833 taxi trips that began between 6am and 10am in 2018

to an OD pair based on the trip’s start and end locations. We then selected all OD pairs for which

there was at least one trip and obtained 3,698 OD pairs. We measure predictive performance by

comparing the model’s predicted travel time with the average taxi trip duration for each of these

OD pairs.

Among the values of λ tested, we found λ= 2500 to yield the minimal prediction error in taxi

travel times, with an average absolute error of 1.34 minutes and an average relative error weighted

by number of taxi trips of 14% (see Appendix A.4 for additional details on the selection of λ).

Figure 2 depicts predictive performance on the taxi trip data. In Figure 2(a), each dot is an OD

pair, and the correlation is 2 is 0.85, suggesting a sensible model fit.19 Figure 2(b) shows the

distribution of prediction errors, with and without weighting each OD pair by the number of taxi

trips for that pair.

Table 1 reports the estimates for congestion parameter θ under λ= 2500. The sign of the esti-

mates suggest that travel time increases in segment length and decreases in total segment width

(due to increased road capacity), which aligns with intuition. An important caveat to the estimates

in Table 1 is that there may exist unobserved variables (e.g., speed limits, road conditions) that

17 Although our specification for the congestion function αs(xs,θ) in (37) depends on physical features of the road
network that are likely to influence driving times (i.e., length and width), our approach emphasizes predictive per-
formance and should not be interpreted as a structural model.

18 The penalty λ is a user-specified tuning parameter, which are typically chosen through cross validation. However,
because cross-validation assumes independent observations, it is inapplicable in our setting due to the data being
generated by a single connected network. For this reason, we use the taxi trips as our out-of-sample validation dataset.

19 Our method’s out-of-sample performance is comparable to extant methods for travel time prediction on road
networks. For example, Zhan et al. (2013) present an MNL choice model for driving route selection, which has mean
relative errors ranging from 17% to 41% in predicting the travel times of taxis in New York City. Furthermore, a naive
prediction based on free-flow travel times from Google Maps yields an out-of-sample error of 27%, which suggests
traffic congestion has a substantial impact on travel times.
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Figure 2 Driving time prediction errors on out-of-sample taxi trip data.

influence travel time and are also correlated with road features. The predictions in our counterfac-

tual study should be interpreted in light of this potential bias.

Table 1 Congestion parameter estimates (×10−7).

Intercept `s ns ·ws `s/(ns ·ws)
θ0 θ1 θ2 θ3

6.51 2.53 −0.26 75.7

5.3. Estimation of Mode Choice Parameters β

Next, we estimate the mode choice parameters β using the estimated congestion parameter θ

as input. In estimating β, we restrict attention to the sub-network for which Divvy trip data is

available (shaded region of Figure 1), which corresponds to 5,272 OD pairs, 6,101 road segments,

and 14,632 driving paths. We use the following specification for the utility of driving, cycling and

outside options on OD pair w:

uDw (x,θ) = βD0 +βD1 · tDw (x,θ) +βD2 · vow +βD3 ·hiw +βD4 ·piw + ξDw + εDw (39a)

uCw(x) = βC0 +βC1 · tCw +βC2 · ρw (x) +βC3 · aecw +βC4 ·piw + ξCw + εDw (39b)

uOw = βO1 · tOw +βO2 · tsw + εOw (39c)

The driving utility uDw (x,θ) depends on the driving time tDw (x,θ), vehicle ownership rate at the

origin vow, the average median household income over the origin and destination census tracts

hiw, and a dummy variable vector of the presence of various points of interest at the origin and

destination piw, following Kabra et al. (2020). The cycling utility uCw(x) depends on the cycling
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time tCw , bike lane coverage ρw (x), the average elevation change aecw along the cycling route pCw ,

and the dummy vector for points of interest piw. In addition, we assume the outside option utility

depends on the travel time by public transit tOw and the number of public transit stations (subways,

buses, trains and light rail) in the origin census tract, denoted by tsw. Table 2 presents the summary

statistics of the data used in the mode choice model.

Table 2 Summary of data for estimating mode choice parameters β.

Units Mean SD Min. 25% Median 75% Max.

Cycling time tCw minutes 21.37 10.69 0.98 13.31 20.87 28.50 59.13
Bike lane coverage ρw % 50.82 25.97 0.00 31.55 54.05 71.93 100.0
Average elevation change aecw meters 0.49 0.06 0.01 0.45 0.49 0.53 0.81
Predicted driving times tDw minutes 14.14 4.62 3.64 10.86 14.15 17.30 30.78
Vehicle ownership rate vow % 71.08 13.55 25.99 62.10 73.71 81.66 92.22
Public transit travel time tOw minutes 34.57 16.50 0.00 22.48 33.97 44.62 103.65
No. of transit stations tsw 1 17 22 0 3 6 30 127
Median household income hiw 104 dollars 9.81 2.56 1.82 8.07 9.98 11.64 17.22

5.3.1. Endogeneity and instruments. As discussed in §2.3, because we observe mode shares

for each OD pair w, the parameters in (39a)–(39c) can be estimated using linear regression. How-

ever, naively applying ordinary least squares (OLS) estimation may lead to biased estimates due

to two potential sources of endogeneity, namely, in the bike lane coverage ρw(x) and the driving

travel time tDw (x,θ). Before discussing the endogeneity issues and our solution via instrumental

variables, we first present the OLS estimates in Table 3.20 As the table shows, the bike lane coverage

estimate βC2 is statistically insignificant and is not informative for capturing bike lanes’ value to

cyclists. Below, we briefly describe this endogeneity problem and our use of instrumental variables

to address it.

Table 3 Estimates (and standard errors) of mode choice parameters using OLS.

Cycling Driving

intercept cycling bike lane average elevation intercept driving vehicle household
βC0 time βC1 coverage βC2 change βC3 βD0 time βD1 ownership βD2 income βD3

2.1559 −0.2081*** −0.1425 −2.0991*** 4.3919*** −0.2452*** 0.4860 0.0265
(1.71) (0.00) (0.15) (0.66) (1.69) (0.01) (0.31) (0.02)

Outside option

transit transit Other control Adjusted Number of
time βO1 stations βO2 variables R2 observations

−0.0231*** 0.0052***
Table 12 0.57 10,544(0.00) (0.00)

20 Note that the number of observations in the regression model is twice of the number of OD pairs, since there are
5,272 observations for both cycling and driving.
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Although bike lane coverage may influence cycling demand on each OD pair, it is plausible

that city planners select locations for new bike lanes to serve unmet demand (i.e., along paths

where cycling ridership is already high but which lack bike lanes), which would lead to correlation

between the error term ξCw and bike lane coverage ρw(x). Ignoring this potential reverse causality

in the location of existing bike lanes would lead to an overestimation of βC1 , and thus inflated

counterfactual predictions of cycling ridership following the addition of new bike lanes. Conversely,

it is also plausible that planners choose locations with low ridership in order to promote cycling

adoption, which would lead to underestimation of βC1 . Similarly, with respect to driving travel

times, there may exist unobserved factors that lead to low (high) demand for driving on a particular

OD pair, resulting in a lower (higher) driving travel time and leading to correlation between the

error terms ξDw and driving the travel time tDw (x,θ).

To address the aforementioned endogeneity biases, we employ BLP-like instrumental variables

(Berry et al. 1995) that are tailored for analyzing spatially differentiated products (e.g., Davis

(2006), Kabra et al. (2020), He et al. (2021)). In particular, our instruments are inspired by Kabra

et al. (2020), who use exogenous characteristics of nearby bike-share stations (e.g., points of interest)

as instruments for estimating the effect of bike-share availability on usage at a focal bike-share

station.

Accordingly, for each OD pair w, we construct instruments using the exogenous characteristics

of “nearby” OD pairs. Specifically, for each w, let Zw(a,b) to be the set of all other OD pairs whose

origin is between distance a and b from the origin of w and whose destination is within distance

between a and b of the destination of w. Note that each OD pair w is a pair of nodes (i.e., census

tracts) (i, j) on the network, and let dis(i, j) be the Euclidean distance between nodes i and j.

Formally, Z(a,b)
w is then defined as

Z(a,b)

w=(i,j) = {w′ = (i′, j′)∈W|dis (i′, i)∈ [a, b] ,dis (j′, j)∈ [a, b]} . (40)

The instruments for an OD pair w are then given by

Z(a,b)
w =



1∣∣∣Z(a,b)
w={i,j}

∣∣∣
∑

w′={i′,j′}∈Z(a,b)
w={i,j}

pdi′

1∣∣∣Z(a,b)
w={i,j}

∣∣∣
∑

w′={i′,j′}∈Z(a,b)
w={i,j}

pdj′

1∣∣∣Z(a,b)
w={i,j}

∣∣∣
∑

w′={i′,j′}∈Z(a,b)
w={i,j}

npii′

1∣∣∣Z(a,b)
w={i,j}

∣∣∣
∑

w′={i′,j′}∈Z(a,b)
w={i,j}

npij′

1∣∣∣Z(a,b)
w={i,j}

∣∣∣
∑

w′={i′,j′}∈Z(a,b)
w={i,j}

(1T ·npii′)×pdi′

1∣∣∣Z(a,b)
w={i,j}

∣∣∣
∑

w′={i′,j′}∈Z(a,b)
w={i,j}

(
1T ·npij′

)
×pdj′

1∣∣∣Z(a,b)
w={i,j}

∣∣∣
∑

w′={i′,j′}∈Z(a,b)
w={i,j}

hii′

1∣∣∣Z(a,b)
w={i,j}

∣∣∣
∑

w′={i′,j′}∈Z(a,b)
w={i,j}

hij′



, (41)
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where pdi, npii, and hii denote the population density, a vector that tracks the number of each type

of point of interest, and median household income in census tract i, respectively. Note (1T ·npii)×

pdi is the interaction between the total number of points of interest of all categories and population

density.

To be valid, the instruments should be correlated with the endogenous variables, which in our

case are bike lane coverage and driving travel time (i.e., satisfy the relevance condition), and should

be uncorrelated with the unobserved components ξmw in the utility of the corresponding mode (i.e.,

satisfy the exclusion criterion). The validity of our proposed instruments follow similarly from the

arguments in Berry et al. (1995), Davis (2006), Kabra et al. (2020), and He et al. (2021), which

we concisely summarize here for our context. In particular, relevance follows because demographic

characteristics and features of the urban environment are likely to be spatially correlated, making

it plausible for them to also be correlated with bike lane coverage and driving travel times in nearby

OD pairs. Satisfaction of the exclusion restriction follows because the instruments are relatively

static characteristics of the study region (e.g., points of interest). As a result, for a focal OD pair,

these static characteristics of nearby OD pairs are unlikely to vary in response to unexplained

realizations of cycling or driving demand in the focal OD pair. Similarly, these characteristics of

nearby OD pairs are also unlikely to directly influence demand for cycling or driving in the focal

OD pair, because commuters in the focal OD pair are presumably unexposed to them during their

commute.

Similar to He et al. (2021), as a robustness check we consider multiple distance intervals

[a, b] when constructing the instrumental set of OD pairs Z(a,b)
w . In particular, we vary a ∈

{500,1000,1500} meters and b∈ {7000,8000} meters to obtain six different distance intervals [a, b].

The distance 500, 1000, 1500, 7000, and 8000 correspond to the 2nd, 6th, 11th, 84th, 90th percentiles

of the between-centroid distances of the corresponding census tracts, respectively. We estimate our

model using the standard approach of generalized method of moments (GMM), and find the results

to be robust to the choice of a and b (see Appendix C). We verify relevance of all instruments by

performing the weak-instrument test proposed by Stock and Yogo (2002).

As an additional robustness check, we estimate our model with two alternative instruments. First,

we instrument for bike lane coverage and driving travel time using the average value of these same

endogenous variables in nearby OD pairs, in the spirit of Hausman-type instruments (Hausman

1996, Nevo 2001). Second, we follow He et al. (2021) and Arora et al. (2022), who construct

instruments that are similar to the BLP-like instrument described above, but explicitly utilize the

network structure. We find that our estimates are stable across these alternative instruments as

well (see Appendix C).
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5.3.2. Results. Table 4 reports the estimation results corresponding to [a, b] = [500,8000],

which produces the most conservative (i.e., smallest) estimate of the bike lane coverage coefficient

βC2 among the distance intervals [a, b] we implemented (see Table 10). We focus on the most

conservative estimate because it is the value used in the bike lane planning problem described in

§5.4 below; Appendix C contains the estimates for the remaining values of a and b, as well as

the alternative instruments. Applying the weak instrument test by Stock and Yogo (2002) using

[a, b] = [500,8000] yields a Cragg–Donald statistic of 21.6, which exceeds the critical value of 20.7.21

The signs of the estimates shown in Table 4 agree with intuition: The negative coefficients for

the travel time by cycling (βC1 ), driving (βD1 ) and public transit (βO1 ) indicate shorter travel times

increase the attractiveness of each transportation mode. For cycling specifically, the the results

suggest the attractiveness of cycling increases in bike lane coverage (βC2 > 0), and that cyclists

prefer flatter paths with fewer elevation changes (βC3 < 0). Similarly, driving demand is positively

correlated with vehicle ownership rate (βD2 > 0). Lastly, improved accessibility to transit stations is

associated with higher demand for the outside option (βO2 > 0). Lastly, the estimated mode choice

model yields R2 = 0.57, which suggests a reasonable fit to the data.

Table 4 Estimates (and standard errors) of mode choice parameters from IV estimation.

Cycling Driving

intercept cycling bike lane average elevation intercept driving vehicle household
βC0 time βC1 coverage βC2 change βC3 βD0 time βD1 ownership βD2 income βD3

2.3614 −0.2189*** 1.8817*** −2.6596*** 3.9695** −0.2088*** 0.5964*** 0.0291**
(2.43) (0.01) (0.79) (0.64) (1.55) (0.04) (0.22) (0.01)

Outside option

transit transit Other control Adjusted Number of
time βO1 stations βO2 variables R2 observations

−0.0304*** 0.0040***
Table 12 0.57 10,544(0.01) (0.00)

5.4. Bike Lane Expansion: Impact on Cycling Ridership and Traffic Congestion

Next, we use the estimates of θ and β to develop bike lane plans for downtown Chicago and estimate

the associated impacts on cycling ridership and congestion. Our study focuses on expanding the

existing bike lane network instead of redesigning the entire network, which aligns with the city’s

plan (Chicago DOT 2021). For tractability, we solve the bike lane optimization model over the

largest OD pairs that account for 80% of commute demand in the study region (shaded area of

21 The critical value of 20.7 corresponds to 24 instruments, two endogenous regressors, and a relative bias level of
0.05 – see Stock and Yogo (2002) for details.
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Figure 1). This resulted in 887 candidate paths for bike lane installation, which together comprise

4,127 road segments.

We consider 12 combinations of the bike lane budget B and the congestion tolerance τ : (B,τ)∈

{10,25,50,75}×{0.05,0.1,0.15}. For each combination of (B,τ), we add the congestion tolerance

constraint (35) to the path selection model BL-A given in (32), which is solved to obtain a rec-

ommended network x∗. We then evaluate the model’s recommendation by solving the (exact) user

equilibrium problem (24) under x∗ and computing the relative increase in cycling ridership over

the status quo network x̃: ∑
w∈W d

C
w(x∗)− dCw(x̃)∑

w∈W d
C
w(x̃)

. (42)

Consistent with the model BL-A, we evaluate congestion using the worst-case increase in driving

times over all driving paths:

max
p∈PD

{
tDp (x∗)− tDp (x̃)

tDp (x̃)

}
. (43)

Our choice of the congestion constraint (35) (and the corresponding performance metric (43)) is

motivated by discussions with city planners, who are sensitive to public perceptions regarding

the installation of bike lanes and their effect on congestion (Khany 2022). Accordingly, to avoid

“spikes” in driving times throughout the network, we focus on limiting the worst-case increase in

driving times over all paths. As an alternative measure of congestion, we also estimate the impact

of the recommended bike lane plans on the total system-wide driving time in Appendix E.

As an illustrative example, Figure 3 visualizes the model’s recommended bike lane plan and

the predicted impacts on driving times for the case where (B,τ) = (25, 10%). Figure 3a depicts

existing and recommended bike lanes. Interestingly, we observe that the recommended bike lanes

tend to close gaps in the existing bike lane network (e.g., (1) in Figure 3a) and also bridge distant

parallel bike lanes (e.g., (2)), both of which are priorities for the Chicago DOT, even though we

do not explicitly enforce these requirements.

Figure 3b shows the change in driving time on each road segment as compared to the status

quo. We make the following observations. First, among the 25 miles for which new bike lanes are

recommended, 82.1% have longer driving times and 7.0% have shorter driving times (no change

is observed in the remaining 10.9% of segments). The intuition is as follows. Building bike lanes

reduces road width and thus increases the driving time, which we refer to as the “road capacity

effect”. On the other hand, building bike lanes increases cycling utility and thus boosts cycling

adoption, which reduces driving demand and thus alleviates congestion, which we refer to as the

“demand effect”. Figure 3b visualizes the segments where the road capacity effect dominates the

demand effect (red) and vice versa (green).
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(a) Bike lane expansion.
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(b) Change in driving times.

Figure 3 Recommended bike lane expansion and congestion impacts in downtown Chicago for

(B,τ) = (25,10%).

We also observe spillover effects of new bike lanes to the entire network. Specifically, among the

road segments on which no new bike lanes are built, 13.4% have longer driving times and 40.1% have

shorter driving times. Because the demand effect spills over to the rest of the network, the reduction

in driving times is expected. The congestion-increasing road capacity effect on some segments is

due to the fact that adding bike lanes causes drivers to adopt alternative paths in equilibrium,

which increases driving times elsewhere in the network. These spillover effects are contingent on

network structure and traffic dynamics, which highlights the necessity of a system-wide approach

to bike lane planning.

Figure 4 summarizes model performance under each of the 12 combinations of (B,τ). In general,

we predict notable increases to cycling ridership even when the congestion tolerance and the budget

are minimal – for example, under (B,τ) = (10,5%), cycling shares increase by 1.3% (from 3.6% to

4.9%). Further, our results suggest diminishing returns on increasing the congestion tolerance τ

– increasing τ from 5% to 10% boosts cycling ridership by 0.6% to 1.2%, depending on the bike

lane mileage budget B, wheres increasing τ from 10% to 15% is associated with at most a 0.6%

absolute increase in cycling ridership. We observe a similar behavior as B increases, with most of

the gains in cycling ridership occurring within the first 50 miles of bike lane expansion.
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Figure 4 Increase in cycling ridership and worst-case driving travel times under 12 combinations

of (B,τ).

5.5. Comparison with Alternative Bike Lane Planning Methods

To further evaluate the bike lane plans recommended by our model, we benchmark their perfor-

mance against three alternative methods for bike lane planning. We briefly describe each method

below and provide their precise steps in Appendix E.

Fixed-time model. In this approach, we assume driving times are unaffected by the addition of

bike lanes. Specifically, we assume segment driving times remained fixed at their status quo values,

tDs (x̃), which are returned by the estimation method described in §3. We then solve a variant of

the path selection model BL-A with these fixed driving times.

Greedy heuristic. We also present a greedy heuristic for solving BL-A, which is based on

selecting promising OD pairs between which the city planner should build bike lanes while satisfying

the congestion tolerance constraints. The greedy heuristic can be viewed as a congestion-aware

bike lane planning method that does not take a system-wide perspective. Intuitively, the greedy

heuristic consists of three main steps. First, we sort the OD pairs from highest to lowest based on

their potential for improving cycling ridership per unit of new bike lane built. Second, we screen

the OD pairs by their anticipated increase in travel times due to bike lane construction, and then

greedily select OD pairs such that the budget constraint is not violated. Third, the heuristic verifies

whether the congestion constraint for the selected OD pairs is satisfied; if not, the heuristic is

repeated with a more conservative selection (with respect to travel time increase) of OD pairs in

the second step.

Demand heuristic. The last benchmark we consider is a naive planning approach that adds

bike lanes on the paths for the OD pairs with the highest current commute demand, which aligns

with one of Chicago’s stated principles for building bike lanes (Chicago DOT 2020).
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Figure 5 Increase in ridership and worst-case driving time for bike lane path selection model BL-A

and three benchmark methods.

Comparison results. We again vary B ∈ {10,25,50,75} and τ ∈ {5%,10%,15%} to obtain 12

combinations of (B,τ) for comparing BL-A with the three benchmark methods. For brevity, we

present the detailed results for B = 25 miles in Figure 5, and defer the cases for B ∈ {10,50,75}
to Appendix E.2. Note that the fixed-time model and demand heuristic are not parameterized

by τ , so they each correspond to only one point in Figure 5. We interpret these results by first

comparing our model’s prescriptions (blue ‘•’) with the demand heuristic’s bike lane plan (red

‘+’). As expected, because the demand heuristic places bike lanes between OD pairs with the most

commuters, it yields the highest increase in cycling mode share (2.5%), although the resulting

increase in congestion is relatively high (13.9% increase in worst-case driving time). In particular,

the demand heuristic is dominated by the recommendations from BL-A when τ = 10% or τ = 15%.

With respect to the fixed-time model (green ‘�’), it increases the cycling mode share by 2.2%

(from 3.6% to 5.8%), yet also significantly increases congestion (12.7%). To that end, the fixed-

time model is also dominated by the bike lane expansion recommended by our model under τ =

10%. This difference underscores the importance of endogenizing congestion effects in bike lane

planning, which permits city planners to modulate driving times throughout the network. Finally,

we examine the greedy approach (orange ‘×’) that considers congestion effects but discards the

network structure of the problem. We find that our model’s prescriptions achieve significantly

higher bike demand across all values of τ ∈ {5%,10%,15%}. Specifically, when τ = 15%, the increase

in the cycling mode share under our method is more than twice that of the greedy heuristic (2.9%

vs. 0.8%), while leading to comparable increases in driving times (13.5% vs 12.4%).

As an additional point of reference, we also compared our model’s prescriptions with the bike

lanes actually installed in Chicago following our study period of 2018. From November 2018 to
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November 2021, the City of Chicago added additional 14.48 miles of bike lanes in the downtown

Chicago study region (Chicago Data Portal 2023). According to our model, this expansion in the

bike lane network corresponds to a predicted 0.4% increase in the cycling mode share and an

8.2% maximum increase in the driving time over all driving paths. By comparison, setting a bike

lane budget of B = 14.48 miles and a congestion tolerance of τ = 5% in our prescriptive model

results in an increase of 1.1% in the cycling mode share and a 4.3% maximum increase in the

driving time. See Appendix E.3 for details and a brief discussion. Taken together, these results

demonstrate the value of endogenizing congestion and ridership effects, as well as taking a holistic

and network-based perspective to urban bike lane planning.

6. Policy Implications and Conclusion

The expansion of cycling infrastructure has become a priority for municipal governments seeking

to promote urban sustainability. While the addition of bike lanes has generated controversy due

to their perceived effects on traffic congestion, few previous studies have attempted to rigorously

quantify the potential impact of bike lane expansion on congestion from a system-wide perspec-

tive. Our findings suggest that adding bike lanes does not necessarily worsen congestion if done

mindfully: We estimate that adding 25 miles of bike lanes to downtown Chicago as prescribed by

our model can increase cycling ridership from 3.6% to 6.1%, while increasing driving times by at

most 9.4% over all routes. We obtain qualitatively similar results for different bike lane budgets

and congestion tolerances. Further, our results suggest that congestion may in fact be alleviated

in many segments of the network following the addition of bike lanes. Taken together, our results

cast doubt on the notion that bike lanes dramatically increase traffic congestion.

We also find that alternative planning methods that ignore congestion effects can amplify con-

gestion without necessarily improving cycling ridership beyond what is attained under our model’s

prescriptions. To the extent that city planners wish to expand bike lane networks while mitigating

congestion and the associated consequences, prescriptive models like ours that take a system-wide

perspective may be useful. Our framework may be especially valuable for financially-constrained

municipalities that wish to maximize the benefits of bike lane expansion under a limited budget,

or in cities where the cycling infrastructure has matured past the point of “low hanging fruit” and

would benefit from more rigorous planning methods. We also note that while sophisticated simula-

tion models for traffic modeling are widely adopted by city planners, there is a scarcity of models

for bike planning, which makes it challenging for city planners to systematically leverage traffic

data when developing bike lane plans (Khany 2022). As a result, data-driven methods like the one

presented here have the potential to improve the modeling support available to city planners.

There are many additional considerations to bike lane planning that are not captured by our

model, including safety, implementation cost, closing gaps in the existing network, meeting needs
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of underserved communities, and land use. There may also be on-the-ground constraints that make

some aspects of our model’s recommendations impractical. To that end, our method should be

viewed as a complement and not a substitute to existing approaches used by city planners for bike

lane planning.

Our work has limitations. First, although our method can be applied to other cities where similar

data is available, our empirical findings may not generalize beyond Chicago due to differences in

the road networks, commuters’ preferences, and traffic patterns. Second, due to limitations in data

availability, our analysis relies on demand data that is aggregated at the census-tract level – future

analyses using more fine-grained data may yield different results. Our estimates of driving times are

based on observable road segment features, such as length and width, and under the assumption

of Wardrop equilibrium. In practice, traffic flows may also be influenced by additional factors such

as traffic signal timing, permissibility of left and right turns, speed limits, and zone type (e.g.

commercial vs. residential), all of which are unaccounted for in our study. Although we incorporate

factors including points of interest and elevation change along the cycling routes in cycling utility,

other factors that we do not consider include safety (in particular, vehicle traffic near bike lanes)

and continuity of the bike lane network.

We conclude by noting potential directions for future work. First, although we focused on max-

imizing cycling ridership, our method can be extended to other considerations such as the effect

of bike lanes on greenhouse gas emissions or safety. It may also be worth examining how bike

lane expansion affects different populations, such as low-income and underserved neighborhoods,

or groups for whom cycling may not feasible, including seniors or people with disabilities. Finally,

our modeling framework may also be useful in performing counterfactual analyses to support other

types of infrastructure planning where congestion impacts are a salient concern, such as the addi-

tion of dedicated bus or carpool lanes.
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Appendix

A. Additional Details on Estimation of Congestion Parameter θ

This section presents additional details on the estimation of the congestion parameter. §A.1 provides the

conditions for consistency of the estimates. §A.2 provides more details on the data used to estimate and

validate the congestion parameter. §A.3 introduces the estimation procedure described in in §5.2. In §A.4,

we tune the penalty parameter λ. Finally, we compare our method with two machine learning models in

terms of predicting OD driving time in §A.5.

A.1. Consistency of Congestion Parameter Estimates

Here we provide conditions under which the estimation problem (13) is consistent, i.e., the sequence of

estimates θ̂n converges in probability to the true parameter θ0. The result follows closely from Theorem 2

of Wu (1981).

Theorem 2. Suppose the following conditions hold: (i) zs = v∗s (θ0) + εs for s= 1, . . . , n, where the errors εs

are drawn i.i.d. from a distribution with E[ε] = 0 and unknown variance σ2 > 0, (ii) the parameter set Θ is

finite, and (iii) limn→∞Pr(
∑n

s=1(v∗s (θ)− v∗s (θ0))2 > 0) = 1 for all θ 6= θ0. Then θ̂n
p−→ θ0 as n−→∞.

The proof of Theorem 2 is contained in Appendix H along with the proofs of results from the main body.

At the outset, it should be noted that Theorem 2 describes an idealized setting, with conditions that are

analogous to those used in classical results regarding consistency of non-linear least squares regression (e.g.,

Jennrich (1969), Wu (1981)). Condition (i) specifies a data-generating model based on a true, unknown

parameter θ0. Note that condition (i) assumes the observed vehicle flows z are zero-mean, noisy observations

of the true equilibrium flows, which are assumed to arise under Wardrop equilibrium. In practice, the observed

vehicle flows z may depend on other factors as well, including drivers’ idiosyncratic preferences over driving

routes or unobserved characteristics of drivers or routes. Our model assumes drivers select routes exclusively

based on minimizing travel time and no other factors; violations of this assumption would lead to biased

estimates of θ0.

Condition (iii) is an identifiability condition, which ensures that the ground truth parameter θ0 can be

pinpointed from data. Intuitively, the condition states that as the size of the network grows large, any two

distinct values of θ should lead to two distinct equilibrium flows v∗(θ). In the absence of model identifiability,

two different parameters θ may induce the exact same equilibrium flows over the network, in which case

consistency cannot be attained by any estimation procedure.

The intuition behind condition (iii) is as follows: For very large networks, perturbing θ should shift the

equilibrium vehicle flow v∗s (θ) in at least one road segment s. The corollary below provides a slightly stronger

but more interpretable condition under which the model is identifiable.

Corollary 1. Let X be the set of networks such that for each θ 6= θ0, there exists an OD pair w ∈W with

paths p1 and p2 that have strictly positive flows in equilibrium, and where∑
s∈SDp1\S

D
p2

((θ−θ0)>qs)v
∗
s (θ0) 6=

∑
s∈SDp2\S

D
p1

((θ−θ0)>qs)v
∗
s (θ0). (44)
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Then condition (iii) from Theorem 2 holds under any random network process {Gn}n≥1 such that

limn→∞Pr(Gn ∈X ) = 1.

The proof is also contained in Appendix H. At a high level, the intuition behind (44) in Corollary 1 is that

for each possible value of θ where θ 6= θ0, there should exist at least one OD pair w ∈W such that changing

θ0 to θ results in a change in travel time on one path that is not exactly cancelled out by a change in travel

time on another path.

Statistical consistency in inverse optimization was first addressed by Aswani et al. (2018). The main

difference with our setting is that Aswani et al. (2018) assume the feature and response data are independent

draws of a common joint distribution across all n observations. However, independence fails to hold in our

setting because each observation corresponds to a road segment in a network, which have correlated traffic

flows. As a result, the sufficient conditions for consistency presented in Theorem 2 and Corollary 1 differ

slightly from those given in Aswani et al. (2018).

Lastly, the assumption that Θ is finite (condition (ii) in Theorem 2) can be weakened to compactness of

Θ by suitably modifying the identifiability condition (iii).

Corollary 2. Suppose condition (i) in Theorem 2 holds and the parameter set Θ is compact. If for any

δ > 0, limn→∞Pr

(
inf

‖θ−θ0‖>δ

∑n

s=1(v∗s (θ)− v∗s (θ0))2 > 0

)
= 1, then θ̂n

p−→ θ0 as n−→∞.

A.2. Data and Summary Statistics

To make full use of the available data, we estimate θ using data from the entire City of Chicago (full area in

Figure 1). Table 5 presents details on the size of the Chicago network. Table 6 presents summary statistics

for the following variables: The annual average daily traffic (AADT) during morning rush hours, which

serve as the observed traffic flows zs; the driving demand originating from each census tract d
(o)
i ; total road

segment width ns · ws; segment length, `s; and path free-flow travel time
∑

s∈SDp
Ts. Figure 6 depicts the

empirical distribution of these variables. We note that although we cannot observe the free-flow driving time

at the segment-level, path-level free-flow times are sufficient for the purpose of estimating θ due to how these

parameters enter into the model.

Table 5 Size of Chicago network used to estimate congestion parameter θ.

Road segments Driving paths OD pairs
|S| |PD| |W|

Size 31,815 399,356 146,847

To validate model fit, we use detailed data on 1,408,833 taxi trips taken during weekday morning rush

hours (6am to 10am) in 2018. We match each taxi trip record to the road network to obtain average taxi

travel times. We drop records with trip times in the upper and lower 2.5% quantiles to remove extreme

observations, which result in taxi travel times in 3,698 OD pairs. A summary of taxi trip times is presented

in Table 7. Results from the taxi trip data validation are given in Figure 2 in §5.2.
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Table 6 Summary of data for estimating congestion parameter θ.

AADT Origin demand Road width Road length Free-flow time

zs d
(o)
i ns ·ws `s

∑
s∈SDp

Ts

Units 1 1 meters meters minutes
Mean 1,730 441 10.4 141 20
SD 2,698 272 4.3 127 9
Min 54 15 3.0 0.4 1
25% 837 236 7.2 99 13
50% 1,222 386 9.0 102 19
75% 1,671 575 13.6 201 25
Max 29,220 2,919 43.2 5,006 71
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Figure 6 Empirical distributions of road segment lengths (ls), total segment widths (ns · ws), and

path-level free flow travel times (Tp =
∑
s∈Sp Ts).

Table 7 Summary of OD-level taxi trip times.

Units Mean SD Min 25% 50% 75% Max

Taxi trip durations (taxiw) minutes 17.1 8.1 2.0 11.1 16.0 21.5 48.5

A.3. Estimation via Block Coordinate Descent (BCD) Algorithm

To facilitate solving WLS-A, throughout this section we eliminate the variable ε, and focus on the equivalent

problem

minimize
θ,φ,v,b

‖v− z‖22 +λ ·
(
∇φg (φ,θ)

>
φ−

(
dD
)>

b
)

subject to (14c)− (14f).

Let d
(o)
i be the driving demand originating from each census tract i ∈ I. Then any vehicle traffic pattern

(dD,φ,v) should satisfy ∑
j ∈ I
j 6= i

∑
(i, j)∈W

dDw = d
(o)
i , i∈ I. (46)

Define Λ = {(dD,φ,v) | (dD,φ,v) satisfies (46) and (φ,v)∈Ω(dD)}. We can then jointly impute the driving

demands dD by solving a variation of WLS-A that also includes the constraint (dD,φ,v)∈Λ.
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To ensure that driving times are non-decreasing in segment flows, we also impose the constraint θ>qs(x̃)≥

δ, where δ > 0 is a small constant. Then the modified form of WLS-A for jointly estimating the driving

demands dD and the congestion parameter θ is

minimize
d,φ,v,θ,b

‖v− z‖22 +λ ·
(
∇φg (φ,θ)

>
φ−

(
dD
)>

b
)

(47a)

subject to
∑

{w∈W|p∈PDw }

bw ≤∇φpg (φ,θ) , p∈P, (47b)

(dD,φ,v)∈Λ, (47c)

θ>qs(x̃)≥ δ, s∈ S, (47d)

θ ∈Θ. (47e)

Formulation (47) is multi-convex in the sense that fixing (dD,φ,v) yields a convex subproblem in (θ,b) and

vice versa. We obtain estimates using a block coordinate descent (BCD) method that alternately minimizes

the loss function over each block while fixing the other block at their last updated values (see Xu and Yin

(2013)). Specifically, let
(

(dD)
k
, (φ)

k
, (v)

k
)

and (θk,bk) be the variable values after their kth update. The

BCD method then consists of iteratively solving the following two subproblems: (dD)
k

(φ)
k

(v)
k

= argmin
dD,φ,v

‖v− z‖22 +λ ·
((
∇φg

(
φ,θk−1

))>
φ−

(
dD
)>

bk−1
)

+
1

2µk1

∥∥∥∥∥∥
dD

φ
v

−
 (dD)

k−1

(φ)
k−1

(v)
k−1

∥∥∥∥∥∥
2

(48a)

subject to
∑

{w∈W|p∈PDw }

bk−1
w ≤∇φpg

(
φ,θk−1

)
, p∈P (48b)

which is a quadratic program (QP), and[
θk

bk

]
= argmin

θ,b

‖(v)k− z‖22 +λ ·
((
∇φg (φ,θ)|

φ=(φ)k

)>
(φ)

k−b>
(
dD
)k)

+
1

2µk2

∥∥∥∥[ θb
]
−
[
θk−1

bk−1

]∥∥∥∥2

(49a)

subject to
∑

{w∈W|p∈Pw}

bw ≤ ∇φpg (φ,θ)
∣∣
φ=(φ)k

, p∈P (49b)

θ>qs(x̃)≥ δ, s∈ S, (49c)

θ ∈Θ, (49d)

which is a linear program (LP). The sequences {µk1} and {µk2} are constants that are uniformly lower bounded

from zero and uniformly upper bounded (Xu and Yin 2013). In our implementation, we simply set µk1 =

µk2 = 100 for all k. Let Gk = ‖v− z‖22 +λ · (∇φg (φ,θ)
>
φ− (dD)

>
b) be the loss after solving (49) in the kth

iteration. We terminate the BCD algorithm after
Gk−Gk+1

Gk
< 10−4 holds for three consecutive iterations or

when k= 50.

Because the BCD algorithm does not converge to a globally optimal solution, we aim to improve the model

fit by repeating the estimation procedure multiple times with random initializations. We use 10 random

starts, where each start consists of randomly drawing the initial estimate θ0 from the uniform distribution,

and then initialize the remaining parameters by solving (47) when λ = 0 and θ0 is held fixed (in which

case (47) becomes a quadratic program that is efficiently solved by commercial solvers). We observed that
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increasing the number of random starts beyond 10 only minimally improves the loss function at termination.

For a wide range of λ values, we observed that the algorithm terminated after approximately 35 iterations,

with an average convergence time of 5 hours. The estimation procedure was implemented using Python 3

and the optimization solver Gurobi, and run on a desktop computer with an Intel Core i9-10900K 3.70GHz

processor and 128 GB of RAM.

A.4. Selecting Wardrop Error Penalty λ

To identify a value of the Wardrop error penalty parameter λ that produces a reasonable model fit, we repeat

the estimation procedure using the BCD algorithm for each λ∈ {1000,1500,2000,2500,3000}. For each value

of λ, we measure model fit according to three error metrics: (1) flow error, (2) Wardrop error,22 and (3)

out-of-sample error23. The reason for evaluating model fit according to these three criteria is to balance the

fit of the data to the underlying traffic equilibrium model (metrics 1 and 2) with how well the model predicts

driving travel times (metric 3). The three errors are computed as follows:

Flow error =
‖v̂− z‖22
‖z‖22

, (50a)

Wardrop error =
1

|W|
∑
w∈W

max{p∈Pw|φ̂p>0} t
D
p (x̃, v̂)−minp∈Pw t

D
p (x̃, v̂)

minp∈Pw t
D
p (x̃, v̂)

, (50b)

Out-of-sample error =
1∑

w∈Wtaxi |N taxi
w |

∑
w∈Wtaxi

∣∣N taxi
w

∣∣ |tDw (x̃, v̂)− taxiw|
taxiw

. (50c)

In the expressions above, (φ̂, v̂) represents the estimates of the equilibrium flows at termination of the

estimation procedure, and x̃ is the status quo bike lane network. In the computation of the out-of-sample

error, N taxi
w is the total number of taxi trips for OD pair w, Wtaxi ⊂W is the set of OD pairs for which

N taxi
w > 0, and taxiw is the average duration of all taxi trips on OD pair w ∈Wtaxi. Note that the out-of-

sample error is computed only using the taxi trip data (described in §5.1 and §A.2), which is not used during

estimation.

Figure 7 visualizes the performance of each value of λ according to the three error metrics. Although there

is no value that dominates, we adopt λ= 2500 for our §5 empirical study, which is the only value of λ that

underperforms the other values on only one error metric, and also has the lowest out-of-sample error. Under

λ= 2500, the flow error is 22.2%, the Wardrop error is 1.3%, and the out-of-sample error is 14.3%.

For completeness, Table 8 presents the simple average error across OD pairs as an alternative measure of

out-of-sample error, which is given by setting |N taxi
w |= 1 in (50c), i.e.,

1

|Wtaxi|
∑

w∈Wtaxi

|tDw (x̃, v̂)− taxiw|
taxiw

. (51)

22 An alternative metric of evaluating how data comply with the Wardrop equilibrium is via the value of ε in WLS-A.
Intuitively, the closer ε is to 0, the better the data satisfy Wardrop equilibrium. However, for ease of interpretation,
here we measure the extent to which Wardrop equilibrium is violated as the relative difference between the maximum
and minimum driving times over the chosen paths, averaged over all OD pairs.

23 For our measure of out-of-sample error, we use the average discrepancy between the observed average taxi trip
times and predicted OD driving times, weighted by the number of taxi trips per OD pair
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(b) Out-of-sample error vs. Wardrop error.

Figure 7 Estimation errors for varying values of penalty parameter λ.

The errors in Table 8 are competitive with previously proposed methods for predicting travel times in a

network using taxi trip data (cf. Table 2 in Zhan et al. (2013)). Table 8 also reports the errors if the free-flow

travel time from Google Maps is naively used to predict taxi trip times. We observe that the error from

using free-flow times alone is significantly higher than our method regardless of which value of λ is selected;

in the case where λ= 2500, we obtain a weighted out-of-sample error of 14%, whereas the free-flow travel

times yield an error of 27%. This improvement in prediction errors can be interpreted as the value added by

using a model of traffic congestion in addition to free-flow travel times when making predictions.

Table 8 Weighted and simple out-of-sample errors for varying λ and free-flow time.

λ 1000 1500 2000 2500 3000 Free-flow time

Out-of-sample error (Weighted) 16.0% 15.6% 14.7% 14.3% 15.2% 27.3%
Out of sample error (Simple) 19.7% 19.6% 19.1% 18.9% 18.9% 31.6%

A.5. Comparison with Linear Regression and Regression Trees on OD Driving Time

Predictions

In this section, we predict travel times on the taxi trip data using two alternative methods, namely, linear

regression and regression tree. The purpose of this comparison is to validate the accuracy of the predictions

generated by the traffic congestion model described in §2.2, which is based on the assumption of Wardrop

equilibrium.

To conduct a fair comparison, all three prediction methods use the same set of input features based on

3,698 OD pairs from 1,408,833 taxi trip records: The observed road segment lengths ls, the total road width

ns · ws, the free flow driving times Ts, and the observed traffic flows zs. We note two challenges in this

prediction task that require simplifying assumptions. First, not all road segments have observed traffic flows;

to address this, we impute the missing values by averaging the traffic flows of the road segments connected to

the focal road segment. Second, because the observations on driving time (i.e., taxi trip duration) are at the

OD-level, predicting the corresponding OD travel times requires specifying the driving path taken by each
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taxi trip, which is unobserved in the data. For simplicity, we assume drivers take the most recommended

driving path as per the Google Directions API. Identifying the driving path (i.e., set of connected road

segments SDp ) for each OD pair then allows us to determine which segment-level feature data correspond to

each OD pair.

For our comparison, we first fit the following linear regression model to the taxi trip data:

taxip =
∑
s∈SDp

[
θ0 + θ1 ·Ts + θ2 · ls + θ3 ·ns ·ws + θ4 ·

ls
ns ·ws

+

(
θ5 + θ6 · ls + θ7 ·ns ·ws + θ8 ·

ls
ns ·ws

)
zs

]
(52)

On the left hand side, taxip is the average duration of taxi trips (taken during the morning rush hours of

6am to 10am on weekdays in 2018) between the OD pair for which the most recommended path is p. The

right hand side includes an intercept term and seven different covariates constructed from the four input

features described above; note that this specification is more general than our driving travel time function

described in (36)-(38). Fitting the model using 10-fold cross validation generates an average prediction error

(given in (51)) of 17.1%. Next, we train a fine-tuned regression tree, again with 10-fold cross validation using

the same input features as in (52), which produces an average prediction error of 16.9%.

Although our prediction method produces a slightly higher prediction error of 18.9% (see Table 8), in

contrast to the linear regression and regression tree methods, it is notably not trained on the taxi trip

durations, taxip. Our model effectively replaces the average trip durations taxip with the road network

structure and commuter demand data, and instead determines the driving time between OD pair w, tDw ,

endogenously in equilibrium. The comparable errors across all three methods suggests the traffic congestion

model produces sensible predictions of travel times on the network.

We highlight a few advantages of our method compared to standard prediction techniques like linear

regression and regression trees. Most importantly, because we explicitly model congestion in the road

network, our approach is more suitable for evaluating counterfactuals, and in particular can be used to

assess the impact of bike lane network expansion on driving travel times. Additionally, our method can

generate reasonable travel time predictions in settings where detailed OD trip data are not available, but

commuter demand and vehicle flows data are. Lastly, as a result of imposing a network structure on the data

and enforcing Wardrop equilibrium, our method does not require knowledge of the driving path chosen by

commuters and can handle missing vehicle flows on some road segments, which must otherwise be imputed.

However, if high-resolution mobility data is available (e.g., GPS coordinates of individual commuters), then

standard prediction methods like linear regression and regression trees may generate more accurate travel

time predictions. We also note that our approach is more computationally demanding because of the need

to solve the non-convex optimization problem WLS-A, given in (16).

B. Map of Divvy Bike Share Stations for Mode Choice Estimation

As described in §5.1, we use Divvy bike share trip data as a proxy for total cycling demand. Because not

all census tracts have Divvy stations, in estimating the mode choice parameters β we focus on a contiguous

region within Chicago, which we identify by selecting a subset of census tracts for which a Divvy station

exists in every adjacent census tract. Figure 8 depicts locations of all Divvy stations in Chicago, as well as

the study region for estimating the mode choice parameters, which approximately corresponds to downtown

Chicago. The road network corresponding to the study region is summarized in Table 9.
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Divvy stations

0 2.5 51.25 Miles

Study region

0 2.5 51.25 Miles

Figure 8 Locations of Divvy stations and study region for mode choice estimation.

Table 9 Size of downtown Chicago network used to estimate mode choice parameters β.

Road segments Driving paths OD pairs
|S| |PD| |W|

Size 6,101 14,632 5,272

C. Robustness Checks: Alternative Instruments for Mode Choice Estimation

In this section, we verify robustness of our mode choice model estimates by considering alternative instru-

mental variables. First, for the BLP-like instrument described in §5.3, we implement several different choices

of the distance interval [a, b]. Then, we consider two additional instruments: A “spatial” instrument in the

spirit of Hausman-type instruments (Hausman 1996, Nevo 2001), which uses the endogenous variables of

nearby OD pairs, and a network-based instrument in the style of He et al. (2021) and Arora et al. (2022),

which is similar to the BLP-like instrument but more explicitly leverages the underlying network structure.

For conciseness, we present the estimates for the two key parameters of interest, which are the coefficients

for bike lane coverage parameter (βC1 ) and driving travel time (βD1 ). In summary, we find our estimates to

be highly stable across all implemented instruments.

For the BLP-like instrument, we vary the distance interval [a, b] by combining each value of a ∈

{500,1000,1500} with each value of b∈ {7000,8000}, for a total of six different distance intervals. The esti-

mates for βC1 and βD1 are shown in columns (1)-(6) in Table 10. Note that column (2) provides the most
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conservative (i.e., smallest) estimate of the effect of bike lane coverage, which is the value used when solving

the bike lane optimization problem in our empirical study §5.4.

The spatial instruments are the average bike lane coverage and driving time of a subset of OD pairs other

than the focal OD pair. Following our setup for the BLP-like instruments in §5.3, for each OD pair w we

define a set of other OD pairs

Z(a,b)
w={i,j} = {w′ = (i′, j′)∈W|dis (i′, i)∈ [a, b] ,dis (j′, j)∈ [a, b]} . (53)

Then for each OD pair w′, the instruments are defined as

Z
(a,b)
w′ =

 1∣∣∣Z(a,b)
w′={i′,j′}

∣∣∣
∑

w∈Z(a,b)

w′={i′,j′}

ρw,
1∣∣∣Z(a,b)

w′={i′,j′}

∣∣∣
∑

w∈Z(a,b)

w′={i′,j′}

tDw

 (54)

For the distance interval [a, b], we set a= 1500 and b= 7500, which corresponds to the largest value of a and

the average value of b used in the BLP-like instrument. Choosing a to be large ensures that the instrumental

OD pairs are moderately distant from the focal OD pair, which is intended to promote the exclusion criterion.

The validity of our spatial instrument, which can be interpreted as a Hausman-type instrument if one

views each OD pair as a “market”, follows from arguments similar to those used in Nevo (2001). In our

setting, relevance follows from the fact that bike lanes and driving travel times are likely to be spatially

correlated due to neighborhood-specific factors. The exclusion criterion is satisfied under the assumption

that unobserved factors that influence cycling or driving demand are independent across OD pairs that are

moderately separated by distance. It is worth noting that the use of this spatial instrument is not completely

free from validity concerns – for instance, in estimating the driving travel time coefficient βD1 , there may

exist complex and high-level network effects that impact traffic congestion, which challenges the exclusion

criterion. In employing Hausman-type instruments, Nevo (2001) recognizes potential challenges with their

validity, and those caveats extend to our study as well. Nonetheless, we find the stability in estimates observed

in Table 10 to be encouraging.

The third instrument is a network-based instrument in the spirit of He et al. (2021) and Arora et al.

(2022), which are similar to BLP-like instruments but explicitly utilize the underlying network structure (of

bike stations and ride-hailing pick-up/drop-off locations, respectively). To explain the variations in bike lane

coverage and driving time between OD pair w = (i, j), we look for exogenous variables that are correlated

with commute demand at census tracts i and j. Analogous to He et al. (2021) and Arora et al. (2022), we

construct instrumental variables for both the origin i and destination j; below, we describe how the origin

instrumental variables are constructed and note that the destination instruments follow similarly.

To construct the origin instrumental variables, we look for a set of exogenous characteristics over cen-

sus tract h ∈ Horigin,b
w=(i,j) that satisfies the following two criteria: (1) h is connected to the origin i of the

focal OD pair in the sense that there is strictly positive commute demand between h and i, and (2)
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h is sufficiently distant from the destination j of the focal OD pair. Formally, we define Horigin,b
w=(i,j) ={

h∈ I|dw=(h,i) + dw=(i,h) > 0,dis (h, j)> b
}

. Then the origin instruments are defined as

Zorigin,b
w =



1∣∣∣Horigin,b
w=(i,j)

∣∣∣
∑

h∈Horigin,b
w=(i,j)

pdh
1∣∣∣Horigin,b

w=(i,j)

∣∣∣
∑

h∈Horigin,b
w=(i,j)

npih
1∣∣∣Horigin,b

w=(i,j)

∣∣∣
∑

h∈Horigin,b
w=(i,j)

(1T ·npih)×pdh
1∣∣∣Horigin,b

w=(i,j)

∣∣∣
∑

h∈Horigin,b
w=(i,j)

hih


where pdh, npih, and hih denote the population density, number of each type of point of interest, and median

household income, and (1T ·npih)×pdh is the interaction between the total number of points of interest of all

categories, (1T ·npih) and population density in the census tract h∈Horigin,b
w=(i,j), respectively. The destination

instruments are then

Zdest,b
w =



1∣∣∣Hdest,b
w=(i,j)

∣∣∣
∑

h∈Hdest,b
w=(i,j)

pdh
1∣∣∣Hdest,b

w=(i,j)

∣∣∣
∑

h∈Hdest,b
w=(i,j)

pih
1∣∣∣Hdest,b

w=(i,j)

∣∣∣
∑

h∈Hdest,b
w=(i,j)

(1T ·pih)×pdh
1∣∣∣Hdest,b

w=(i,j)

∣∣∣
∑

h∈Hdest,b
w=(i,j)

hih


where the set Hdest,b

w=(i,j) =
{
h∈ I|dw=(h,j) + dw=(j,h) > 0,dis (h, i)> b

}
. The validity of these network-based

instruments parallel the reasoning provided in He et al. (2021) and Arora et al. (2022), where the connect-

edness and distance requirements (1) and (2) are intended to satisfy relevance and exclusion, respectively.

Table 10 Robustness results for all instrumental variable specifications.

(1) (2, adopted) (3) (4) (5) (6) Spatial Network

bike lane 2.87*** 1.88*** 4.35*** 2.91*** 2.27*** 1.96*** 2.73* 2.74***
coverage (βC1 ) (0.60) (0.64) (0.65) (0.63) (0.64) (0.62) (1.65) (0.83)
driving -0.29*** -0.21*** -0.28*** -0.19*** -0.26*** -0.18*** -0.36*** -0.19***
time (βD1 ) (0.03) (0.04) (0.03) (0.04) (0.04) (0.04) (0.01) (0.04)

Cragg–Donald
26.04 21.63 24.45 25.27 23.41 22.78 72.51 15.40

statistic

Note: **p < 0.05; ***p < 0.01. Columns (1) ∼ (6) represent the estimations using BLP-like
instruments based on different combinations of (a, b) = (500,7000), (500,8000), (1000,7000),
(1000,8000), (1500,7000), (1500,8000). Columns “Spatial” and “Network” are the estimation
based on the spatial instruments with (a, b) = (1500,7500) and network-based
instruments with b= 8000.

As shown in Table 10, all instruments produce comparable estimates for the coefficients for bike lane cover-

age (βC1 ) and driving time (βD1 ) in the mode choice model, and we reject the weak instrument null hypothesis,

where the relevant critical value is 20.7 (for the Network-based instrument, we reject at a relative bias of

10% under the critical value of 11.05). For completeness, we present estimates for all parameters in Table

12. Next, we conduct a sensitivity analysis to evaluate the influence of each estimate on the corresponding

optimal bike lane network as it relates to cycling ridership and traffic congestion. Specifically, for each IV

estimate shown in Table 10, we re-solve the corresponding BL-A problem to generate the optimal bike lane

design under a bike lane budget of B = 25 miles and congestion tolerance τ = 10%. We then assess each



57

bike lane design using the associated cycling mode share increase (defined in (42)) and worst-case increase

in driving time (defined in (43)), which is obtained by solving the exact user equilibrium problem (24).

The performance metrics of all optimal bike lane plans are presented in Table 11. Note the main set of

results presented in §5 uses the estimates in column (2), because it corresponds to the most conservative

estimate of the impact of bike lanes on cycling demand. Our sensitivity analysis reveals that all of the

instrumental variable estimates produce similar values for the impact of the optimal bike lane design on

cycling adoption and traffic congestion, which is unsurprising given the robustness of the estimates shown

in Table 10.

Table 11 Impact of optimal bike lane design based on different IV estimates.

(1) (2, adopted) (3) (4) (5) (6) Spatial Network

Increase in
2.81% 2.48% 2.93% 2.59% 2.69% 2.63% 2.76% 2.71%

cycling share
Worst-case increase

10.58% 9.37% 11.56% 11.50% 11.05% 7.74% 11.24% 7.14%
in driving time

See the notes for Table 10.
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Table 12 Estimates for all specifications of the commuter mode choice model.

(1) (2) (3) (4) (5) (6) Spatial Netwrok OLS

Cycling

intercept
0.96 2.36 2.01 2.86 3.36 3.93 1.76 2.07 2.16
(2.57) (2.43) (2.47) (2.43) (2.45) (2.46) (2.50) (2.44) (1.71)

cycling -0.24*** -0.22*** -0.25*** -0.22*** -0.23*** -0.21*** -0.25*** -0.22*** -0.21***
time (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)
average elevation -3.01*** -2.66*** -3.41*** -2.74*** -3.18*** -2.84*** -2.72*** -2.68*** -2.10***
grade (0.80) (0.79) (0.82) (0.80) (0.79) (0.79) (0.81) (0.81) (0.66)
bike lane 2.87*** 1.88*** 4.35*** 2.91*** 2.27*** 1.96*** 2.74* 2.74*** -0.14
coverage (0.60) (0.64) (0.65) (0.63) (0.64) (0.62) (1.65) (0.83) (0.15)

Driving

intercept
4.08*** 3.97** 4.32*** 4.11*** 4.32*** 4.29*** 4.95*** 3.87** 4.39***
(1.52) (1.55) (1.51) (1.57) (1.51) (1.58) (1.44) (1.57) (1.69)

vehicle 0.58*** 0.60*** 0.62*** 0.57*** 0.74*** 0.68*** 0.52** 0.62*** 0.49
ownership (0.22) (0.22) (0.22) (0.22) (0.22) (0.22) (0.23) (0.22) (0.31)
driving -0.29*** -0.21*** -0.28*** -0.19*** -0.26*** -0.18*** -0.36*** -0.19*** -0.25***
time (0.03) (0.04) (0.03) (0.04) (0.04) (0.04) (0.01) (0.04) (0.01)
household 0.02 0.03** 0.02* 0.03** 0.03** 0.03** 0.01 0.03** 0.03
income (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)

transit -0.02*** -0.03*** -0.02*** -0.03*** -0.02*** -0.03*** -0.01*** -0.03*** -0.02***
Outside time (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00) (0.01) (0.00)
option transit 0.004*** 0.004*** 0.003** 0.004*** 0.004*** 0.004*** 0.005*** 0.004*** 0.005***

stations (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

movie -0.64*** -0.59*** -0.69*** -0.62*** -0.59*** -0.57*** -0.60*** -0.62*** -0.51***
theater (0.10) (0.10) (0.11) (0.10) (0.10) (0.10) (0.11) (0.10) (0.08)

park
-0.93 -1.01 -1.02 -1.19 -1.52 -1.65 -0.74 -0.79 -0.90
(1.04) (1.03) (1.06) (1.05) (1.05) (1.05) (1.04) (1.03) (0.62)

restaurant
-1.00 -2.01 -2.01 -2.53 -2.34 -2.66 -1.98 -1.95 -1.72
(2.36) (2.21) (2.24) (2.20) (2.22) (2.23) (2.29) (2.22) (1.59)

shopping 0.12 0.14 0.07 0.10 0.13 0.12 0.11 0.15 0.19**
mall (0.11) (0.11) (0.12) (0.11) (0.11) (0.11) (0.12) (0.11) (0.09)

supermarket
-0.37*** -0.30*** -0.38*** -0.36*** -0.34*** -0.33*** -0.32*** -0.39*** -0.27***

Cycling (0.11) (0.10) (0.11) (0.11) (0.10) (0.10) (0.11) (0.11) (0.09)
controls

bakery
0.08 0.19 0.02 0.17 -0.06 0.07 0.08 -0.07 0.13
(0.34) (0.34) (0.35) (0.34) (0.34) (0.34) (0.34) (0.34) (0.26)

bar
1.95*** 1.78*** 1.82*** 1.77*** 2.00*** 1.81*** 1.68*** 1.77*** 1.79***
(0.52) (0.52) (0.52) (0.52) (0.52) (0.52) (0.52) (0.51) (0.38)

university
0.70*** 0.66*** 0.66*** 0.65*** 0.70*** 0.67*** 0.70*** 0.70*** 0.73***
(0.16) (0.16) (0.17) (0.16) (0.16) (0.16) (0.17) (0.16) (0.13)

hospital
-0.39*** -0.36** -0.44*** -0.39*** -0.39*** -0.39*** -0.34** -0.38*** -0.26**
(0.14) (0.14) (0.15) (0.14) (0.14) (0.14) (0.15) (0.14) (0.11)

library
-0.12 -0.11 -0.05 -0.08 -0.13 -0.16 -0.14 -0.13 -0.17**
(0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.09)

movie -0.36*** -0.39*** -0.36*** -0.41*** -0.37*** -0.42*** -0.30*** -0.40*** -0.36***
theater (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.08)

park
-0.53 -0.71 -0.54 -0.77* -0.56 -0.80* -0.40 -0.72 -0.67
(0.47) (0.47) (0.47) (0.47) (0.47) (0.47) (0.46) (0.47) (0.62)

restaurant
0.37 0.14 0.03 -0.12 -0.17 -0.36 -0.12 -0.04 -0.12
(1.45) (1.48) (1.44) (1.49) (1.44) (1.51) (1.37) (1.49) (1.59)

shopping -0.19*** -0.23*** -0.21*** -0.22*** -0.21*** -0.21*** -0.18*** -0.21*** -0.19**
mall (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.09)

supermarket
-0.12* -0.08 -0.10 -0.09 -0.09 -0.09 -0.09 -0.09 -0.08
(0.07) (0.06) (0.06) (0.07) (0.06) (0.07) (0.07) (0.07) (0.09)

Driving
bakery

-0.10 -0.31* -0.09 -0.29 -0.13 -0.27 0.05 -0.24 -0.14
controls (0.18) (0.19) (0.18) (0.18) (0.18) (0.19) (0.18) (0.18) (0.26)

bar
0.97*** 0.84*** 0.89*** 0.80*** 0.87*** 0.73*** 0.99*** 0.77*** 0.83**
(0.28) (0.28) (0.28) (0.28) (0.28) (0.28) (0.29) (0.28) (0.38)

university
-0.36*** -0.36*** -0.36*** -0.34*** -0.34*** -0.32*** -0.37*** -0.33*** -0.34***
(0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.13)

hospital
0.10 0.14* 0.11 0.15* 0.13 0.17** 0.08 0.17** 0.13
(0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.11)

library
-0.40*** -0.36*** -0.39*** -0.35*** -0.39*** -0.38*** -0.39*** -0.35*** -0.35***
(0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.09)

See the notes for Table 10.

D. Mixed-Integer Linear Programming Reformulation of Path Selection Model
BL-A

This section develops the mixed-integer linear programming (MILP) reformulation of the linearized bike lane

path selection model BL-A given in (32). In preparation, we first re-write the constraints (30d) and (30e) as

ξs ≥ ρrs (xs) · vs + εrs (xs) , r ∈Rξ, s∈ S, (55a)

ψmw ≥ arw · dmw + brw, r ∈Rψ,w ∈W,m∈M, (55b)

where

ρrs (xs) = αs (xs) · vrs r ∈Rξ, s∈ S, (56a)
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εrs (xs) =−1

2
·αs (xs) · (vrs)

2
, r ∈Rξ, s∈ S, (56b)

arw = [1 + log (dr)] , r ∈Rψ,w ∈W,m∈M, (56c)

brw =−dr, r ∈Rψ,w ∈W,m∈M. (56d)

The lower-level (i.e., user equilibrium) problem in in (32) is a linear program. As a result, by leveraging linear

programming duality, the bi-level optimization problem (32) can be reformulated exactly as the following

single-level mixed-integer program, where σ,π,µ,λ,γ are dual variables corresponding to each of the primal

feasibility constraints:

maximize
x,y,d,φ,v,ξ,
ψ,µ,γ,λ,π,σ

∑
w∈W

dCw

subject to (23b)− (23d), upper level constraints

SL(x,d,v,ψ,ξ) =
∑
w∈W

µwdw +
∑
r∈Rψ

∑
m∈M

πmrw brw

+
∑
r∈Rξ

∑
s∈S

σrsε
r
s (xs) strong duality

ξs ≥ ρrs (xs) · vs + εrs (xs) , r ∈Rξ, s∈ S,

ψmw ≥ arw · dmw + brw, r ∈Rψ,w ∈W,m∈M,

dOw + dCw + dDw = d̄w, w ∈W,∑
p∈PDw

φp = dDw , w ∈W,

vs =
∑
{p∈PD|s∈SDp }

φp, s∈ S,

φ≥ 0,


primal feasibility

µw−
∑

r∈Rψ
arw ·πmrw ≤−umw , w ∈W,m∈ {C,O} ,

µw + γw−
∑

r∈Rψ
arw ·πDrw ≤−

(
βD0 + (β̃D)>XD

)
, w ∈W,

−
∑
{w∈W|p∈PDw }

γw−
∑

s∈SDp
λs ≤ 0, p∈PD,

λs−
∑

r∈Rξ
ρrs (xs) ·σrs ≤−βD1 ·Ts, s∈ S,∑

r∈Rψ
σrs =−βD1 , s∈ S,∑

n∈N π
mn
w = 1, w ∈W,m∈M,

π,σ≥ 0.



dual feasibility

The advantage of the formulation above is that it only contains linear and bi-linear terms, and can therefore

be transformed into a MILP via introduction of “big-M” constants, which permits solution by commercial

optimization software packages. Specifically, because ρrs (xs) and εrs (xs) are functions of the bike lane deci-

sion x, we rewrite the bi-linear constraints ξs ≥ ρrs (xs) · vs + εrs (xs) and λs −
∑

r∈Rξ
ρrs (xs) · σrs ≤ −βD1 · Ts

equivalently as

ξs ≥ρrs (1) · vs + εrs (1)−M1 · (1−xs) , r ∈Rξ, s∈ S, (58a)

ξs ≥ρrs (0) · vs + εrs (0)−M1 ·xs, r ∈Rξ, s∈ S, (58b)

and

λs ≤−βD1 ·Ts +
∑
r∈Rξ

ρrs (1) ·σrs +M2 · (1−xs) , s∈ S, (59a)
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λs ≤−βD1 ·Ts +
∑
r∈Rξ

ρrs (0) ·σrs +M2 ·xs, s∈ S, (59b)

where M1 and M2 are large constants. For computational efficiency in solving the bike lane path selection

model BL-A, we omit the OD pairs representing the smallest 20% of pairs by demand within the study region

(shaded area of Figure 8). This yields a sub-network that is still representative of commute patterns in the

study region, but is significantly more tractable. The resulting network is summarized in Table 13.

Table 13 Size of downtown Chicago network used in bike lane optimization model BL-A.

Road segment set Driving path set OD pair set
|S| |PD| |W|

Size 4,127 2,458 887

D.1. Sensitivity of Approximation Error to Number of Linear Segments

In our empirical study, we set the number of piecewise linear segments in the approximation BL-A as |Rξ|=

|Rψ|= 15. In this section, we investigate numerically how the number of segments used in the linearization

technique affects the approximation error between the exact formulation BL and the approximation BL-A.

To do so, we fix |Rξ|= |Rψ|, vary both from 1 to 50, and compare the mode shares (dmw /d̃w) and driving

times (tDp ) computed by the linearized lower-level problem (30) to the true mode shares and driving times

from the exact lower-level problem (24). We assume the status quo bike lane network (i.e., x = x̃). Note

that the exact lower-level problem is a convex (quadratic) optimization problem and can thus be solved to

optimality.

Figure 9 shows the relative errors in mode shares and driving times between the exact and linearized user

equilibrium problems. When |Rξ| = |Rψ| = 15, the relative errors for cycling, driving and outside options

shares are 3.22%, 0.49% and 0.62%, respectively, and the average relative driving time error across all OD

pairs is 0.98%. Note that because the objective function of BL is simply the total cycling demand
∑

w∈W d
C
w ,

the relative error in cycling mode shares of 3.22% indicates a small suboptimality gap in Theorem 1 when

|Rξ|= |Rψ|= 15. In general, these results suggest that a modest number of linear segments is sufficient for

obtaining a good-quality MILP approximation of the exact path selection model BL.

D.2. Optimality Gaps at Termination of MILP Formulation

In solving the MILP reformulation of BL-A with commercial solvers, we terminate solution when either the

optimality gap (MIP gap) is within 0.1% or the solution time reaches 6 hours. In Table 14, we present

the relative MIP gaps at termination for each of the 12 combinations of (β,τ) used in the empirical study.

The gaps are largest when both the budget constraint B and the tolerance τ are small, with a maximum

MIP gap of 41.33% for the instance (B,τ) = (10,5%). This magnitude of MIP gap is commonly observed

for computationally challenging bi-level programs (Dan and Marcotte 2019). Note that not solving BL-A to

optimality implies the estimated cycling ridership under the recommended bike lane network presented in

§5.4 and §5.5 are conservative estimates of the ridership under an optimal solution to BL-A.



61

1 6 11 16 2115
Number of segments

0%

100%

200%

300%

400%

500%
R

el
at

iv
e 

sh
ar

e 
er

ro
r

Cycling shares error
Driving shares error
Outside options shares error

(a) Mode share errors.

1 6 11 16 2115
Number of segments

0.0%

10.0%

20.0%

30.0%

40.0%

Av
er

ag
e 

re
la

tiv
e 

dr
iv

in
g 

tim
e 

er
ro

r

(b) Path driving time errors.

Figure 9 Approximation errors due to linearization of user equilibrium problem (24).

Table 14 Relative optimality gaps at termination when solving BL-A as a mixed-integer linear program.

B = 10 B = 25 B = 50 B = 75

τ = 5% 41.33% 41.25% 34.44% 33.63%
τ = 10% 27.48% 18.19% 6.50% 4.79%
τ = 15% 18.24% 8.69% 3.46% 0.66%

E. Comparison with Alternative Bike Lane Planning Methods

This section provides additional technical details and numerical results for the benchmark bike lane planning

methods discussed in §5. §E.1 presents the detailed steps for each of the benchmark methods, and §E.2

summarizes results. In §E.3, we use our estimated model to evaluate the performance of the bike lanes

actually installed by Chicago after our study period (i.e., from 2018-2021).

E.1. Description of Benchmark Methods

Fixed-time model. The fixed-time model assumes that all driving times are unaffected by the addition of

bike lanes. The model is a variation of BL-A, where the segment travel times tDs are fixed to their values

under the status quo bike lane network x̃. Under this assumption, the total driving utility is∑
w∈W

(∫ dDw (x)

0

uDw (x) · dd

)
=
∑
w∈W

(
βD0 + (β̃D)>XD

w

)
· dDw (x) +βD1

∑
s∈S

tDs (x̃) · vs. (60)

We then obtain the following fixed-time analog of S(x,d,v):

SFT (x,d,v) =
∑
w∈W

−
(
uOwd

O
w +uCw(x) · dCw +βD0 d

D
w + (β̃D)>XD

wd
D
w

)
−βD1

∑
s∈S

tDs (x̃) · vs +
∑
w∈W

∑
m∈M

dmw · log (dmw ) .

(61)

Note that the dependence on the bike lane design variable x is now only via the cycling utility uCw . The full

fixed-time model is then given by

maximize
x,y,d,φ,v

∑
w∈W

dCw (62a)
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subject to (23b)− (23d) (62b)

(d,φ,v) = argmin
d,(φ,v)∈Ω(dD)

SFT (x,d,v) . (62c)

As a result of the fixed-time assumption, congestion tolerance constraints such as (35) are irrelevant in this

model, and (62) does not permit control over driving times. The model can be reformulated and linearized

in the same manner as described in §4.2, which leads to a MILP that can be solved using commercial

optimization software. The termination criteria are the same as in §D.2: the solver is terminated when the

optimality gap (MIP gap) is within 0.1% or the solution time reaches 6 hours. Table 15 reports the optimality

gaps at termination for different values of B. We observe that the optimality gaps for the fixed-time model

(62) are comparable to the gaps for BL-A presented in Table 14.

Table 15 Relative optimality gaps at termination when solving fixed-time model as a MILP.

B 10 25 50 75

Gap 25.97% 23.23% 10.05% 8.07%

Greedy heuristic. Next, we present the steps for the greedy heuristic discussed in §5.5. With a slight abuse

of notation, let d̃Cw be the cycling demand on OD pair w under the status quo bike lane network x̃, and let

dC,ww′ be the cycling demand on OD pair w′ if bike lanes are added to path pCw . Similarly, let t̃Dp be the driving

time on path p under x̃, and let twp be the driving time on path p if a bike lane is added to path pCw . Define

τw = max
p∈PD

{
twp − t̃Dp
t̃Dp

}
(63)

to be the worst-case relative increase in driving times over all paths if bike lane are added to path pCw . Note

that dC,ww′ and twp can be computed by modifying the network variable x to contain the desired bike lanes

and then solving the convex user equilibrium problem (24). Next, define

Bw =
∑
s∈SCw

`s(1− x̃s), (64)

which represents the consumption of the budget B due to the addition of bike lanes to path pCw . Lastly, define

δw =
1

Bw

∑
w′∈W

(
dC,ww′ − d̃Cw′

)
. (65)

Intuitively, the parameter δw represents the average increase in system-wide cycling demand per unit of bike

lane added to path pCw . In other words, δw reflects the sensitivity (marginal increase) of cycling ridership to

the addition of bike lanes on path pCw . The pseudocode for the greedy heuristic is presented below.
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Greedy heuristic.

Input: Budget B, existing bike lane network x̃ and S̃, congestion tolerance τ ,
step parameter γ ∈ [0,1], maximum of driving time increase σ= maxw∈W τw.

Output: New bike lane network xG.
1. Let Wk ⊆W index the k largest values of δw. Let Wk

σ = {w ∈Wk|τw ≤ σ} and Skσ =∪w∈Wk
σ
SCw .

2. Set x̄ = x̃. Let G be the largest index in Wk
σ such that

∑
s∈SGσ

`s (1− x̃s)≤B.

Set x̄s = 1 for all s∈ SGσ ∪ S̃.
3. If maxp∈PD{tDp (x̄)/t̃Dp }> 1 + τ , update σ← σ− γ and go to Step 1; else, set xG = x̄ and terminate.

Demand heuristic. The demand heuristic greedily selects bike lane paths according the OD pairs with the

highest status-quo cycling demand. It differs from the greedy heuristic in that it ignores both the congestion

constraints and the network structure, but is still restricted to select from the same set of candidate paths.

The pseudocode is presented below.

Demand heuristic.

Input: Budget B, existing bike lane network x̃ and S̃.
Output: New bike lane network xH .
1. Initialize xH = x̃. Let Wk ⊆W index the k largest demands dCw and let Sk =∪w∈WkSCw .
2. Let H be the largest index such that

∑
s∈SH `s (1− x̃s)≤B.

3. Set xHs = 1 for all s∈ SH∪ S̃.

E.2. Comparison with Benchmark Methods on Cycling Ridership and Congestion

Figure 10 depicts the performance of BL-A, the fixed-time model, the greedy heuristic, and the demand

heuristic for the full set of cases where B = {10,25,50,75}. The results are consistent with the findings

discussed in §5.5 for the B = 25 case. First, the greedy heuristic attains the lowest increase in cycling ridership.

Second, although the fixed-time model and demand heuristic both lead to substantial increases in cycling

ridership, the increase in congestion under those methods are comparable or worse than the prescriptions

from BL-A.

In addition to the worst-case increase in driving time over all routes, as an alternative measure of congestion

we also evaluate the total system-wide driving time, which is computed as∑
w∈W d

D
w (x∗) · tDw (x∗)−

∑
w∈W d

D
w (x̃) · tDw (x̃)∑

w∈W d
D
w (x̃) · tDw (x̃)

. (66)

Figure 11 presents a comparison of all four methods according to the increase in cycling ridership and total

system-wide driving time. We note that the congestion-reducing demand effect and congestion-increasing

road capacity effect discussed in §5.4 remain in effect here. Notably, under most bike lane plans, the total

system-wide driving time decreases compared to the status quo. This is the result of the demand effect

dominating the road capacity effect. Further, when the bike lane budget B is small (B ∈ {10,25,50}), the

recommended bike lane plan from BL-A strictly dominates the greedy heuristic, and outperforms the fixed-

time model and demand heuristic in at least one criterion; when the budget is large (B = 75), all methods
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tend to perform similarly. This is unsurprising because the bike lane plans produced by all methods are less

likely to differ under a generous budget. Overall, these results suggest that the bike lane plans recommended

by our model continue to outperform the benchmark methods using the alternative congestion metric of

total system-wide driving time, and that our prescriptive model is particularly valuable when the bike lane

mileage budget is modest.
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Figure 10 Comparison of BL-A and benchmark methods on worst-case driving time and cycling

ridership.
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Figure 11 Comparison of BL-A and benchmark methods on system-wide driving time and cycling

ridership.
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E.3. Comparison with Chicago’s Bike Lane Expansion Plan

Here we evaluate the performance (as predicted by our estimated model) of the new bike lanes constructed

in Chicago following our study period of 2018. We obtained data on the bike lanes added from November

2018 to November 2021 from the Chicago Open Data Portal (Chicago Data Portal 2023). These new bike

lanes represent an additional 14.48 miles in our study region of downtown Chicago, as illustrated in Figure

12. We match these new bike lanes to our road network and pass the complete bike lane network through our

estimated model (i.e., by solving the associated user equilibrium problem (24)) to obtain predictions of the

impacts on cycling adoption and congestion. Based on our model, these new bike lanes lead to an increase

in the cycling mode share of 0.38% and a maximum driving time increase of 8.23% over all OD pairs.

For comparison purposes, we also re-solve the greedy heuristic described in §5.5 and Appendix E and

our optimization problem BL-A using a budget of B = 14.48 miles and a congestion tolerance of 10%, to

examine how the predictions from each of the three bike lane plans differ. The findings are summarized in

Table 16. Remarkably, we observe that the expansion of bike lanes in Chicago yields similar results to those

achieved by the greedy heuristic: The worst-case increase in driving time between the OD pairs is 8.23%,

slightly higher than the 7.99% recorded by the greedy heuristic, with a difference in cycling shares of 0.03%.

Moreover, in line with the observations we discussed in Section 5.5, BL-A surpasses both Chicago’s actual

implementation and the greedy heuristic with respect to cycling share. In addition, our method with the

specified parameters of B = 14.48 miles and τ = 5% dominates the other two approaches.

While the results in Table 16 suggest the prescriptions from our model might stimulate higher cycling

ridership than Chicago’s current expansion plan, there are some important caveats. First, city planners may

have considered other objectives in addition to ridership and congestion, which would result in differences in

the recommended locations for bike lane installation. Similarly, city planners likely face numerous constraints

that we do not have visibility into when identifying bike lane locations, including land use considerations,

feasibility of construction, and pressure from residents. Lastly, the values in Table 16 are based on predictions

from our estimated congestion and mode choice models, and thus reflect the assumptions built into those

models. Nonetheless, these results suggest that data-driven methods have the potential to significantly benefit

city planners by identifying effective candidate areas for the installation of bike lanes.

Table 16 Comparison between actual bike lane expansion in Chicago, greedy heuristic, and bike lane

optimization model BL-A. For greedy and BL-A, parentheses indicate bike lane budget (in miles) and congestion

tolerance.

New bike lanes Greedy BL-A BL-A
(2018–2021) (14.48, 10%) (14.48, 10%) (14.48, 5%)

Worst-case increase in driving time 8.23% 7.99% 8.57% 4.26%
Increase in cycling share 0.38% 0.41% 2.32% 1.12%
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Figure 12 Chicago’s bike lane network up to 2018 and recently installed bike lanes between 2018–

2021.

F. Validating Estimation Method with Synthetic Data

This section describes additional numerical experiments for validating our estimation procedure. We use

synthetic road network data designed to have similar properties to the real Chicago network studied in §5.

The purpose of these experiments is three-fold: (1) to test the estimation method’s ability to learn the true

parameter θ, (2) to empirically verify the statistical consistency of the estimates (i.e., that estimation error

decreases in network size), and (3) to empirically verify the validity of separating the estimation procedure

for θ and β into two stages.

F.1. Data and Setup

We consider three different sizes of networks by varying the number of edges |S| ∈ {100,500,1000}, and

50 simulation trials for each network size. For each network size and simulation trial, the underlying data-

generation process is as follows.

Network structure. We first construct an undirected road network whose node degree distribution follows

the empirical node degree distribution of the Chicago network. To force the number of edges to be |S|, we

fix the total node degree in the network to be 2|S|. We then set the number of OD pairs |W| as 1
3
|S|, which

approximately matches the ratio of OD pairs to road segments in the Chicago network.

Network features. We generate network features including road lengths ls, s ∈ S, road widths ns · ws,

s ∈ S, coverage of bike lanes ρw, w ∈W, and total commute demands dw, w ∈W by sampling from their

corresponding empirical distributions observed in the Chicago network. Between each OD pair w ∈W, we

designate the three shortest paths (in length) as the candidate driving paths set PD, and the shortest path

as the candidate cycling path pCw . The free flow driving time tDs on each road segment is obtained by setting

the driving speed to be 40 km/h, i.e., Ts = ls
40(km/h)

for all s∈ S. Between each OD pair w ∈W, cycling time
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is set as equal to double the free-flow driving time on the shortest path, i.e., tCw = 2
∑

s∈pCw
Ts, and the outside

option travel time is set equal to tOw =
∑

s∈pCw
Ts + 2u, where u is a random variable uniformly distributed

between 0 and 1.

Driving travel times and mode choice model. Following our modeling framework from §2, we assume

commuters’ mode choice follows a multinomial logit model and drivers’ path choices satisfy Wardrop equi-

librium. Specifically, the utilities of driving, cycling, and the outside option on OD pair w are given by

uDw (θ) = βD0 +βD1 · tDw (θ) + εDw , (67a)

uCw = βC0 +βC1 · tCw +βC2 · ρw + εDw (67b)

uOw = βO1 · tOw + εOw , (67c)

where tDw , tCw , and tOw are the travel time for driving, cycling and the outside option, respectively, ρw is the

bike lane coverage on the cycling path between OD pair w, and εDw , εCw and εOw are idiosyncratic errors. The

demand for each mode m∈ {D,C,O} is then given by

dmw = dw
eu
m
w

euDw + euCw + euOw
. (68)

Following §2, the driving time on road segment s is assumed to take the form

tDs (θ) =

(
θ0 + θ1 · `s + θ2ns ·ws + θ3

(
`s

ns ·ws

))
vs +Ts. (69)

Ground truth. We first generate random values for the parameters θ and β as ground truth. We gen-

erate a four-dimensional parameter vector θ by randomly generating each component from the uniform

distribution with support [0,10−3] to ensure positiveness of tDs (θ). For β, we let [βD0 , β
C
0 , β

D
1 , β

C
1 , β

O
1 , β

C
2 ] =

[u1,−2.5u2,−u3,−u4,−u5,2u6], where {ui : i= 1,2, . . . ,6} are drawn from i.i.d. uniform distributions with

support [0,1]. This approach to randomly generating β ensures that the resulting mode shares resemble the

empirical mode shares in Chicago. We anticipate our results would be qualitatively similar under a different

procedure for generating β. Then the corresponding equilibrium demands for driving dD∗, cycling dC∗ and

outside option dO∗, as well as the path flows φ∗(θ) and segment flows v∗(θ) are all obtained by solving the

exact user equilibrium problem (24).

Vehicle flow observations. The observed traffic flow vector z is generated as zs = max{v∗s (θ) +uvs ,0} for

all s ∈ S, where the uvs ’s are drawn in three different ways: (1) i.i.d. from the standard Normal distribution

N (0,1), (2) i.i.d. from normal distribution with mean 0 and standard deviation 5, denoted N (0,5), and

(3) from a multivariable Normal distribution with 0 mean, and covariance matrix Σ =HTH, where H is a

|S|× |S| matrix with each element drawn i.i.d. from the standard Normal distribution.

For illustration purposes, Table 17 presents some summary statistics from a single simulation trial for the

equilibrium traffic flows v∗s , road length ls, total road width ns ·ws and the binary bike lane indicator variable

xs.
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Table 17 Summary statistics of road segment features in experiments with synthetic data.

count variable mean min median max

500

v∗s 12.75 0.00 9.96 58.15
ls 159.24 0.05 148.34 1727.47
ns ·ws 10.38 3.02 9.05 38.25
xs 0.11 0.00 0.00 1.00

1000

v∗s 29.00 0.00 25.34 114.69
ls 158.62 0.46 144.06 1355.00
ns ·ws 10.28 3.03 8.97 38.71
xs 0.09 0.00 0.00 1.00

5000

v∗s 182.50 0.00 168.81 649.24
ls 161.57 0.01 149.52 3968.41
ns ·ws 10.40 3.01 9.01 44.13
xs 0.10 0.00 0.00 1.00

F.2. Estimation

For each of the 50 simulation trials and for each network size |S| ∈ {500,1000,5000}, we randomly generated

ground-truth values of θ and β according to the procedure described above, and evaluate the accuracy of the

estimates returned by the two-step method described in §3. In particular, for each of the 50 trials, the first

step involves estimating θ from the observe traffic flows z, driving demand dD∗, and network features. We

denote the estimate by θ̂ and the associated vector of driving time predictions as t̂D = [t̂Dw ]w∈W . In the second

step, the predicted driving time t̂D is plugged into the mode choice model (67), from which we generate an

estimate of β, denoted β̂.

To estimate θ in each trial, we first solve the WLS-A problem by applying the BCD algorithm described in

§A.3, starting with an initialized solution θ= [0,0,0,0] and re-solving for each value of λ in {50,100,250,500}.

The algorithm is terminated whenever the relative reduction in objective value is no more than 10−4 from

the previous iteration for three iterations in a row, or the number of iterations exceeds 50. For each trial, we

select λ as the value that minimizes a simple sum of the three errors defined in (50):

‖v̂− z‖22
‖z‖22︸ ︷︷ ︸

Flow error

+
1

|W|
∑
w∈W

max{p∈Pw|φ̂p>0} t̂
D
p −minp∈Pw t̂

D
p

minp∈Pw t̂
D
p︸ ︷︷ ︸

Wardrop error

+
1

|W|
∑
w∈W

∣∣t̂Dw − tD∗w ∣∣
tD∗w︸ ︷︷ ︸

Out-of-sample error

. (70)

In the expression above, the flow error measures the discrepancy between predicted traffic flows v̂ and the

observations z; Wardrop error describes the deviation of the prediction from exact Wardrop equilibrium,

and the out-of-sample error measures the difference between the predicted driving times t̂Dw , w ∈W and the

ground truth driving times tD∗w , w ∈W.

We evaluate the performance of the estimation of θ by computing two quantities: (1) the out-of-sample

error in predicting driving times, corresponding to the third term in (50), and (2) the errors in estimating

θ, defined as

Err(θ) =

∥∥∥θ̂−θ∥∥∥
2

‖θ‖2
. (71)
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By plugging the predicted OD travel times t̂Dw into (67) and applying the linear logarithm transformation in

(18), we can then estimate the MNL model by linear regression. We then evaluate the errors in estimating

β as

Err(β) =

∥∥∥β̂−β∥∥∥
2

‖β‖2
. (72)

F.3. Results: Estimation and Prediction Errors for Varying Network Sizes

Table 18 reports average estimation errors for θ over 50 trials, along with the OD driving time prediction

errors. The distribution of both errors are visualized in Figure 13. We offer a few remarks on the results.

First, when there is less noise in the traffic flow observations (i.e. N (0,1) vs N (0,5)), the estimation error

on both θ and OD driving time prediction are much lower, as expected; however, the error in estimating

θ in the road network with 5000 segments is still only 7.1% in the N (0,5) case. We also observe that the

error in θ decreases from 32.1% to 0.9% when the network size grows from 500 to 5000 in the N (0,1) case;

the error in predicting OD driving time also decreases from 4.8% to 0.6%. We observe a similar tendency in

the N (0,5) and N (0,Σ) cases. These decreases in the errors align with the consistency result presented in

Theorem 2. In addition, although we assume i.i.d. error in Theorem 2, in the N (0,Σ) case where errors are

correlated, the estimation errors continue to decrease in the network size, analogous to the i.i.d. case, and

drop to below 1% for |S|= 5000.

Further, because in our §5 empirical study we only observe the driving demand originating from each

census tract, we ran another set of experiments by using (46) to impute demand at each destination census

tract jointly while estimating θ. Using N (0,1) distributed flow errors and 5000 road segments, the average

errors over 50 trials in estimating θ and predicting OD driving times were 0.87% and 0.59%, respectively;

these errors were 0.86% and 0.57% in the setting where destination demands were directly observable. This

remarkable similarity in errors suggests that the vehicle flow data and network structure collectively carry

significant information about destination demands, meaning imputing them does not substantially increase

errors.

We note here that our experimental setting differs from what is assumed by Theorem 2 in two ways:

1) as discussed in §3, for tractability we solve the approximate estimation problem WLS-A instead of the

exact estimation problem WLS, and 2) the BCD algorithm is not guaranteed to return a globally optimal

solution to either WLS-A or WLS because they are non-convex. Nevertheless, the numerical results in Table

18 and Figure 13 suggest that our estimation procedure is reasonably accurate at recovering the ground-truth

congestion parameters, even when the assumptions of Theorem 2 are not strictly satisfied. In summary, these

results suggest that solving the approximate estimation problem WLS-A using the block coordinate descent

algorithm described in §A.3 produces sound estimates on realistically sized networks.

Next, Table 19 presents the average errors in estimating β in the mode choice model, Err(β), over 50

trials. The distribution of errors is similarly depicted in Figure 14. We observe that the estimation error in

β also decreases in the network size, which is due to the OD pair driving time predictions becoming more

accurate as the network grows. In addition, we note that when traffic flows are observed with errors that
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Figure 13 Distribution of parameter estimation and travel time prediction errors under varying

traffic flow perturbations and network sizes (50 trials).
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Table 18 Average parameter estimation and travel time prediction errors under varying traffic flow

perturbations and network sizes (50 trials).

Traffic flow perturbation
|S| N (0,1) N (0,5) N (0,Σ)

Err(θ)

500 32.13% 84.41% 32.28%
1000 6.75% 43.21% 4.14%
5000 0.86% 7.14% 0.65%

OD driving time

500 4.82% 38.28% 10.65%
1000 1.59% 14.73% 0.99%
5000 0.57% 5.10% 0.51%
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Figure 14 Distribution of mode choice model estimation errors under varying traffic flow pertur-

bations and network sizes (50 trials).

follow N (0,5), the estimation error Err(β) is 3.95% and 1.31% when the number of road segments is 1000

and 5000, respectively.

Lastly, we note that the behavior of the errors shown in Figures 13 and 14 also support our approach of

separating the estimation of θ and β into two steps. An important caveat when interpreting these results

is that the reported errors correspond to the specific data generation procedure described above, and that

alternative procedures may yield different behavior in the errors.

Table 19 Average mode choice model estimation errors (Err(β)) over 50 trials.

|S| N (0,1) N (0,5) N (0,Σ)

500 0.88% 26.33% 4.21%
1000 0.33% 3.95% 0.22%
5000 0.13% 1.31% 0.13%

G. Stochastic User Equilibrium Model

In our model, vehicle flows are assumed to abide by a deterministic user equilibrium (i.e., Wardrop equi-

librium), wherein all users choose the path with the shortest driving time. A well-known alternative is the
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stochastic user equilibrium (SUE), wherein users have idiosyncratic preferences over different driving paths

(Prashker and Bekhor 2004), and path choices also follow an MNL model (i.e., in addition to mode choices).

In particular, path flows in the SUE are given by

φp = dDw
e−ζ·tcp∑

p′∈PDw
e−ζ·tcp′

, p∈PDw ,w ∈W (73)

where tcp represents a general travel cost (or disutility) of path p, which itself may depend on the driving

time tDp (θ) in addition to other route features. The constant ζ reflects the relative importance of travel cost

to the random utility term. Note that the resulting traffic assignment, after also considering mode choices,

echoes the structure of a nested logit model. Following a parallel argument to Proposition 2, it can be shown

that the SUE traffic flows correspond to the set of optimal solutions to the following convex program.

To estimate a SUE-based model from the same data used in our empirical study, one could consider the

following estimation problem:

min
φ,v,θ,ζ

‖v− z‖22

s.t. vs =
∑

{p∈PD|s∈SDp }

φp, s∈ SD,

φp = dDw
e−ζ·tcp∑

p′∈PDw
e−ζ·tcp′

, p∈PDw , w ∈W,

(φ,v)≥ 0.

Although we do not implement the SUE-based estimator above, we comment on a few potential challenges in

doing so. The first is the complexity of the estimation problem. The formulation above does not benefit from

the multi-convex structure of the estimator in §3; as a consequence, different computational methods may

be needed to obtain sound estimates. In addition, the identifiability conditions are likely to be substantially

different than those used in our setting (see Appendix A.1). For example, if we specify tcp, in the simplest

case, as the driving time on path p, i.e., tcp = tDp (θ) =
∑

s∈Sp (Ts +αs(θ) · vs), the estimator contains product

terms of the form ζ · θ, making identification of both ζ and θ non-trivial. Lastly, embedding the SUE model

within our bike lane optimization model – where driving demand dDw is also endogenous – may undermine

tractability due to the nested logit structure.

A key advantage of a SUE-based formulation is that one can naturally incorporate path-specific attributes

into drivers’ path choice problem (in addition to idiosyncratic preferences over paths), allowing for a

richer model of traffic dynamics than the classic Wardrop equilibrium. Nevertheless, the deterministic user

equilibrium and SUE have been observed to yield similar flow patterns in congested networks (Thomas

1991, Prashker and Bekhor 2000), suggesting our main results are unlikely to be drastically different under

an SUE model.
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H. Proofs

Proof of Proposition 1. First, for any fixed bike lane design x, driving demand dD, and congestion

parameter θ, it can be shown that (φ,v) ∈ Ψ(dD,θ) if and only if (φ,v) is an optimal solution to the

following convex program:

minimize
φ,v

∑
s∈S

(
1

2
·αs(x,θ) · v2

s +Ts · vs
)

(75a)

subject to
∑
p∈PDw

φp = dDw , w ∈W, (75b)

vs =
∑

{p∈PD|s∈SDp }

φp, s∈ S, (75c)

φ,v≥ 0. (75d)

This equivalence follows from a well-known result from Dafermos and Sparrow (1969) and its proof is omitted

for conciseness. Next, we re-write formulation (75) by using a variable change based on the equality in (75c).

Substituting
∑
{p∈PD|s∈SDp }

φp for vs allows us to take the constraint (75c) into the objective (75a), which

yields

g(φ,θ) =
∑
s∈S

1

2
·αs(x,θ) ·

 ∑
{p∈PD|s∈SDp }

φp

2

+Ts ·

 ∑
{p∈PD|s∈SDp }

φp

 (76)

It follows that (φ,v)∈Ψ(dD,θ) if and only if φ is an optimal solution to

minimize
φ

g (φ,θ) (77a)

subject to
∑
p∈PDw

φp = dDw , w ∈W, (77b)

φ≥ 0. (77c)

Next, expressing the optimality conditions as a variational inequality, a candidate solution φ is optimal to

(77) if and only if the following inequalities hold:

∇φg (φ,θ)
>
(
φ̃−φ

)
≥ 0, (78a)∑

p∈PDw

φ̃p = dDw , w ∈W, (78b)

φ̃≥ 0, (78c)

where ∇ is the gradient operator, and the pth element of ∇φg (φ,θ) is

∂g (φ,θ)

∂φp
=
∑
s∈SDp

αs(x,θ) · vs +
∑
s∈SDp

Ts. (79)

Following Theorem 1 of Aghassi et al. (2006), it can be shown using linear programming duality that a

candidate solution φ solves (78) if and only if there exists a vector b∈R|W| such that∑
{w∈W|p∈PDw }

bw ≤∇φpg (φ,θ) , p∈P, (80a)

∇φg (φ,θ)
>
φ−

(
dD
)>

b = 0. (80b)
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Therefore, (φ,v)∈Ψ(dD,θ) if and only if (φ,v,b) satisfies (75b), (75c), and (80). The result follows because

WLS also minimizes ‖v− z‖22 over Θ in addition to satisfying (φ,v)∈Ψ(dD,θ). �

Proof of Proposition 2. We assume x and θ are fixed and suppress dependence on them throughout the

proof. It is straightforward to verify that S(x,d,v) is strictly convex in (d,v). Uniqueness of (d,v) follows

from standard arguments using strict convexity of the optimization problem (24). In the remainder of the

proof, we show that (d,φ,v) ∈ Γ(x) if and only if (d,φ,v) solves (24). Using vs =
∑
{p∈PD|s∈SDp } φp, s ∈ S

from (1), the user equilibrium problem (24) can be rewritten as

minimize
φ≥0,d

S†(d,φ) (81a)

subject to d̃w =
∑
m∈M

dmw , w ∈W, (81b)

dDw −
∑
p∈Pw

φDp = 0, w ∈W, (81c)

where

S†(d,φ) =
∑
w∈W

−
(
uOwd

O
w +uCwd

C
w +βD0 d

D
w + (β̃D)>XD

wd
D
w

)
−βD1

∑
s∈S

(∫ ∑
{p∈PD|s∈SDp } φp

0

tDs (v) · dv

)
(82a)

+
∑
w∈W

(
dDw log

(
dDw
)

+ dCw log
(
dCw
)

+ dOw log
(
dOw
))
. (82b)

Let λp, µw and γw be the Lagrangian multipliers for constraints φp ≥ 0, p∈PD, (81b) and (81c), respectively.

We can then write the Lagrangian as

L (d,φ) = S†(d,φ)−
∑
p∈PD

λpφp +
∑
w∈W

µw (dOw + dCw + dDw − d̃w
)

+ γw

dDw − ∑
p∈PDw

φDp

 . (83)

It is straightforward to verify that S†(d,φ) is convex in (d,φ) and that dmw > 0 for all m ∈M. It follows

that a solution (d,φ,v) is optimal to problem (24) if and only if there exist λ,µ,γ that satisfy the Karush-

Kuhn Tucker conditions of (24), i.e., the primal feasibility constraints φp ≥ 0, p ∈ PD, (81b) and (81c), the

dual feasibility constraints λp ≥ 0, p ∈ PD, complementary slackness conditions λpφp = 0, p ∈ PD, and the

stationarity conditions

∂L
∂dOw

=−uOw + logdOw + 1 +µw = 0, w ∈W (84a)

∂L
∂dCw

=−uCw + logdCw + 1 +µw = 0, w ∈W, (84b)

∂L
∂dDw

=−
(
βD0 + (β̃D)>XD

w

)
+ logdDw + 1 +µw + γw = 0, w ∈W, (84c)

∂L
∂φp

=−βD1
∑
s∈SDp

tDs (vs)−
∑

{w∈W|p∈PDw }

γw = λp, p∈PD. (84d)

Using the definition given in (5) that tDp (v) =
∑

s∈SDp
tDs (vs), and using the dual feasibility and complementary

slackness conditions, it is straightforward to show that (84d) is equivalent to

∂L
∂φp

=−βD1 · tDp (v)−
∑

{w∈W|p∈PDw }

γw

{
= 0, if φp > 0,

≥ 0, if φp = 0,
p∈PD. (85)
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Next, using (6), it can be shown that γw =−βD1 · tDw for all w ∈W satisfies (85), assuming βD1 < 0. Then by

the definition of driving utility uDw in (39a), it follows that uDw = βD0 +(β̃D)>XD
w −γw. Next, note that solving

(84a)–(84c) and (81b) yields the unique solution

dmw = d̃w
eu
m
w

euCw + e(β
D
0 +(β̃D)>XDw−γw) + euOw

, m∈ {C,O} ,w ∈W, (86a)

dDw = d̃w
e(β

D
0 +(β̃D)>XDw−γw)

euCw + e(β
D
0 +(β̃D)>XDw−γw) + euOw

, w ∈W (86b)

which implies

dmw = d̃w
eu
m
w

euCw + euDw + euOw
, m∈M,w ∈W. (87)

Note that (d∗,φ∗) is optimal to (81) if and only if (d∗,φ∗,v∗) is optimal to (24), where v∗s =
∑
{p∈PD|s∈SDp } φ

∗
p,

for all s ∈ S from (1b). Then observing the equivalence between (85) and (6), and between (87) and (10),

we conclude that (d∗,φ∗,v∗) is an optimal solution to problem (24) if and only if (d,φ,v)∈ Γ(x). �

Proof of Theorem 1. We first introduce some additional notation. Let

γ =

[
d
v

]
(88)

be the stacked vector of d and v. Further, for any x, let

γ∗(x) =

[
d∗(x)
v∗(x)

]
, γ̃(x) =

[
d̃(x)
ṽ(x)

]
, (89)

where (d∗(x),v∗(x)) and (d̃(x), ṽ(x)) are the optimal solutions of the exact user equilibrium problem (24) and

the linearized user equilibrium problem (30), respectively. Let Ŝ(x,γ) = S(x,d,v) and Ĉ(x,γ) =C(x,d,v).

Finally, let

e= µ1

√
|W|

(
µ2

√
|S|

|Rξ| − 1
+µ3

√
3|W|

|Rψ| − 1

)
, (90)

where µ1 = max
{
d̄,−1/(βD1 ·α)

}
, µ2 =−βD1 ·αs(x) · (v̄− v), and µ3 = log

(
d̄
)
− log (d). The proof proceeds in

three steps. First, we show that for any x, R (x,γ) is strongly monotone of modulus µ1 = max
{
d̄,− 1

βD1 ·α

}
in γ. Second, we show that for any x, |Ĉ (x,γ∗(x))− Ĉ(x, γ̃(x))| ≤ e. Lastly, we use the results from Step 1

and Step 2 to prove the main result. Step 1. By definition of R (x,γ), we have

R (x,γ) =∇γS (x,γ) = diag




log (dDw )−
(
βD0 + (β̃D)>XD

w

)
+ 1 :w ∈W

log (dCw)−uCw + 1 :w ∈W
log (dOw)−uOw + 1 :w ∈W
−βD1 (αs(x) · vs +Ts) : s∈ S


 (91)

where diag (k) is a diagonal matrix whose diagonal elements are vector k. It then follows that

∇γR (x,γ) = diag

([
1/dmw :w ∈W,m∈M
−βD1 αs(x) : s∈ S

])
. (92)

Note that for any fixed x, because dmw ≤ d̄ ∇γR (x,γ) is a positive definite diagonal matrix, with

smallest possible eigenvalues min{1/d̄,−βD1 · α}. Therefore, R(x,γ) is strongly monotone of modulus
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max
{
d̄,−1/ (βD1 ·α)

}
in γ (cf. Proposition 8, Dan and Marcotte (2019)). Step 2. From (27), Ŝ(x,γ) can be

written as

Ŝ (x,γ) =−

(
βD1
∑
s∈S

(Ts · vs) +βD1
∑
s∈S

ξs (vs)

)
︸ ︷︷ ︸

S1(x,γ)

+
∑
w∈W

−
(
uOwd

O
w +uCwd

C
w +βD0 d

D
w + (β̃D)>XD

wd
D
w

)
+
∑
w∈W

∑
m∈M

ψ (dmw )︸ ︷︷ ︸
S2(x,γ)

(93)

Let R1 (x,γ) =∇γS1 (x,γ) and R2 (x,γ) =∇γS2 (x,γ). Let S̃1, S̃2, and S̃ be the piecewise linear approxi-

mations of S1, S2 and Ŝ, respectively, and let R̃1(x,γ) =∇γ S̃1(x,γ), R̃2(x,γ) =∇γ S̃2(x,γ), and R̃ (x,γ) =

∇γ S̃ (x,γ). Because Ŝ (x,γ) and S̃ (x,γ) are both convex in γ, it follows that

〈−R (x,γ∗) ,γ∗− γ̃〉 ≥ 0, (94a)

〈R̃ (x, γ̃) ,γ∗− γ̃〉 ≥ 0, (94b)

where 〈·〉 is the Euclidean inner product operator. By summing the two inequalities above, we obtain

〈R̃ (x, γ̃)−R (x,γ∗) ,γ∗− γ̃〉 ≥ 0. (95)

Next, by Step 1 and the definition of strong monotonicity, it follows that

〈R (x,γ∗)−R (x, γ̃) ,γ∗− γ̃〉 ≥ 1

µ1

‖γ∗− γ̃‖2 . (96)

Combining (95) and (96) yields

〈R̃ (x, γ̃)−R (x, γ̃) ,γ∗− γ̃〉 ≥ 1

µ1

‖γ∗− γ̃‖2. (97)

Applying the Cauchy-Schwarz inequality, we have

µ1‖R̃ (x, γ̃)−R (x, γ̃)‖ ≥ ‖γ∗− γ̃‖ . (98)

Next, using the definition of Ĉ(x,γ) and the Cauchy–Schwarz inequality, we have∣∣∣Ĉ(x,γ∗)− Ĉ (x, γ̃)
∣∣∣= ∣∣∣∣ ∑

w∈W

(dC∗w (x)− d̃Cw(x))

∣∣∣∣ (99a)

≤
√
|W| · ‖γ∗− γ̃‖. (99b)

It follows from (98) and (99b) and that

|C (x,γ∗)−C (x, γ̃)| ≤
√
|W| · ‖γ∗− γ̃‖ (100a)

≤ µ1

√
|W| · ‖R̃ (x, γ̃)−R (x, γ̃)‖. (100b)

Next, we bound the right hand side of (99b). We do so by first decomposing the term ‖R̃ (x, γ̃)−R (x, γ̃)‖

using R1, R2, R̃1, and R̃1. Let ξ̃ and ψ̃ be the piecewise linear approximations of ξ and ψ, respectively. Then

S̃1(x,γ) =−

(
βD1
∑
s∈S

(
tDs · vs

)
+βD1

∑
s∈S

ξ̃s (vs)

)
, (101a)

S̃2(x,γ) =
∑
w∈W

−
(
uOwd

O
w +uCwd

C
w +βD0 d

D
w + (β̃D)>XD

wd
D
w

)
+
∑
w∈W

∑
m∈M

ψ̃ (dmw ) . (101b)
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By differentiating, we obtain

R̃1(x,γ)−R1(x,γ) = diag

([
03|W|

−βD1
(
∂ξ̃s(vs)

∂vs
−αs(x) · vs

)
: s∈ S

])
, (102a)

R̃2(x,γ)−R2(x,γ) = diag

([
∂ψ̃(dmw )

∂dmw
− (log (dmw ) + 1) :w ∈W,m∈M

0|S|

])
, (102b)

where 0a is the a× 1 vector of zeros. By construction, the linear segments in the piecewise linear function

ξ̃s (·) have slopes that are equidistant in the interval αs (x) · [v, v̄], and the difference between two consecutive

slope values is −βD1 αs(x) · (v̄− v)/(|Rξ| − 1). It follows that∣∣∣∣∣−βD1
(
∂ξ̃s (vs)

∂vs
−αs(x) · vs

)∣∣∣∣∣≤ µ2 ·
1

|Rξ| − 1
(103)

holds for all s∈ S, which implies

‖R̃1(x,γ)−R1(x,γ)‖=

√√√√∑
s∈S

(
−βD1

(
∂ξ̃s (vs)

∂vs
−αs(x) · vs

))2

(104a)

≤ µ2 ·
√
|S|

|Rξ| − 1
. (104b)

Similarly, for any w ∈W and m∈M, because the linear segments in the piecewise linear function ψ̃ (·) have

slopes that are equidistant in the interval
[
1 + log(d),1 + log(d̄)

]
, the difference between two consecutive

slope values is (log
(
d̄
)
− log (d))/(|Rψ| − 1). It follows that

∂ψ̃ (dmw )

∂dmw
− (log (dmw ) + 1)≤ µ3 ·

1

|Rψ| − 1
(105)

holds for every w ∈W and m∈M, which implies

∥∥∥R̃2(x,γ)−R2(x,γ)
∥∥∥=

√√√√∑
m∈M

∑
w∈W

(
∂ψ̃ (dmw )

∂dmw
− (log (dmw ) + 1)

)2

(106a)

≤ µ3 ·
√

3|W|
|Rψ| − 1

. (106b)

Combining inequalities (100b), (104b) and (106b), we obtain

|C (x,γ∗)−C (x, γ̃)| ≤ µ1

√
|W|

∥∥∥R̃ (x, γ̃)−R (x, γ̃)
∥∥∥ (107a)

≤ µ1

√
|W|

(∥∥∥R̃1(x, γ̃)−R1(x, γ̃)
∥∥∥+

∥∥∥R̃2(x, γ̃)−R2(x, γ̃)
∥∥∥) (107b)

≤ µ1

√
|W|

(
µ2 ·

√
|S|

|Rξ| − 1
+µ3 ·

√
3|W|

|Rψ| − 1

)
(107c)

= e, (107d)

as desired. Step 2. We now show 0≤C (x∗,d∗ (x∗) ,v∗ (x∗))−C (x̃,d∗ (x̃) ,v∗ (x̃))≤ 2e. Note that from (107d)

and the definitions of γ∗ and γ̃, we have

C(x̃,d∗ (x̃) ,v∗(x̃) + e≥C(x̃, d̃ (x̃) , ṽ (x̃)), (108a)

C(x∗,d∗ (x∗) ,v∗ (x∗))− e≤C(x∗, d̃ (x∗) , ṽ (x∗)). (108b)
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Next, because x∗ and x̃ are the optimal solutions to BL and BL-A and C(x,d,v) is the objective function of

both BL and BL-A, it follows that

C(x∗, d̃ (x∗) , ṽ (x∗))≤C(x̃, d̃ (x̃) , ṽ (x̃)), (109a)

C (x̃,d∗ (x̃) ,v∗ (x̃))≤C (x∗,d∗ (x∗) ,v∗ (x∗)) . (109b)

Combining (108) and (109), we have

0≤C (x∗,d∗ (x∗) ,v∗ (x∗))−C (x̃,d∗ (x̃) ,v∗ (x̃))≤ 2e, (110)

which concludes the proof. �

Proof of Theorem 2. The proof proceeds in two steps. First, we show that for any x, v∗(x,θ) is a

continuous function of θ. Second, we prove the main result. For conciseness, we assume x to be fixed and

suppress dependence on it throughout. Step 1. First, the equilibrium segment flows v∗(θ) are unique by a

straightforward extension of a well-known result on Wardrop equilibria (Hall 1978). Thus, v∗(θ) is a vector-

valued function of θ. Next, we prove continuity of v∗(θ) by following the argument for Proposition 3.1 in

Cominetti et al. (2021). First, define τs(θ) := tDs (v∗(θ),θ) to be the equilibrium travel time on segment s,

and let τ (θ) and t(θ) be the vectors of τs and tDs , respectively. Next, from the proof of Proposition 1, note

that v∗(θ) is attained at an optimal solution to the convex optimization problem (75). Let the objective

function of (75) be defined as:

f (·) :=
∑
s∈S

(
1

2
·αs(x,θ) · v2

s +Ts · vs
)

(111)

Next, following Fukushima (1984), for any fixed θ, τ (θ) is the unique solution to the following strictly convex

dual program:

min
t

f∗ (t,θ)−
∑
w∈W

dDw · min
p∈Pw

∑
s∈SDp

tDs (θ)

 (112)

where f∗ (·) is the conjugate of f(·) and is strictly convex. By Berge’s maximum theorem, because (112) is

jointly continuous in (t,θ), it follows that τ (θ) is upper hemicontinuous in θ (Charalambos and Aliprantis

2013). Because τ (θ) is unique, it is then continuous in θ. Next, because ts (v) is strictly increasing and

continuous in vs for all s ∈ S, the inverse v∗ (θ) = t−1 (τ (θ)) is also continuous in θ. Step 2. Note Ln(θ) =

‖v∗(θ)− z‖22. Then because Θ is finite, for each θ 6= θ0 we have

Ln(θ)−Ln(θ0) = ‖v∗(θ)− z‖22−‖v∗(θ0)− z‖22 (113a)

=

n∑
s=1

(v∗s (θ)− v∗s (θ0)− εs)2−
n∑
s=1

(v∗s (θ0)− v∗s (θ0)− εs)2 (113b)

=

n∑
s=1

(v∗s (θ)− v∗s (θ0))2− 2

n∑
s=1

εs(v
∗
s (θ)− v∗s (θ0)), (113c)

where the final equality follows from algebraic simplification. Because the errors εs are drawn i.i.d. from a

distribution with E[ε] = 0, and v∗s (θ)−v∗s (θ0) is bounded from above and below for all s= 1, . . . , n, it follows

from the weak law of large numbers that
∑n

s=1 εs(v
∗
s (θ)− v∗s (θ0))−→ 0 in probability as n−→∞. Further,
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by condition (iii), limn→∞Pr(
∑n

s=1(v∗s (θ)− v∗s (θ0))2 > 0) = 1, which implies limn→∞Pr(Ln(θ)− Ln(θ0) >

0) = 1. Note Ln(θ) is continuous in θ because v∗(θ) is continuous by Step 1. The result then follows by

Lemma 1 of Wu (1981). �

Proof of Corollary 1. We show that if Gn ∈X , then
∑n

s=1 |v∗s (θ)−v∗s (θ0)|> 0. Let W+ ⊆W be the subset

of OD pairs such that for all θ ∈Θ, each w ∈W+ has at least two paths with positive flows in equilibrium,

i.e., φ∗p1 > 0 and φ∗p2 > 0 for some p1, p2 ∈ PDw , where (φ∗(θ),v∗(θ)) satisfy the equilibrium conditions (7).

Note W+ is non-empty because Gn ∈X by assumption. Next, recall SDp is the set of segments on path p. By

the equilibrium travel time conditions (6), for each w ∈W+ we have tDp1 = tDp2 , or equivalently,∑
s∈SDp1

(αs(θ) · v∗s (θ) +Ts) =
∑
s∈SDp2

(αs(θ) · v∗s (θ) +Ts). (114)

Next, note αs(θ) = θ>qs, and let A(θ) be a |W+| ×n matrix where the entry in (w,s) is given by

Aws(θ) =


θ>qs, if s∈ SDp1 \ S

D
p2
,

−θ>qs, if s∈ SDp2 \ S
D
p1
,

0, otherwise,

(115)

where p1, p2 ∈ Pw and w ∈ |W+|. Define T as the vector with length |W+|, where the wth entry is tw =∑
s∈SDp2

Ts−
∑

s∈SDp1
Ts for p1, p2 ∈ Pw. Following (114) and the definition of A(θ), the segment flows v∗(θ)

satisfy A(θ)v∗(θ) = T for each θ ∈Θ. Next, suppose by way of contradiction that Gn ∈ X and there exists

θ̃ ∈Θ such that θ̃ 6= θ0 and
∑n

s=1 |v∗s (θ̃)−v∗s (θ0)|= 0, or equivalently, v∗(θ̃) = v∗(θ0). Because A(θ̃)v∗(θ̃) =

T, A(θ0)v∗(θ0) = T, and v∗(θ̃) = v∗(θ0), it follows that (A(θ̃) −A(θ0))v∗(θ0) = 0. Therefore, because

v∗s (θ0)≥ 0 for all s∈ S, for all w ∈W+ we have
∑n

s=1(Aws(θ̃)−Aws(θ0))v∗s (θ0) = 0. By definition of A, this

can be written equivalently as∑
s∈SDp1\S

D
p2

((θ̃−θ0)>qs)v
∗
s (θ0) +

∑
s∈SDp2\S

D
p1

((θ0− θ̃)>qs)v
∗
s (θ0) = 0.

However, because Gn ∈ X , there must exist w ∈W+ such that (44) holds, which contradicts the expression

above. We conclude that Gn ∈ X implies v∗(θ) 6= v∗(θ0) and thus
∑n

s=1(v∗s (θ)− v∗s (θ))2 > 0 for all θ 6= θ0,

as desired. �

Proof of Corollary 2. The proof proceeds similarly to the proof of Theorem 2. For each δ > 0, we have

inf
‖θ−θ0‖>δ

(Ln(θ)−Ln(θ0)) = inf
‖θ−θ0‖>δ

(
n∑
s=1

(v∗s (θ)− v∗s (θ0))2− 2

n∑
s=1

εs(v
∗
s (θ)− v∗s (θ0))

)
(116a)

≥ inf
‖θ−θ0‖>δ

n∑
s=1

(v∗s (θ)− v∗s (θ0))2− sup
‖θ−θ0‖>δ

2

n∑
s=1

εs(v
∗
s (θ)− v∗s (θ0)) (116b)

Because the errors εs are drawn i.i.d. from a distribution with E[ε] = 0, and v∗s (θ) − v∗s (θ0)

is bounded from above and below for all s = 1, . . . , n, it follows from the weak law of

large numbers that sup‖θ−θ0‖>δ (
∑n

s=1 εs(v
∗
s (θ)− v∗s (θ0))) −→ 0 in probability as n −→ ∞. Fur-

ther, because limn→∞Pr(inf‖θ−θ0‖>δ
∑n

s=1(v∗s (θ) − v∗s (θ0))2 > 0) = 1 by assumption, we conclude

limn→∞Pr(inf‖θ−θ0‖>δ(Ln(θ)−Ln(θ0))> 0) = 1. Note Ln(θ) is continuous in θ because v∗(θ) is continuous

by Step 1 of the proof of Theorem 2. The result follows by Lemma 1 of Wu (1981). �


