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Abstract. The design of performance-based incentives—commonly used in online labor
platforms—can be naturally posed as a moral hazard principal-agent problem. In this
setting, a key input to the principal’s optimal contracting problem is the agent’s produc-
tion function: the dependence of agent output on effort. Although agent production is
classically assumed to be known to the principal, this is unlikely to be the case in prac-
tice. Motivated by the design of performance-based incentives, we present a method for
estimating a principal-agent model from data on incentive contracts and associated
outcomes, with a focus on estimating agent production. The proposed estimator is stat-
istically consistent and can be expressed as a mathematical program. To circumvent
computational challenges with solving the estimation problem exactly, we approximate
it as an integer program, which we solve through a column generation algorithm that
uses hypothesis tests to select variables. We show that our approximation scheme and
solution technique both preserve the estimator’s consistency and combine to dramati-
cally reduce the computational time required to obtain sound estimates. To demonstrate
our method, we conducted an experiment on a crowdwork platform (Amazon Mechani-
cal Turk) by randomly assigning incentive contracts with varying pay rates among a
pool of workers completing the same task. We present numerical results illustrating
how our estimator combined with experimentation can shed light on the efficacy of
performance-based incentives.
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1. Introduction
The extent to which financial incentives increase worker
performance is of interest in many employment settings.
This question has taken on renewed relevance because
of the emergence of online labor platforms, which are
used for on-demand jobs like ride-hailing (e.g., Uber,
Lyft), delivery (Postmates), freelance work (Upwork),
and short, discrete tasks (Amazon Mechanical Turk).
Although these platforms support different types of
work, they also have common features: workers are
hired and compensated on a per-task basis, work is done
remotely with limited supervision, and workers may be
offered performance-based incentives.1

The design of performance-based incentives can be
naturally posed as a moral-hazard principal-agent prob-
lem, in which an agent’s (worker’s) effort is hidden
from the principal (employer), and the agent’s out-
put depends stochastically on their effort (Holmstrom
1979, Grossman and Hart 1983, Sappington 1991). In this

setting, the relationship between worker output and
effort corresponds to a set of parameters that define
agent production. If these parameters are known, then
the principal’s problem of optimally designing incentives
is well defined and potentially convex (Grossman and
Hart 1983).

In practice, however, the relationship between worker
effort and output is unlikely to be known a priori. Given
data on incentives and associated output, this de-
pendence can be inferred by specifying an appropri-
ate agent model and estimating the parameters that
govern agent production. Despite the importance of
principal-agent models to the analysis of incentive con-
tracts, estimation problems of this nature are scarce in
the literature, even for simple agent models. Estimating
an agent model from observational or experimental data
can be a useful step toward the design of incentive con-
tracts in practice and can also play a role in estimating
agent welfare under a given contract.
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Our main contribution is to present an estimator for
a principal-agent model with hidden actions, along
with an algorithm for solving the estimation problem.
Our focus is on estimating model parameters that
encode agent production, namely, the conditional dis-
tribution over output for each effort level. To reflect a
moral-hazard setting, we assume no data are available
on agent effort, which makes the estimation problem
computationally nontrivial. We make two methodo-
logical contributions in particular: (1) we provide an
estimator that is statistically consistent under appropri-
ate conditions, meaning it uncovers the true model
parameters as the sample size goes to infinity, and (2)
we develop an accompanying solution technique that
is computationally efficient and preserves consistency.

The agentmodelwe consider is nonparametric, in that
we do not assume functional forms for the dependence
of agent output on effort, and we assume both output
and effort levels are discrete. This specification has two
important consequences. First, it admits a simple and
tractable formulation of a general optimal contracting
problem, which allows us to readily solve for an optimal
contract under the estimated agent model. Second, esti-
mating agent models is well known to be challenging
because of a need to embed the agent’s problem, itself an
optimization problem, within the estimator (Bajari et al.
2007). Our modeling approach allows us to express the
estimator as an integer program,which admits a structure
that supports obtaining estimates quickly using a novel
solution technique. In addition to these computational
advantages, our nonparametric model naturally handles
threshold-based incentives, which commonly arise in
practice, and is flexible enough to have strong predictive
performance on a variety of datasetswithout overfitting.

In an empirical study, we show how our estimator can
be combinedwith experimentation to characterizeworker
output over a class of incentive contracts, which in turn
allows us to solve for an optimal contract from the given
class. In a randomized experiment, we recruited a pool
of 500 workers from a crowdwork platform (Amazon
Mechanical Turk), each of whom was asked to complete
an identical proofreading task, with output measured
by the number of typos identified.We created exogenous
variation in payments by randomly generating the para-
meters of an incentive contract for each worker. We then
applied our estimator to the experimental data to investi-
gate the effect of performance-based incentives onworker
output. Our results complement existing findings that
incentives do increase output in crowdwork, althoughwe
observe diminishing returns to output beginning at rela-
tively lowpayments.

Our model has limitations. The agent model does not
include common features of principal-agent problems;
in particular, we do not address risk aversion or un-
observed agent heterogeneity in this paper. This abs-
traction arises from our focus on obtaining consistent

estimates (potentially for a large number of parameters)
while maintaining computational tractability. Generaliz-
ing our estimation procedure to accommodate a richer
class of agent models may expand its applicability in
practice. Furthermore, our nonparametric approach
may be unsuitable for settingswith limited data, because
it may require estimating many parameters if the action
or outcome space is large.

The remainder of the paper is organized as follows.
Section 2 defines the agent model, presents the associ-
ated estimator, and establishes consistency. Section 3
presents an exact formulation of the estimator as an
integer program and discusses the computational
challenges of the exact representation. Section 4 devel-
ops an approximate estimator and an accompanying
solution technique, which dramatically improve tract-
ability while preserving consistency of the exact esti-
mator. Section 5 describes the randomized experiment
and demonstrates the application of our estimator to
experimental data. Section 6 concludes. All proofs are
contained in the e-companion.

1.1. Related Literature
Existing work on estimating principal-agent models is
relatively limited. Several papers have focused on
employee compensation. Ferrall and Shearer (1999) use
payroll records of copper mine workers to estimate the
cost of employee risk aversion. Paarsch and Shearer
(2000) use a tree-planting firm’s records to estimate the
impact of providing piece-rate compensation over fixed
wages, and Shearer (2004) addresses the same question
through a field experiment. Duflo et al. (2012) estimate
an agent model to assess the impact of financial incen-
tives for schoolteachers and use the model to estimate
cost reductions associated with a counterfactual pay-
ment scheme. Misra et al. (2005) and Misra and Nair
(2011) both estimate agent models based on salesforce
compensation and empirically validate the models on
out-of-sample data. Gayle and Miller (2015) focus on
identifying a general principal-agent model motivated
by managerial compensation. Georgiadis and Powell
(2022) provide conditions under which a single A/B
test can estimate the impact of marginal changes to an
incentive contract, using the classical principal-agent
model from Holmstrom (1979). Applications beyond
employee compensation include agriculture (de Zegher
et al. 2019) and healthcare (Vera-Hernandez 2003, Lee
and Zenios 2012, Aswani et al. 2019).

Previous work on estimating principal-agent mod-
els have used a variety of methods, including least
squares (Lee and Zenios 2012), simulated method of
moments (Paarsch and Shearer 2000, Misra et al. 2005,
Misra and Nair 2011, Duflo et al. 2012), simulation-
based maximum likelihood estimation (Ferrall and
Shearer 1999, Vera-Hernandez 2003, Aswani et al.
2019), and numericalminimization of a sum-of-squares
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criterion (Gayle andMiller 2015). Our approach differs
in that we formulate the estimation problem as an inte-
ger program, which is made possible by our specifica-
tion of the agent model, in particular by assuming
agent actions and outputs are discrete.

We solve the estimation problem using a column
generation algorithm that exploits statistical properties
of the formulation. Column generation methods have
been successfully applied to solve large-scale linear
and integer programs in which an extremely large
number of variables is the main obstacle to obtaining
optimal solutions (Vanderbeck andWolsey 1996, Barn-
hart et al. 1998, Lubbecke and Desrosiers 2005). These
methods typically involve solving a tractable master
problem that restricts attention to a subset of decision
variables and selectively introducing variables into the
formulation until a certificate of optimality or alterna-
tive termination criterion is met. In contrast to existing
column generation methods that select columns using
dual information, our algorithm uses a series of non-
parametric hypothesis tests to identify variables to
introduce into the master problem. This approach is
viable in our setting because the decision variables are
mapped to empirical probability distributions con-
structed from the data, giving them a clear statistical
interpretation. By comparison, existing column gener-
ation methods have typically been applied to deter-
ministic settings where the model parameters may
not have any statistical meaning (see Lubbecke and
Desrosiers 2005 for a review).

The estimation problem we consider is also closely
related to a recent line of research on inverse optimiza-
tion, in which optimization model parameters are
inferred from (potentially noisy) solution data. Exist-
ing approaches to inverse optimization have focused
on estimating parameters of linear programs (Chan
et al. 2019) or general convex optimization problems
(Keshavarz et al. 2011, Bertsimas et al. 2015, Aswani
et al. 2018). Similar to our paper, the literature on
inverse optimization is often motivated by an interest
in estimating a model of agent decision-making from
data (Aswani et al. 2018, Esfahani et al. 2018). Our
paper differs in that instead of assuming the agent sol-
ves a convex optimization problem, we assume they
select a utility-maximizing action from a discrete set,
which calls for a different solution approach.

1.2. Notation
For convenience, we describe notational conventions
here. Sets are denoted by uppercase letters, scalars
by lowercase letters, and vectors and matrices by
lowercase boldfaced letters. For a m × dmatrix x, let xa
be the ath row, and let xaj be the entry in the ath
row and jth column. For vectors x and y, let | |x | | 1 "∑m

a"1
∑d

j"1 |xaj | denote the ℓ1-norm, and let x ◦ y "

∑m
a"1

∑d
j"1 xajyaj be the elementwise product. For a ma-

trix of random variables xn, we use both xn → x0 and
plimn→∞xn " x0 to mean xn converges elementwise in
probability to x0 as n→∞, unless otherwise specified.
Define the indicator variable I{·} " 1 if the statement
{·} is true, and zero otherwise. For simplicity, we use
E(·) for all expectations and Pr(·) for all probabilities
throughout the paper.

2. Estimator
In this section, we define the principal-agent model
(Section 2.1), formulate the estimator (Section 2.2), and
prove its statistically consistency (Section 2.3).

2.1. Principal-Agent Model and Contract Data
Our principal-agent model is a discrete analogue to the
canonical model introduced by Grossman and Hart
(1983).We choose this model for both its simplicity and
generality. The interaction between the principal and
agent proceeds as follows. The principal selects a con-
tract to offer the agent, which is amapping of payments
to outcomes (i.e., agent output). Outcomes depend sto-
chastically on a costly action (i.e., effort) taken by the
agent. Outcomes are observed by both parties, whereas
actions are observed only by the agent.

Let A and J index the set of possible actions and out-
comes, respectively, where |A | "m and |J | " d. Let ξ
be a discrete random variable denoting the outcome,
where ξ ∈ J. We denote a contract by r ∈ Rd

+, where rj is
the payment to the agent if outcome j is realized. Let
c ∈ Rm

+ denote action costs, where ca is the cost to the
agent of taking action a. The dependence of outcomes
on actions is governed by a parameter matrixp ∈ Rm×d

+ ,
where πaj denotes the probability that action a leads to
outcome j. We use pa ∈ Rd to denote the probability
mass function over outcomes associatedwith action a.

Given a contract r, the agent selects an action to
maximize their expected utility by solving

max
a∈A

{
∑

j∈J
πajrj − ca

}
: (1)

We assume that there exists at least one action that
yields nonnegative expected utility for the agent. If for
each a ∈ A, the distribution pa is known, the princi-
pal’s problem of selecting a utility-maximizing con-
tract can be formulated as a convex optimization
problem (Grossman and Hart 1983). We take an
inverted perspective in this paper, by instead suppos-
ing that the distributions pa, a ∈ A are unknown, but
may be estimated given appropriate data. In particu-
lar, suppose we have data from n identical agents,2

(ri,ξi), i ∈ I, (2)

where I indexes pairs of incentive contracts and out-
comes, and |I | " n. Let R ⊆ Rd be the set of all possible
values of ri. Furthermore, we assume the contract set R
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is bounded, in that there exists a constant r̄ such that
r̄ " supr∈R | |r | |0 <∞. The assumption that R is bounded
ensures that the contracts ri remain bounded as n→∞.

Next, suppose we have no observations of past agent
actions, and only know the agent’s action set A and
associated costs, c. A natural question in this setting is
to predict the distribution of the outcome ξn+1 under a
new contract rn+1. If p is known, then this prediction
task reduces to solving the agent’s problem (1) under
rn+1, identifying the optimal action a, and taking pa to
be the distribution of ξn+1. Therefore, the matrix p is
the key model primitive for predicting the outcome
associated with rn+1. Our goal is to estimate the parame-
ter p from data that takes the form given in (2).

The assumption that agent costs are unknown is rel-
atively mild in our setting, given that agent actions
are also hidden. From a model-fitting perspective, it
suffices to select c to cover a range of possible costs to
the agent. In our numerical study in Section 5, we take
a machine learning perspective by treating the num-
ber of agent actions m and the set of costs c as hyper-
parameters that are tuned prior to fitting the model.

2.2. Estimator Formulation
Next, we formalize the estimator for p.3 Let

A(r,p) " argmax
a∈A

∑

j∈J
πajrj − ca

{ }
(3)

denote the set of optimal actions under the contract r
and the model p. Let y ∈ {0, 1}n×d be a binary matrix
that encodes historical outcomes, where yij " 1 if ξi " j
and yij " 0 if ξi ≠ j. For each i ∈ I, let xi be a decision
variable representing the agent action under contract
ri, and let v ∈ Rm×d

+ be a set of auxiliary variables,
which will be used to model empirical probabilities.
For fixed p, the loss function Ln(p) is then given by

Ln(p) " minimize
x,v

∑

a∈A

∑

j∈J
|πaj −ωaj | , (4a)

subject to xi ∈ A(ri,p), i ∈ I, (4b)

ωaj "
1

| {i | xi " a} |
∑

i∈{i |xi"a}
yij, a ∈ A, j ∈ J:

(4c)

In this formulation, (4b) restricts each xi to be an opti-
mal action under ri and p, and (4c) defines ωaj to be
the empirical probability that action a leads to out-
come j. The empirical probability ωaj depends on the
cardinality of the set {i |xi " a}, which is the implied
number of data points for which the action a is opti-
mal for the agent under p. The objective (4a) then
simply measures the error between the model proba-
bilities p and the implied empirical probabilities v.

Next, let Π be a compact set representing the
parameter set for p. The estimate is then attained at a

minimizer of the loss function over Π:

(PA) p̂n ∈ arg min
p∈Π

Ln(p):

It will be convenient to interpret the parameter set Π
as the Cartesian product of m probability simplices:
one for each action a ∈ A.

2.3. Statistical Consistency
Let us now suppose there exists a “true” model
parameter p0 that is responsible for generating the
data (ri,ξi), i ∈ I. We say an estimator is statistically
consistent if it produces a sequence of estimates p̂n
such that p̂n → p0 as n→∞. This raises a natural
question: Under what conditions, if any, is PA a con-
sistent estimator? In general, whether an estimator is
consistent depends on the specification of the loss
function. Our main result in this section, Theorem 1,
shows that minimizing the loss function Ln(p) defined
in (4) produces an estimate that is indeed consistent.

Before addressing the consistency of PA, we first
formalize the statistical model that generates the data.
First, we define an important set that is used through-
out our analysis:

Ra(p) " r ∈ R a ∈ argmax
a∈A

∑

j∈J
πajrj − ca

∣∣∣∣∣

}
,

{
(5)

where Ra(p) represents the subset of the contract set R
where action a ∈ A is optimal for the agent, given the
model p. Next, we impose two assumptions. The first
assumption formalizes the data generation process.

Assumption 1 (Data). The data (ri,ξi), i ∈ I, are inde-
pendent samples of random variables (r,ξ), where (i) (r,ξ)
are jointly distributed with support R × J, (ii) r has contin-
uous marginal density function f (r), (iii) Pr(r ∈ Ra(p)) > 0
for all a ∈ A and p ∈Π, and (iv) ξ has conditional mass
function π0

aj " Pr(ξ " j |r ∈ Ra(p0)), where p0 ∈Π.

Assumption 1(iv) states that there exists a “true”
parameter, denotedp0, that is responsible for generating
the outcomes ξi, based on the agent model (1). The state-
ments in (ii) and (iii) are regularity conditions that we
use to prove convergence of p̂n to p0.4 Our assumption
that the data are independent and identically distributed
(i.i.d.) is commonly used in the statistical learning litera-
ture to obtain similar consistency results.5

Next, we consider an additional condition that is
important for our main result in Theorem 1.

Assumption 2 (Identifiability). For every p ∈Π such that
p≠ p0, there exists an (a, j) such that

πaj ≠
∑

b∈A
π0
bj · Pr(r ∈ Rb(p0) |r ∈ Ra(p)):

Assumption 2 is an identifiability condition, which en-
sures that the unknown parameter p0 can be learned
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from the data. This assumption implies a one-to-one
mapping between the parameter setΠ and the joint dis-
tribution of the random variables (r,ξ). In other words,
Assumption 2 guarantees that the distribution of (r,ξ) is
unique for each p ∈Π. In the absence of model identifi-
ability, there may exist multiple parameters values in Π
that generate the same distribution in the observed data;
in this case, it is impossible for any estimation procedure
to pinpoint the true p0. Identifiability conditions like
Assumption 2 are commonly imposed to prove consis-
tency of an estimator (Van der Vaart 2000).

We can now present the main result of Section 2,
which shows that the estimator PA uncovers the true
model parameter p0 under Assumptions 1 and 2.

Theorem 1. Let Assumption 1 hold. Then p̂n→p0 for
any p0 ∈Π if and only if Assumption 2 holds.

Theorem 1 states that the estimator PA is statistically
consistent, which is defined as the convergence of esti-
mates to the true model parameters (Van der Vaart 2000,
Casella and Berger 2002, Bickel and Doksum 2015).
Despite being an asymptotic property, consistency is val-
uable in practice, because it guarantees that parameter
estimates will generally improve with additional data.
Conversely, an inconsistent estimator may produce inac-
curate estimates of the unknown parameters, even if data
are abundant. In pathological cases, the accuracy of an
inconsistent estimator may even decrease with additional
data. Therefore, a proof of consistency provides some
assurance that parameter estimates will be “reasonable”
undermoderate sample sizes, and that the accuracy of the
estimateswill continue to improvewith additional data.

Having established that the estimate p̂n behaves
desirably, we now shift our attention to solving the esti-
mator PA. In a setting where agent actions are observ-
able, a consistent estimate of p0 can be obtained by
simply counting the relative frequency of outcomes asso-
ciated with each action. In contrast, when agent actions
are hidden, the estimation problem is nontrivial. At a
high level, our approach for solving PA will be to lever-
age integer programming within a broader solution
algorithm. The key challenge we face in solving PA is to
develop a solution method that satisfies two criteria: (1)
is computationally efficient and (2) preserves the statisti-
cal consistency of PA. We note here that an alternative
solution approach might be to formulate and solve a
convex approximation to PA, although doing so may
result in an inconsistent estimator. We will therefore
focus on obtaining solutions toPA directly.

3. Exact Integer Programming
Formulation

In this section, we present an approach for solving PA
exactly using integer programming. We will assume

throughout that the parameter setΠ is of the form

Π "
{
p ∈Qπ |p ≥ 0,

∑

j∈J
πaj " 1 for a ∈ A

}
, (6)

where Qπ is a polyhedron defined by a set of linear
inequalities in p. Assuming that p ∈Qπ permits the
formulation of the estimator as a mixed-integer linear
program, while also allowing Π to capture various
shape constraints on the parameter p. For example, if

Qπ "
{
p |

∑d

k"j
πak ≤

∑d

k"j
π(a+1)k,a ∈ {1, 2, : : : ,m− 1}, j ∈ J

}
,

(7)

then for any a ∈ {1, 2, : : : ,m− 1}, Π forces the distribu-
tion pa+1 to stochastically dominatepa in the first order,
meaning costlier actions taken by the agent aremore likely
to generate high output. Alternatively, if Qπ " Rm×d, then
Π permits each pa to be any valid probability mass func-
tion over the outcomes J. We will assume throughout that
Π satisfies (6) unless otherwise stated.

Although PA is based on an intuitive loss function,
a naive formulation of PA as a mathematical program
yields nonlinear terms in the objective, because of how
the variable v enters the loss expression (4a). However,
the estimation problem is amenable to mathematical pro-
gramming approaches under a slight modification. Con-
sider the proxy loss function

Zn(p) " minimize
x,h,v

1
n
∑

a∈A

∑

j∈J
ηaj |πaj −ωaj |

ηaj " | {i |xi " a} | , a ∈ A, j ∈ J,
(4b)− (4c):

(8)

Here, ηaj is the number of observations for which action
a is implied to be optimal for the agent under p. The
loss function Zn(p) can be interpreted as a scaled ver-
sion of Ln(p), where the (a, j) component of Ln(p) is
scaled by ηaj=n. The proxy estimator is then given by

p∗
n " arg min

p∈Π
Zn(p): (9)

Next, we show that (9) can be formulated exactly as a
mixed-integer linear program. With a slight abuse of
notation, let x ∈ {0, 1}m×n be binary variables, where
xia " 1 if a ∈ A(ri,p), and xia " 0 if a ∉ A(ri,p). Introduc-
ing the auxiliary variables zaj to linearize the absolute
values in the objective of (8) (Bertsimas and Tsitsiklis
1997) yields the following formulation:

minimize
p,x,z

∑

a∈A

∑

j∈J
zaj (10a)

subject to zaj ≥
1
n
∑

i∈I
(yij – πaj)xia a ∈ A, j ∈ J, (10b)

zaj ≥
1
n
∑

i∈I
(πaj − yij)xia a ∈ A, j ∈ J, (10c)
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(∑

j∈J
πajrij − ca

)
xia ≥

(∑

j∈J
πbjrij − cb

)
xia, i ∈ I, a ∈ A, b ∈ A,

(10d)
(PA-C)

∑

j∈J
πaj " 1, a ∈ A, (10e)

∑

a∈A
xia " 1, i ∈ I, (10f)

xia ∈ {0, 1}, a ∈ A, (10g)
πaj ≥ 0, a ∈ A, j ∈ J, (10h)
p ∈Qπ: (10i)

Objective (10a) and Constraints (10b)–(10c) represent
the error function 1

n ∥h ◦ (p−v)∥1 given in (8). Con-
straint (10d) ensures that xia " 1 only if a ∈ A(ri,p), that
is, only if action a is optimal under contract ri and the
parameter p. Constraint (10e) ensures that the proba-
bility vector pa sums to one for each a ∈ A, and Con-
straint (10f) forces exactly one action to be selected as
optimal for each contract i ∈ I. Next, we establish an
equivalence between the proxy estimator PA-C and
the original estimator PA.

Proposition 1. The estimate p∗
n attained at a solution to

PA-C is (i) a minimizer of the proxy loss function Zn(p), (ii)
an asymptotic minimizer of the loss function Ln(p),
|Ln(p∗

n)− Ln(p̂n) | → 0, and (iii) consistent,p∗
n → p0:

In Proposition 1, (i) establishes that the mathemati-
cal program PA-C is equivalent to the proxy estimator
(9), (ii) establishes that solving PA-C asymptotically
produces an optimal solution to PA, and (iii) confirms
that PA-C is also a consistent estimator for p0. Based
on the equivalence in Proposition 1, we will refer to
PA-C as the exact estimator in the remainder of the
paper.

The intuition behind Proposition 1 is as follows.
Note that Zn(p) can be interpreted as a reweighted
version of Ln(p), where for each (a, j), the term |πaj −
ωaj | is multiplied by the weight ηaj=n. As n→∞, the
minimal possible loss for both estimators occurs when
πaj " ωaj for all (a, j). Therefore, minimizing Zn(p) also
minimizes Ln(p), in the limit.

Next, (10a)–(10d) contains bilinear terms because of
the product of the decision variables x and p. Because
x and p are binary and continuous variables, respec-
tively, these product terms can be linearized exactly
using well-known reformulation techniques (Glover
1975, Adams et al. 2004), leading to a mixed-integer
linear program. However, a drawback of this app-
roach is that linearizing products of variables is
known to yield weak linear programming relaxations
(Adams et al. 2004, Luedtke et al. 2012), which can
make solving PA-C using off-the-shelf optimization
solvers challenging, even for moderately sized data
sets. In the next section, we propose an approximation

to PA-C that bypasses the linearization step while
remaining statistically well behaved.

4. Restricted Estimator and Statistical
Column Generation

We begin this section by proposing an approximation
of PA-C, which we call PA-D, based on replacing the
parameter set Π with a discrete subset Π̃ (Section 4.1).
We then present a data-driven procedure for con-
structing the parameter set Π̃ and investigate the
behavior of the resulting estimates (Section 4.2). Then,
to solve PA-D, we present a column generation algo-
rithm based on hypothesis testing and show that the
algorithm preserves statistical consistency (Section
4.3). We conclude the section by comparing the
numerical performance of the statistical column gen-
eration algorithm with off-the-shelf optimization solv-
ers (Section 4.4).

4.1. Restricted Estimator
Our approach to approximately solving PA-C will be
to minimize the proxy loss Zn(p) over a restricted
parameter set Π̃ ⊆Π instead of Π. The advantage of
this “restricted estimator” is that the agent optimality
conditions (10d) can be enforced without introducing
bilinear terms into the formulation, which allows us
to avoid the computational challenges that often
accompany linearization techniques.

Next, we define a set that plays a critical role in our
estimation procedure: Let V " {v1,v2, : : : ,v |S | } ⊆ Rd

+ be
a set of vectors indexed by S, where

∑
j∈Jvsj " 1 and

vs ≥ 0 for all s ∈ S. We refer to each vs as a candidate dis-
tribution. Next, let the restricted parameter set be
defined as

Π̃ " {p ∈Π |pa ∈ V for a ∈ A}, (11)

and let

p̃n " arg min
p∈Π̃

Zn(p) (12)

be the associated estimate. For each action a ∈ A, the
parameter set Π̃ restricts the probability distribution
pa to lie in the set of candidate distributions V. We
assume throughout that Π̃ is nonempty.6

Similar to the exact estimator (9), the restricted estima-
tor (12) can also be formulated as a mixed-integer linear
program. The intuition behind this formulation is to con-
struct the estimate p in a row-wise manner by assigning
a candidate distribution in V to each row of p. To that
end, let w ∈ {0,1}m×S, x ∈ {0,1}n×S and φ ∈ {0,1}n×m×S be
binary variables with the following interpretations:
was"1 if the candidate distribution vs is assigned to be
the distributionpa, xis " 1 if the action assigned to candi-
date distribution vs is optimal under contract ri, and
φi
as " 1 if the candidate distribution vs is assigned to dis-

tribution pa and action a is optimal under ri and p.
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Similar to PA-C, let z ∈ Rd×S
+ be auxiliary variables used

to linearize the absolute values in the loss function
Zn(p). Then the restricted estimator (12) is equivalent to
the followingmixed-integer linear program:

minimize
p,w,x,z,φ

∑

s∈S

∑

j∈J
zsj (13a)

subject to zsj ≥
1
n
∑

i∈I
(yij−vsj)xis, s ∈ S, j ∈ J, (13b)

zsj ≥
1
n
∑

i∈I
(vsj − yij)xis, s ∈ S, j ∈ J, (13c)

∑

b∈A

∑

s∈S

(∑

j∈J
vsjrij − cb

)
φi
bs

≥
(∑

j∈J
vs′jrij − ca

)
wat, i ∈ I,a ∈ A, s′ ∈ S,

(13d)
(PA-D)

∑

s∈S
was " 1, a ∈ A, (13e)

∑

a∈A

∑

s∈S
φi
as " 1, i ∈ I, (13f)

xis "
∑

a∈A
φi
as, i ∈ I, s ∈ S, (13g)

φi
as ≤ was, i ∈ I, a ∈ A, s ∈ S, (13h)

πaj "
∑

s∈S
wasvsj, a ∈ A, j ∈ J, (13i)

xis ∈ {0, 1}, i ∈ I, s ∈ S, (13j)
was ∈ {0, 1}, a ∈ A, s ∈ S, (13k)
φi
as ∈ {0, 1}, i ∈ I,a ∈ A, s ∈ S, (13l)

p ∈Qπ: (13m)

Objective (13a) and Constraints (13b)–(13c) together
represent the loss function Zn(p). Constraint (13d)
enforces the agent’s optimality conditions by ensuring
that φi

as " 1 only if candidate distribution vs is mapped
to pa and if action a is optimal for the agent under ri
and p. Constraint (13e) forces exactly one candidate
distribution in V to be mapped to each distribution
pa. Constraint (13f) ensures that only one candidate
distribution in V and action a ∈ A is selected for con-
tract ri. Constraint (13g) forces xis " 1 if candidate dis-
tribution vs is mapped to pa and if action a is optimal
under ri and p. Constraint (13h) ensures φi

as " 1 only
if vs is mapped to pa. Constraint (13i) defines pa as the
candidate distribution from V that is assigned by w,
and Constraint (13m) represents additional shape con-
straints imposed by the polyhedron Qπ. The key dis-
tinction between PA-D and PA-C is that the discrete
nature of the parameter set allows the key decision
variables (w,x,φ) to be binary, which allows us to rep-
resent the agent’s optimality conditions in a way that
circumvents the need for product terms.

Note that Zn(p̃n)−Zn(p∗
n) represents the error in

the loss function that arises from solving the restricted

estimator PA-D instead of the exact estimator PA-C.
Next, we present a random clustering procedure for
constructing the set of candidate distributions V, and
provide a finite-sample characterization of the error
Zn(p̃n)−Zn(p∗

n) under the proposed procedure.

4.2. Construction of Candidate Distributions and
Finite-Sample Error

Because PA-C is a consistent estimator of p0 (by
Proposition 1), we might expect PA-D to also produce
a reasonable estimate of p0 if the loss function error
Zn(p̃n)−Zn(p∗

n) is sufficiently small. Additionally,
Zn(p̃n) is the minimal loss when the restricted
parameter set Π̃ is substituted for Π. As a result, the
magnitude of the gap Zn(p̃n)−Zn(p∗

n) depends on the
restricted parameter set Π̃, and by extension, the set
of candidate distributions V. Here, we present a
method for constructing Π̃, based on leveraging the
observed data (ri,ξi), i ∈ I to guide the construction of
V. Our approach to constructing the candidate
distributions V is summarized in Algorithm 1.

Algorithm 1 (Sample-Based Construction of Candidate
Distributions)

Input: Data (ri,ξi), i ∈ I, parameter ρ > 0.
1. Randomly sample a subset S from I.
2. for each s ∈ S:

Bs " {r ∈ R | | |rs − r | |2 ≤ ρ},
Is " {i ∈ I |ri ∈ Bs}:
for each j ∈ J:
vsj " 1

ns
∑

i∈Isyij:
Output: Candidate distributions V " {vs for s ∈ S}.
Algorithm 1 involves selecting subsets of the contract

data, computing the empirical mass function over out-
comes for each subset, and designating each of these
empirical mass functions as a candidate distribution, vs.
The sth candidate distribution is based on the outcomes
of all contracts ri that fall within a ball Bs ⊆ R; accord-
ingly, we shall refer to the collection of data points
indexed by Is as the sth cluster. The intuition for con-
structing the candidate distributions V in this manner is
simple: Based on the agent model (1), contracts that are
within a small distance of each other are likely to induce
the same action from the agent. Therefore, the empirical
distribution of outcomes for all contracts that lie within
the ball Bs can be assumed to approximate one of the
rows of the true parameter matrix p0 (although which
row it approximates remains unknown).

Next, we show that the error Zn(p̃n)−Zn(p∗
n) is

well behaved if V is constructed using Algorithm 1.
We first impose the following assumption.

Assumption 3 (Clustering Condition). For each a ∈ A,
there exists s ∈ S such that Bs ⊆ Ra(p0) and Is ≠ ∅.

Assumption 3 states that for every action a, Algo-
rithm 1 produces a ball Bs that is entirely inside the
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subset of the contract set R that induces action a from
the agent, Ra(p0). If Bs ⊆ Ra(p0), then every contract in
cluster s induces action a from the agent. This implies
that vs is an empirical distribution sampled from p0

a .
Therefore, Assumption 3 implies that for each row of
p0, there exists at least one candidate distribution in V
that is constructed by sampling from that row.
Assumption 3 is more likely to hold when S in Algo-
rithm 1 is large (because we construct many balls Bs)
and ρ is small (because each ball is smaller).

Our next result shows that if Assumption 3 and an
additional condition on Π holds, we can bound the
approximation error Zn(p̃n)−Zn(p∗

n).
Theorem 2. Let Assumption 3 hold, and let V be con-
structed using Algorithm 1. Furthermore, suppose Π "
{p ≥ 0 |∑j∈Jπaj " 1,a ∈ A}. Then there exists κ ∈ (0, 1)
such that for any ε ∈ (0, 1),

Pr( |Zn(p∗
n)−Zn(p̃n) | > ε) ≤O(n2κn): (14)

We offer a few remarks on Theorem 2. First, observe
that the bound is not monotonic because of the n2

term, which implies that the bound can become looser
in n for small n. This occurs because our proof
approach depends on constructing a feasible solution
p̄, and bounding the absolute number of observations
where the hidden agent action is “misclassified” by p̄.
Thus, the n2 term reflects the possibility that the num-
ber of misclassified actions may increase with the
sample size. Furthermore, note that if κ is close to one
and n is of moderate size, the bound in Theorem 2
may be vacuous. However, because it is guaranteed
that κ ∈ (0, 1), it is straightforward to verify that
n2κn → 0, which implies that the error Zn(p̃n)−
Zn(p∗

n) eventually vanishes in n.
Second, the rate depends on the constant κ, with

lower values of κ leading to faster convergence.
Although κ is not particularly interpretable, it can be
shown to decrease in ρ and increase in the number of
clusters |S | . Note from Algorithm 1 that ρ is the
radius of the ball Bs, for each cluster s ∈ S. Intuitively,
for fixed n, larger values of ρ makes each ball Bs con-
tain a larger number of observations, which leads to
faster convergence. Conversely, larger values of |S |
will slow convergence, for the following reason:
Because the bound depends in part on the cluster that
has the fewest observations, large values of |S | will
increase the probability that at least one of the clusters
has very few data points, which weakens the bound.
Therefore, the rate n2κn is fastest when ρ is large and
|S | is small. However, Assumption 3 is more likely to
hold in the opposite case: when ρ is small and |S | is
large. Therefore, selecting ρ and |S | requires balanc-
ing their effects on κ with ensuring that Assumption 3
holds.

Third, observe that the bound expression is invariant to
ε provided ε ∈ (0, 1). Intuitively, this occurs because the
key object of interest in theproof is a sequence of Bernoulli
variables (which contribute to the loss function error in a
binary manner) that we use to bound the number of
times the hidden action is misclassified by a constructed
solution p̄. However, we note that ε does indeed appear
in the nondominant terms of the bound, as we would
expect (see EC.37 in the proof of Theorem2).

Theorem 2 is only valid for the case where each pa
is permitted to be any valid probability vector (i.e.,
Qπ " Rm×d). This additional condition is imposed on Π
because the randomness of the set V can render the sol-
ution constructed by our proof approach infeasible for a
more general parameter setΠ. However, this additional
assumption on Π is only needed for the finite-sample
characterization of the error in Theorem 2; Proposition
2 shows that the solution from the restricted estimator,
p̃n, is asymptotically optimal with respect to the exact
estimator PA-C for anyΠ that satisfies (6).

Proposition 2. Let Assumption 3 hold. Then PA-D is
asymptotically optimal with respect to PA-C: |Zn(p∗

n)−
Zn(p̃n) | → 0.

The asymptotic optimality established in Proposi-
tion 2 provides assurance that PA-D is a reasonable
approximation to PA-C when n is large, which is pre-
cisely the regime where PA-C is likely to be intract-
able. As a consequence, we should also expect the
restricted estimator to produce “good” estimates of p0

for larger sample sizes. Having established that PA-D
reasonably approximates PA-C, we now focus on
developing a solution technique for tackling the
mixed-integer program PA-D.

4.3. Statistical Column Generation
Observe that the size of the optimization problem
PA-D grows with the number of candidate distribu-
tions in V, which can make PA-D computationally
intractable if V is large. In this section, we propose a
solution algorithm that involves solving PA-D over a
subset of V, which we shall call V+, which dramati-
cally improves the tractability of the estimator PA-D,
with minimal degradation in estimation error. Beca-
use each candidate distribution in V is mapped to a
set of decision variables in PA-D (where the set S
indexes the distributions in V), our solution technique
can be interpreted as a column generation algorithm.

The key step of our approach is a series of nonpara-
metric hypothesis tests, which identifies a subset V+

by performing pairwise comparisons of candidate dis-
tributions in V. The intuition is as follows. Consider
any candidate distribution vs ∈ V, and recall from
Algorithm 1 that vs is the empirical mass function
over outcomes associated with the contracts in the sth
cluster. If there exists another cluster s′ such that all
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contracts in clusters s and s′ induce the same action
from the agent, then vs and vs′ can be interpreted as
two empirical mass functions that were generated by
the same probability distribution (i.e., one of the rows
of p0). Therefore, our goal will be to apply nonpara-
metric hypothesis tests to identify whether any pairs
in V are generated by the same distribution, and to
discard those that are effectively “duplicates.”

4.3.1. Hypothesis Test Function. A hypothesis test
typically consists of four main steps: (1) a null hypoth-
esis is specified that we wish to test, (2) a significance
level α (i.e., type I error rate) is specified for the test,
(3) a test statistic is computed based on the sample
data, and (4) the null hypothesis is rejected if and only
if the magnitude of the test statistic exceeds a thresh-
old τα, where τα depends on α. In the context of our
column generation algorithm, the null hypothesis we
will test is whether two candidate distributions vs and
vs′ are generated from the same probability distribu-
tion (i.e., the same p0

a), for many pairs (s, s′).
We first introduce some additional definitions that

are required by our algorithm. For each s ∈ S, define a
vector cs ∈ Zd

+, where the jth entry is the frequency of
outcome j in the sth cluster of Algorithm 1. The vector
cs is simply a convenient form for representing the
candidate distribution vs within our hypothesis tests.
Let ns " |Is | be the number of observations in cluster s,
and note ns "∑

j∈Jψsj for s ∈ S. Next, for each s ∈ S, by
the weak law of large numbers, there exists ns ∈ Rd

+
such that | |ns − vs | | → 0 as ns →∞. We now define
the main ingredient of the algorithm, which is a test
function that declares whether cs and cs′ are statisti-
cally different at a significance level α.

Definition 1. The functionHα(cs,cs′) : Zd
+ × Zd

+ ⊢→ R is a
test function if Pr(Hα(cs,cs′) > 0 |ns ≠ ns′)→ 1 as ns →
∞ andns′ →∞ andPr(Hα(cs,cs′) > 0 |ns " ns′) ≤ α.

Definition 1 states that the hypothesis test function
returns a positive value if and only if the null hypothesis,
that the candidate distributions vs and vs′ are generated
by the same probability distribution, is rejected. This def-
inition subsumes many two-sample, nonparametric
hypothesis tests. One example is the Kolmogorov–
Smirnov hypothesis test (Massey 1951, Stephens 1974),
which is widely used for its ease of implementation. In
particular, the test function is given by

Hα(cs,cs′) " sup
j∈J

∣∣∣∣
ψsj

ns
−
ψs′j

ns′

∣∣∣∣ − τα

**********
ns + ns′
nsns′

√
,

where τKSα is the critical value associated with a signifi-
cance level of α (Smirnov 1948). The Kolmogorov-
Smirnov test is known to be conservative for discrete
distributions (Slakter 1965, Conover 1972). As a re-
sult, selecting τα based on Kolmogorov–Smirnov critical

values for continuous distributions makes α an upper
boundon the true type I error rate in our setting but other-
wise does not affect the validity of our algorithm. Other
examples of nonparametric tests that fit within our frame-
work are the Anderson-Darling (Anderson and Darling
1952, Scholz and Stephens 1987), chi-squared (Cochran
1952), and theCramér–vonMises (Anderson 1962) tests.

4.3.2. Algorithm Overview. Let S+ index the candidate
distributions in V+. We let PA-D (S+) denote formula-
tion PA-D where S is replaced with the subset S+, and
we let PA-D (S) denote the original formulation with
the full set V. Let V− " V \V+ and S− " S \ S+ denote
the omitted distributions and the accompanying index
set, respectively. Given a significance level α, we shall
say two candidate distributions vs and vs′ are statisti-
cally different if and only if Hα(cs,cs′) > 0; that is, the
null hypothesis that vs and vs′ were generated from a
common probability distribution is rejected. In each
iteration of the main loop of the algorithm, we per-
form a series of hypothesis tests identify a new candi-
date distribution to be introduced to V+, and solve
PA-D (S+) once there does not exist any distribution in
V– that is statistically different from every distribution
in V+ at a significance level of α. Specifically, in each
iteration we compute

s∗ " argmax
s∈S−

inf
s′∈S+

Hα(cs,cs′):

Intuitively, vs∗ is the distribution in V− that is the
“most” different from all distributions in V+, based on
the selected test function Hα. The distribution vs∗ is
then added to V+ if and only if

inf
s′∈S+

Hα(cs∗ ,cs′) > 0: (15)

If (15) holds, then vs∗ is statistically different from
every distribution in V+, and is thus added to V+. If
(15) does not hold, then there are no remaining distri-
butions in V− that are statistically different from all
distributions in V+. In this case, we solve PA-D(S+),
and the algorithm terminates. A summary is given in
Algorithm 2.

Algorithm 2 (Statistical Column Generation (PA-D+))
Input: Data (ri,ξi), i ∈ I, candidate distributions V

produced by Algorithm 1, significance level
α > 0.

Initialize: Set t" 0. Select any s ∈ S. Set S+ " {s} and
S− " S \ {s}.

1. Let s∗ " argmaxs∈S− infs′∈S+Hα(cs,cs′).
if infs′∈S+Hα(cs∗ ,cs′) ≤ 0 or S− " ∅,

Solve PA-D(S+) and obtain solution p+
n , set

T" t, and terminate.
else Update t← t+ 1, S+ ← {S+, s∗}, and

S− ← S− \ {s∗}. Return to Step 1.
Output: Parameter estimate p+

n , iteration count T.
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We will use “PA-D+” to denote the estimator repre-
sented by Algorithm 2. There are two main differences
between existing column generation methods for
large-scale integer programs and the one we propose
in Algorithm 2. First, the column generation process
in Algorithm 2 involves performing several hypothe-
sis tests, which are fast to compute. By comparison,
existing methods for integer programs typically gen-
erate columns by solving an auxiliary optimization
problem (often called the pricing problem because of
its use of dual information), which is often an integer
program itself and may be difficult to solve (Lubbecke
and Desrosiers 2005). Second, Algorithm 2 is not guar-
anteed to produce an optimal solution to PA-D; in
contrast, the purpose of existing column generation
methods is to solve the “original” optimization prob-
lem exactly. Therefore, Algorithm 2 effectively sacrifi-
ces optimality for computational efficiency. However,
although Algorithm 2 does not produce optimal solu-
tions to PA-D, it can be shown to produce a consistent
estimate of p0, which is our main objective in this
paper.

4.3.3. Consistency and Iteration Bound. Next, we
present the main result of Section 4: Theorem 3 shows
that the approximate solution obtained by Algorithm
2 preserves the consistency of the exact estima-
tor PA-C.

Theorem 3. Let p+
n be the estimate obtained by PA-D+

(Algorithm 2). Then

p+
n → p0:

As a consequence of Theorem 3, we should expect
p+

n to provide a reasonable estimate of the unknown
parameter p0. However, Theorem 3 is an asymptotic
result only and that for small n the estimate from
PA-D+ may be less accurate than the exact estimate
obtained by solving PA-C. We compare the per-
formance of these two approaches numerically in
Section 4.4.

Because the termination condition in Algorithm 2
depends on the outcome of a series of hypothesis
tests, the total number of iterations, denoted by T, is a
random variable. In Theorem 4, we show that E[T] is
bounded by a function of the problem parameters,
including the significance level α used in the hypothe-
sis testing step of Algorithm 2.

Theorem 4. Let Assumption 3 hold. Furthermore, assume
that for each s ∈ S, there exists a ∈ A such that Bs ⊆ Ra(p0).
Then

E[T] ≤m[1+ α · |S | · ( |S | −m)]:

The proof of Theorem 4 relies on upper bounding
Pr(T >m): the probability that the number of iterations

in Algorithm 2 exceeds the number of agent actions. In
particular, we show in the proof of Theorem 4 that
Pr(T >m) ≤ αmS. The intuition for the preceding
inequality is as follows. Observe that by construction,
the candidate distribution vs is the empirical distribu-
tion over outcomes associated with all contracts ri such
that ri ∈ Bs. Because for each s ∈ S, Bs ⊂ Ra(p0) for some
a ∈ A (by assumption), there are at most m unique dis-
tributions from which the empirical distributions vs are
generated, which are p0

a , a ∈ A. Next, in Algorithm 2, a
candidate distribution is only added to the set V+ if the
hypothesis testing step finds it to be statistically differ-
ent from every distribution in V+. Therefore, the event
{T >m} implies that a type I error has occurred at some
point during Algorithm 2; that is, a candidate distribu-
tion was added to V+ despite the underlying distribu-
tion p0

a already being “represented” in V+ by another
candidate distribution.

Because α bounds the probability of making a Type
I error, smaller values of α will make Algorithm 2
more conservative in adding new distributions to V+,
thus increasing the probability of the event {T >m}.
Conversely, if α is large, then it becomes more likely
that a given distribution vs is determined to be statisti-
cally different from those in V+, which leads to more
distributions being added to V+ and thus a greater
number of iterations. The dependence on S arises for a
similar reason; as S increases, so does the number of
omitted distributions V−, which increases the likeli-
hood that there exists a distribution in V− that satisfies
the inclusion criterion in Step 2 of Algorithm 2.

Additionally, the bound E[T] ≤ |S | holds trivially,
because T " |S | implies S−T " ∅ by Algorithm 2. As a
result, the bound in Theorem 4 may be vacuous if α is
large but is made meaningful for an appropriate selec-
tion of S and α. It is also straightforward to verify that
the assumption in the statement of Theorem 4 implies
that |S | ≥m, which confirms that the bound on E[T] is
strictly positive for all α > 0.

4.4. Numerical Performance
In this section, we compare the performance of three
estimation methods using synthetic data. The first two
are solving the exact estimator (PA-C) and the
restricted estimator (PA-D) directly with optimization
software. The third is solving the restricted estimator
using the column generation technique outlined in
Algorithm 2 (PA-D+). We focus our comparison on
the solution times and estimation errors from the
three approaches.

4.4.1. Setup. Recall that m and d denote the number
of actions and outcomes, respectively. We consider
five problem sizes, given by (m,d) ∈ {(2, 2), (4, 5),
(5, 10), (10,20), (20,40)}. For each of the five pro-
blem sizes, we consider three sample sizes, given by n

Kaynar and Siddiq: Estimating Effects of Incentive Contracts
Management Science, 2023, vol. 69, no. 4, pp. 2106–2126, © 2022 INFORMS 2115

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

04
.1

75
.2

03
.4

] o
n 

19
 A

pr
il 

20
25

, a
t 2

1:
28

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



∈ {100, 500, 1,000). Then for each combination (m, d, n),
we randomly generate p0 from the appropriately
sized parameter set Π given by (6), where Qπ is given
by (7). For each (m, d, n), we randomly generate con-
tract data by sampling ri uniformly from [1, 10]d for
each i " 1, : : : ,n, and sampling c uniformly from
[0, 1]m. The outcome associated with each ri is
obtained by solving the agent’s problem (1) under the
corresponding p0. We repeat this procedure for a total
of 10 trials for each (m, d, n). To parameterize PA-D,
we set S"50 and ρ " 10 × d. For the hypothesis testing
step for PA-D+, we use the discrete analogue of the
two-sample Anderson–Darling test (Scholz and Ste-
phens 1987), and set S"50, ρ " 10 × d, and α " 0:05.
We use the optimization solver Gurobi 8.0 to solve
PA-C, PA-D, and PA-D+.

4.4.2. Results. Table 1 summarizes the average solu-
tion time and estimation errors over 10 trials for the
three estimators. In each trial, the error associated
with PA-C, PA-D, and PA-D+ is given by
1
md ∥p0 −p∗

n∥, 1
md ∥p0 − p̃n∥, and 1

md ∥p0 −p+
n ∥, respec-

tively. In all trials, we set a time limit of 3,600 CPU
seconds. Dashes in the table indicate instances where
an optimal solution was not found within 3,600 CPU
seconds for any of the 10 trials. In many of these trials,
no feasible solution was found within 3,600 CPU sec-
onds; we therefore only include errors obtained at
optimal solutions to PA-C or PA-D when reporting the
average estimation error.

We offer a few observations regarding Table 1. First,
for each problem size, the estimation error generally
decreases in n, which corroborates our consistency
results (Proposition 1 and Theorem 3, respectively).
Second, for smaller problem instances (e.g., m" 4,
d" 5, n" 1,000), PA-C is less computationally expen-
sive than PA-D+, which we posit is a consequence of
requiring fewer binary decision variables. However,
PA-D+ generally scales more efficiently in the problem
and sample size than PA-C and PA-D, with the most
notable performance improvement occurring at larger
problem instances (e.g.,m"10, d"20, n"1,000). Third,
solving the restricted estimator PA-D directly with
Gurobi is less tractable than solving the exact estimator
PA-C with Gurobi. This is again likely attributable to
PA-D requiring many more binary variables than
PA-C, because of how the restricted parameter set is
represented in the formulation PA-D. Nonetheless, the
results indicate that this intractability can be overcome
by (approximately) solving the restricted estimator
using the statistical column generation technique,
without significantly compromising estimation error.
Fourth, observe that larger problem sizes are not neces-
sarily more computationally expensive; for example,
the average solution time of the instances (2, 2, 1,000)
and (5, 10, 1,000) for PA-C was 245 and 12 seconds,

respectively.We conjecture that this is because the larger
problem sizes offer the estimator additional degrees of
freedom in fitting the agent model to the data (because
of containing a larger number of unknown parameters),
which allows the optimization problem to more quickly
attain the minimal objective function value. Last, the
favorable performance of PA-D+ in the larger instances
(e.g.,m"20, d"40) suggests that our estimator and algo-
rithm can also be used to tractably approximate contract-
ing problems with continuous actions and outcomes
through discretization.

The purpose of Algorithm 2 is not to generate a prov-
ably optimal solution to PA-D, which is typically the
case with similar column generation methods. Instead,
our primary goal is to generate an estimate of the true
parameter p0 that is statistically consistent, competitive
with solutions from solving the exact estimator, and
attainable in a computationally efficient manner. Theo-
rem 3 and the numerical results in Table 1 suggest that
Algorithm 2 meets each of these criteria.

5. Empirical Study: Randomizing
Incentives in a Crowdwork Platform

In this section, we demonstrate our method by using
it to investigate the effect of financial incentives on
work quality in an online labor platform. First, we
conducted an experiment on a crowdwork platform
(Amazon Mechanical Turk) by randomly assigning
incentive contracts to a pool of workers completing
the same task. We then estimate an agent model from
the experimental data, which allows us to characterize

Table 1. Solution Time (CPU Seconds) and Normalized
Estimation Error of Three Formulations Averaged over 10
Trials

m d n

PA-C PA-D PA-D+

Time Error Time Error Time Error

2 2 100 2 0.07 20 0.06 2 0.09
2 2 500 19 0.06 3,432 0.06 4 0.06
2 2 1000 245 0.06 — — 15 0.06
4 5 100 0 0.05 — — 4 0.09
4 5 500 2 0.05 — — 18 0.06
4 5 1000 3 0.05 — — 66 0.06
5 10 100 1 0.04 — — 4 0.06
5 10 500 6 0.03 — — 14 0.04
5 10 1000 12 0.03 — — 47 0.03
10 20 100 2,404 0.02 — — 3 0.02
10 20 500 — — — — 15 0.01
10 20 1000 — — — — 26 0.01
20 40 100 — — — — 2 0.01
20 40 500 — — — — 84 0.01
20 40 1000 — — — — 211 0.01

Notes. Instances that did not solve to optimality under 3,600 CPU
seconds are omitted when calculating average estimation error.
Dashes indicate no instance solved to optimality within 3,600 CPU
seconds in any trial.
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the link between incentives and quality and solve for
an optimal incentive contract.

5.1. Background: Incentives and Quality on
Amazon Mechanical Turk

Crowdwork platforms are used by businesses that
require temporary labor to complete tasks that are
typically difficult for computers but simple for
humans. Common tasks include audio transcription,
classification of images, and data entry. The largest
and most well-known crowdwork platform is Ama-
zon’s Mechanical Turk (“mTurk”), which has been
estimated to have 100,000 unique workers, with 2,000
active at any given time (Difallah et al. 2018).

The mTurk platform allows “requesters” to post
tasks, along with a reward to be paid to the worker
upon successful completion. Workers can select the
tasks they want to complete, typically on a first-come,
first-served basis. Requesters have discretion over
whether to pay workers for their submissions and can
deny payment if the worker’s submission is incom-
plete or low quality. Requesters can also provide
bonuses to workers. Workers can be informed of the
structure of the bonus payment within the instruc-
tions for a task, which offers the requester consider-
able flexibility in designing incentives.

The question of whether financial incentives
improve quality of work in crowdwork platforms has
been addressed in multiple studies, with differing
conclusions. Mason and Watts (2009) find that incen-
tives improve the quantity, but not quality of work;
similarly, Yin et al. (2013) find that the magnitude of
the bonus does not affect quality. In contrast, Horton
and Chilton (2010) and Harris (2011) both find that
quality can improve with worker pay. An important
study in this line of research is by Ho et al. (2015),
who suggest that for tasks where quality plausibly
depends on worker effort (e.g., proofreading), incen-
tives can improve quality.

With respect to experimental design, we underline
two differences between our study and the work cited
above. First, instead of assigning workers to a finite
number of treatments (e.g., bonus or no bonus), we
vary incentives in a continuous manner, meaning the
parameters of the incentive contract are randomly
drawn for each worker. This design significantly com-
plicates the implementation of the experiment on
mTurk but introduces useful variation for estimating
our agent model. Second, we examine how incentives
affect the distribution of work quality instead of aver-
age quality.

5.2. Experimental Setup
5.2.1. Task Design. A major source of observable het-
erogeneity in the mTurk worker population is loca-
tion. Approximately 91% of workers are located in

two countries: the United States (75%) and India
(16%) (Difallah et al. 2018). We collected and analyzed
data from both countries separately.

The experiment involved posting two types of tasks
on mTurk. First, we posted a recruitment task in
which workers were paid $1.00 for agreeing to be noti-
fied of future tasks by email. We recruited 250 work-
ers from both the United States and India using this
task, for a total worker pool of 500. The recruitment
task in each country was made available for one day
and reached its maximum number of submissions
(250 for each location) within 3 hours of posting. Sec-
ond, inspired by Ho et al. (2015), we created a proof-
reading task by inserting 10 typos into a one-page,
500-word excerpt from a newspaper article. The
proofreading task required workers to report the line
number and correct spelling for each misspelled word
in the article (e.g., “5:automobile”). We use a proof-
reading task because it allows us to objectively meas-
ure the quality of each submission (percentage of
typos identified). After constructing the worker pool,
we posted the proofreading task on mTurk and noti-
fied each worker by email of the task’s availability.
The task was available for 24 hours.

5.2.2. Incentive Structure and Randomization. We
next describe how we randomized incentives among
workers. The mTurk platform allows requesters to
assign “qualification” criteria to tasks, which only
allows workers with the required qualifications to
view and complete the task. For example, a requester
might assign a location or age-based qualification to a
task if they wish to target a specific worker popula-
tion. Requesters can also create and assign custom
qualifications to workers. When conducting a random-
ized experiment, creating and randomly assigning
qualifications to workers effectively allows the reques-
ter to construct multiple treatment groups, where each
qualification represents one treatment.

We use the qualification feature in mTurk to create
exogenous variation in worker incentives. We first
created 500 unique qualifications and assigned each
qualification to a single worker in the pool. We then
created 500 tasks where each task was randomly
assigned to a qualification. As a result, for each of the
500 tasks, only a single worker in our pool was able to
view and complete it.

The payment for the proofreading task consisted of
two components: a base payment for finding at least
25% of the typos in the document and an additional
bonus payment for finding at least 75% of typos. For
each task (i.e., each worker in the pool), we drew base
and bonus uniformly from the interval [$0.10, $1.00],
rounded to the nearest $0:01. We provided the details
of the payment structure upfront in the task instruc-
tions. Because workers were only able to view the task
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assigned to them, workers could not observe the pay-
ment offered to others and had no knowledge that
payments were randomized. In the context of the
proofreading task, worker output corresponds to the
fraction of typos corrected, which we also refer to as
the task quality.

5.2.3. Submissions. We collected a total of 346 sub-
missions, each from a unique mTurk worker. Of these,
215 submissions were from U.S.-based workers and
131 were from India-based workers. We analyze the
data from U.S. and India workers separately through-
out our study. Figure 1 depicts the distribution of
quality scores for workers in each location. A large
number of submissions achieve a quality score of
zero. Low-quality submissions are a well-known fea-
ture of mTurk; because verifying responses manually
for a large number of submissions is difficult, workers
may submit blank or low-quality responses in the
hope of nevertheless receiving a payment (Ipeirotis
et al. 2010). Scores of zero may also be because of sub-
missions not being in the correct format, which we
specified as a condition for payment in the task
instructions.

The mTurk platform provides timestamps for when
a worker accepted and submitted a task. The mean
completion time (i.e., time between acceptance and
submission) was 9.7 minutes, and 95% of workers
submitted the task between 1 and 29 minutes after
accepting it. Because mTurk allows workers to accept
tasks into a queue before working on them, the
recorded completion time is an upward-biased meas-
urement of the actual time the worker spent on the
task. As a result, completion time may be a poor
proxy for true worker effort, because the requester
cannot observe how much time the task spent in the
worker’s queue. We therefore treat effort as fully

hidden and do not use completion time data in our
study.

Based on each worker’s completion time, we esti-
mated the average wage to be $14:50/hour for our
task (including the guaranteed $1.00 payment at
recruitment). This is likely a conservative estimate of
the true average wage because of the queueing behav-
ior described previously.

5.3. Estimation and Validation
Next, we describe the application of our estimation
procedure to the experimental data. Putting the
results of the experiment in the format required by
our estimator is straightforward. Recall that each
worker was eligible for three possible payments based
on their submission quality: no payment (if they
found 0%–25% of typos), a base payment (25%–75%),
or both a base and bonus payment (75%–100%). In
our framework, this corresponds to d" 3 possible per-
formance levels for the worker’s outcome ξi. Accord-
ingly, the ith worker’s incentive contract ri has the
components ri1 " 0, ri2 " basei, and ri3 " basei + bonusi,
where basei and bonusi are the randomly generated
parameters for that worker. For the PA-D+ algorithm,
we set ρ " 0:5, S"10, and α " 0:0001 throughout all
experiments.

5.3.1. Measuring Goodness of Fit. We require a good-
ness of fit metric for fitting and validating the model.
Recall that our estimation procedure generates a pre-
diction of the outcome distribution: Given an estimate
p̂, a contract r, and action costs c, the model’s predic-
tion of the outcome distribution under r is p̂a(r), where
a(r) is the agent’s optimal action under contract r. For
ease of interpretation, we measure goodness of fit as
the absolute error between the empirical and pre-
dicted probability of a given outcome, averaged over

Figure 1. (Color online) Distribution of Quality Scores for Submissions Made byWorkers in the United States and India

(a) (b)

Notes. (a) United States. (b) India.
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all outcomes. Specifically, let (ri,ξi), i " 1, : : : ,n be the
data we wish to measure our model fit against. As
before, for each i, let yij " 1 if ξi " j (if outcome j
is observed). Then the mean absolute error (MAE) is
given by

MAE " 1
d
∑d

j"1

∣∣∣∣∣
1
n
∑n

i"1

(
π̂a(ri),j − yij

)∣∣∣∣∣: (16)

5.3.2. Setting Cost Parameters. Two hyperparameters
in our model are the number of actions, m, and the
action costs, c1, : : : , cm. We selected these parameters
using a standard 10-fold cross-validation procedure,
using MAE to measure cross-validation errors. To
avoid performing an extremely large number of cross-
validation iterations, we imposed additional structure
by assuming action costs were of the form ca " (a
−1) · δ, for a " 1, : : : ,m. We used cross-validation to
jointly select m and δ from the sets {2, 3, 4} and
{0:02,0:05,0:1, 0:2, 0:5}, respectively (units of the latter
set are dollars). Results are presented in Table 2.
Errors are relatively stable for all values of δ when
m"2 or m"3, whereas the model appears to overfit
for m"4. We select (m,δ) " (3, 0:1) for both the U.S.
and India data sets, resulting in the cost vector
c " [0, 0:1, 0:2]. Last, for Algorithms 1 and 2, we set
ρ " 0:5, S"50, and α " 0:01, and use a chi-squared test
for the hypothesis test step of Algorithm 2.

Our handling of action costs is fairly stylized,
because they are treated as hyperparameters to be
tuned prior to model fitting. Horton and Chilton
(2010) estimate the median reservation wage of
mTurk workers to be $1.38/hour. Given that the
median completion time for our task was 8 minutes,
$0.00–$0.20 appears to be a reasonable approximation
for the range of effort costs of an mTurk worker. We
discuss costs in more detail in Section 5.5.

5.3.3. Bootstrapping. Given our moderately sized
data set (n" 215 and n" 131), we validated our estima-
tion procedure by bootstrapping. For each of 100 repe-
titions, we sampled n observations with replacement

and estimated the model parameters from the sample
using Algorithm 2. For each repetition, we assessed
model fit using two hypothesis tests: a Chi-squared
(χ2) test, which is appropriate in our setting because
outcomes are discrete, and an exact test using MAE as
the test statistic, where the sampling distribution is
obtained through Monte Carlo simulation. In both
hypothesis tests, the null hypothesis is that the em-
pirical distribution of quality outcomes in the out-of-
bootstrap data are generated by the fitted model.
Accordingly, we interpret large p values as indicating
a good model fit.

Table 3 shows the distribution of test statistics and
associated p values over the 100 bootstrap repetitions.
Both tests produced comparable p values within each
worker group. The median p value was above 0.1 for
both groups, which suggests the model reasonably fits
the joint distribution over (r,ξ) in the majority of boot-
strap iterations.

Table 4 presents the estimated values of p and
standard errors for both worker groups. Each 3 × 3
section in the center of Table 4 corresponds to the esti-
mated p matrix for the labeled worker group, aver-
aged over 100 bootstrap repetitions. For convenience,
we refer to the outcome in which the worker earns the
bonus (ξi " 3) as the “bonus outcome” and the proba-
bility that this outcome is realized as the “bonus prob-
ability.” The highest cost action (a"3) has the highest
bonus probability in both worker groups, and the
bonus probability is lower in the India worker group
compared with the U.S. group for all actions.

Our estimation procedure treats each action a as a
latent variable. The solution to the estimation problem
produces a clustering where each outcome is assumed
to have been generated by one of the m distributions
(i.e., agent actions). As a result, for each bootstrap rep-
etition, we can count the number of observations that
are assigned to each action by the estimator. The aver-
age number of observations mapped to each action
are reported in the final column of Table 4.

5.3.4. Predictive Performance. Next, we evaluate the
predictive performance of the estimator. For each of
the 100 bootstrap models, we compute the prediction
error (given in (16)) attained by the fitted model on
the out-of-bootstrap observations. We set S" 10,
ρ " 0:5, and α " 0:0001. To serve as performance
benchmarks, we repeat the bootstrap procedure for
standard implementations of multinomial logistic
regression (MLR) and classification trees (CT), both of
which also generate predictions of the outcome distri-
bution for a given set of contracts.7 Figure 2 depicts
the distribution over prediction errors for the three
methods over the 100 bootstrap repetitions. For the
U.S. data, the average MAE for PA-D+, MLR, and CT
is 0.059, 0.070, and 0.093, respectively; for the India

Table 2. Ten-Fold Cross-Validation Errors (MAE) for U.S.
and India Groups, with Varying Number of Actions (m)
and Cost Spacing (δ)

m

δ

0.02 0.05 0.1 0.2 0.5

United States 2 0.06 0.06 0.07 0.06 0.06
3 0.04 0.06 0.04 0.06 0.05
4 0.18 0.11 0.12 0.12 0.08

India 2 0.07 0.08 0.06 0.06 0.08
3 0.07 0.05 0.06 0.06 0.08
4 0.15 0.08 0.06 0.11 0.09
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data, the average errors are 0.072, 0.086, and 0.112. In
summary, Figure 2 confirms that the PA-D+ estimator
produces sound predictions on the experimental mTurk
data and is competitive with well-known benchmark
methods. In Section EC.2 of the e-companion, we fur-
ther compare all three methods on several synthetic
instances and find that our estimator continues to per-
form well.

5.4. Impact of Bonuses on Quality
We now use the estimated model to examine the effect
of varying the bonus payment on quality. For a given
incentive contract, we form a prediction of the outcome
distribution by averaging over the 100 bootstrapped
models, which improves stability and reduces overfit-
ting (Breiman 1996). Let p̂1, : : : , p̂K be the estimates
obtained from K bootstrap repetitions. The probability
of observing outcome j under the incentive contract r is
then given by 1

K
∑K

k"1p̂
k
ak(r),j, where ak(r) is the optimal

action for contract r in the kth agent model. To isolate
the influence of the bonus payment, we fix the base
payment to $0:10, vary the bonus payment between
$0:10 and $1:00, and compute the probability of each
quality outcome under each bonus amount. We repeat
for a base payment of $1:00.

Figure 3 shows the results for both the U.S. and
India groups of workers. For a base payment of $0:10
(Figure 3, (a) and (b)), the bonus probability (i.e., prob-
ability that submission quality is above 75%) increases
moderately for both groups as the bonus is increased
from $0:10 to 1.00 (from 0.21 to 0.36 for the U.S. group;
from 0.09 to 0.17 for the India group). However, with
a base payment of $1:00 (Figure 3, (c) and (d)), the
effect of increasing the bonus payment from $0:10 to
$1:00 is dampened (bonus probability increases
from 0.34 to 0.37 for the U.S. group; 0.18 to 0.22 for

the India group). These results suggest that increasing
the bonus payment can indeed increase quality, but
the effect is significantly diminished when the base
payment is already high. A qualitatively similar result
can be obtained by fixing the bonus payment and
varying the base payment (results not shown).

We shed some light on the mechanics behind
Figure 3. Because our predictions are based on the
average of 100 different agent models, for a fixed
incentive contract, we can count the number of mod-
els in which each action is taken. Furthermore, if the
bonus payment increases, an agent may find it opti-
mal to “switch” from a low-cost action to a high-cost
action, thus increasing the probability of realizing
the high-quality outcome. The change in probabil-
ities depicted in Figure 3 is the result of the underly-
ing agent models jumping from one action to the
next as the parameters of the contract change.

Figure 4 shows the fraction of agent models that take
each of the three actions as the bonus is increased from
$0:10 to $1:00. The four panels in Figure 4 map to the
four panels in Figure 3. As expected, when the base
payment is $0:10, increasing the bonus amount from
$0:10 to $1:00 is associated with agents switching away
from the lowest cost action (a"1) toward the higher
cost actions (a"2 and a"3). Moreover, the shift toward
higher cost actions is more pronounced for the U.S.
worker group, where the fraction of agents taking the
highest cost action (a"3) increases from 0 to 0.69; for
the India group, this fraction increases from 0 to 0.17. In
parallel with Figure 3, when the base payment is $1:00,
the fraction of agents taking the highest cost action
(a"3) is higher overall, but the shift toward higher
cost actions as the bonus is increased is muted. In
other words, the stability in selected actions shown in
Figure 4, (c) and (d) explains the stability in outcome

Table 3. Percentiles of Chi-Squared and MAE Test Statistics with Associated p Values over 100 Bootstrap Repetitions

Test Statistic 5th 25th Median 75th 95th

United States χ2 (p value) 0.20 (0.90) 1.70 (0.43) 3.42 (0.18) 7.36 (0.03) 23.58 (0.00)
MAE (p-value) 0.02 (0.89) 0.04 (0.42) 0.07 (0.14) 0.10 (0.02) 0.15 (0.00)

India χ2 (p value) 0.18 (0.91) 0.99 (0.61) 2.13 (0.34) 5.23 (0.07) 14.33 (0.00)
MAE (p-value) 0.02 (0.93) 0.05 (0.65) 0.09 (0.35) 0.14 (0.09) 0.19 (0.00)

Table 4. Estimated Values of p for Both Groups, with Standard Errors in Parentheses

Actions (a)

Outcomes ( j)

No. of observations1 2 3

United States 1 0.46 (0.18) 0.34 (0.18) 0.20 (0.09) 19
2 0.30 (0.10) 0.42 (0.12) 0.28 (0.08) 27
3 0.20 (0.07) 0.43 (0.07) 0.37 (0.06) 169

India 1 0.57 (0.12) 0.34 (0.12) 0.09 (0.07) 36
2 0.45 (0.09) 0.38 (0.11) 0.17 (0.06) 36
3 0.35 (0.07) 0.42 (0.07) 0.23 (0.06) 59

Note. The final column reports the number of in-bootstrap observations mapped to each action, averaged over 100 bootstrap repetitions.
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probabilities seen in Figure 3 (c) and (d). We emphasize
here that Figure 4 is intended to illustrate the mechanics
behind the predictions in Figure 3 and is not necessarily
a depiction of worker behavior.

5.5. Solving for an Optimal Incentive Contract
An advantage of our model specification is that it
leads to an optimal contracting problem that is highly
tractable (see Section EC.1 of the e-companion for
details). To illustrate this in the context of our mTurk
study, we consider the simple problem of maximizing

the bonus probability (i.e., outcome {ξ " 3}) subject to
a budget constraint on the expected payment:

maximize
r

π̂ â(r),3 (17a)

subject to â(r) " argmax
a∈A

r⊤p̂a − ca, (17b)

r⊤p̂ â(r) ≤ Γ, (17c)

r ≥ 0: (17d)

This formulation is a special case of the general opti-
mal contracting problem presented in Section EC.1 of

Figure 2. Comparison of Out-of-Bootstrap Prediction Errors for PA-D +,MLR, andCT onmTurk Data (100 Repetitions)

(a) (b)

Notes. (a) U.S. data. (b) India data.

Figure 3. (Color online) Effect of Varying Bonus Payment on Probability of Each Quality Outcome (0%–25%, 25%–75%,
75%–100%) for U.S. and IndiaWorkers

(a) (b)

(c) (d)

Notes. (a) United States, base" $0.10. (b) India, base " $0.10. (c) United States, base" $1.00. (d) India, base " $1.00.
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the e-companion and can be solved exactly by solving
|A | linear programs. An important consequence of
the tractability of the optimal contracting problem (17)
is that we can easily characterize the performance of the
optimal contracts as the budget parameter Γ varies. To do
so, we solve (17) for each Γ ∈ {0:05, 0:1, : : : , 1} (for each of
the 100 bootstrap estimates) and compute the average
bonus probability under each value of Γ.

Figure 5 shows the resulting frontiers for both the
U.S. and India worker data. Because the curves are
obtained by solving the optimal contracting problem
(17), they represent estimates of the maximum attain-
able performance for both worker groups over the
entire class of contracts used in the experiment. The
value of the budget parameter Γ can be interpreted as
the expected payment to the agent under the corre-
sponding optimal contract. Our main finding is that
higher payments increase quality modestly: increasing
the expected payment from $0.10 to $1.00 increases
the bonus probability under the optimal contract by
0.08–0.12, depending on the worker group. However,
the most striking observation is that returns to quality
diminish at fairly low payment levels, with quality
improvements leveling off around $0.30 and $0.60 for

the U.S. and India groups, respectively (we discuss
possible explanations in Section 5.7).

Figure 5 also clearly depicts the difference in the per-
formance of optimal contracts between the U.S. and
India worker groups. For example, for the U.S. group,
attaining a bonus probability of 0.30 requires an
expected payment of at least $0.20; for the India group, a
bonus probability of 0.30 is not attainable through higher
payments alone. It can also be observed that the bonus
probability is approximately 0.10–0.15 higher among U.S.
workers across all payment levels.

5.6. Experimental Validation of Contract
Performance

To validate the predicted performance of the optimal
contracts shown in Figure 5, we conducted six follow-
up experiments on mTurk. First, for each of the 100
bootstrap estimates p̂1, : : : , p̂K, we solved the optimal
contracting problem (17) for Γ ∈ {0:25,0:50, 0:75},
which corresponds to three different points on the
frontiers in Figure 5. We then computed the optimal
contract by taking the component-wise average of
the 100 solutions to (17). This produced six different
testable contracts (i.e., combinations of the base and

Figure 4. (Color online) Effect of Bonus Payment on Optimal Agent Actions in 100 BootstrappedModels

(a) (b)

(c) (d)

Notes. (a) United States, base " $0.10. (b) India, base" $0.10. (c) United States, base " $1.00. (d) India, base" $1.00.
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bonus parameters), which are shown in Table 5. We
implemented each contract on mTurk by recruiting a
new pool of 600 unique workers (using the same
approach described in Section 5.2) and assigning 100
workers to each of the six contracts. Table 5 summarizes
the results from these experiments, including the em-
pirical bonus probability for each contract (i.e., the fraction
of submissions with quality above 75%). In Figure 6, we
plot the empirical bonus probabilities along with the 95%
prediction intervals obtained from the bootstrap.

Figure 6 shows that for each of the six experimen-
tally tested contracts, the empirical bonus probability
sits comfortably inside its corresponding prediction
interval and is often close to the midpoint of the inter-
val. In general, the prediction intervals are wide,
which is unsurprising given that many other factors
likely influence submission quality beyond the pay-
ment amount, including unobserved worker attrib-
utes. Furthermore, validating the predictions from
any model through experiments is challenging in gen-
eral; because the worker population on mTurk is not
temporally static (Difallah et al. 2018), the worker
population in the validation experiments may be dif-
ferent from the initial experiments used to estimate
the model. Nevertheless, our results in Figure 6 sug-
gest that the estimator can reasonably predict experi-
mental outcomes under a given incentive contract.

5.7. Discussion
Our results suggest larger incentives can increase
quality on crowdwork platforms, corroborating the
results of Ho et al. (2015). Although similar results are
reported in the literature, we have taken a comple-
mentary approach by characterizing worker perform-
ance over a class of incentive contracts. Furthermore,
the tractability of the optimal contracting problem
under our agent model allows us to estimate perform-
ance under an optimal contract. In particular, as sum-
marized in Figure 5, we find that increasing the
expected worker payment by about $1 increases the
probability that a worker crosses the bonus threshold
by 0.08–0.12, depending on the worker’s location.
Most notably, we find diminishing returns to quality
at relatively low payments in both worker groups,
which may help explain why requesters tend to set
low wages on mTurk (Hara et al. 2018).

We also observe that quality can depend strongly
on the worker’s location. In particular, as seen in
Figure 5, the bonus probability for the India group at
an expected payment $1:00 is comparable to the U.S.
group at $0:10. This result aligns with a finding by
Shaw et al. (2011), who observe that quality on mTurk
is much more strongly associated with worker loca-
tion than financial incentives. Although we have only
focused on worker location in this study, our appro-
ach can be readily extended to other worker attrib-
utes, provided sufficient data are available.

We highlight some limitations of our study and
note directions for future work. First, we have treated
agent costs as hyperparameters by tuning them
through cross-validation. This makes the costs used in
our model a rough approximation of actual worker
costs and may limit the interpretability of the resulting
agent model. Our agent model also does not capture
many of the worker dynamics present in crowdwork
platforms. Horton and Chilton (2010) point out that
mTurk worker output appears to deviate from what
would be predicted by simple, rational agent models,
which applies to our model as well. Last, an important
aspect of crowdwork not addressed here is worker
welfare. In particular, mTurk has been widely criti-
cized for low worker pay, which is often far below the
U.S. minimum wage (Hara et al. 2018). Although we

Figure 5. (Color online) Frontier of Optimal Bonus Probabil-
ities Under Varying Budget Parameter Γ

Table 5. Optimal Incentive Contracts Under Three Different Values of Γ and Associated Results from mTurk Experiments

Budget (Γ) Base Bonus Submissions > 75% Empirical bonus probability

United States 0.25 0.16 0.42 20 5 0.20
0.50 0.23 0.47 52 17 0.33
0.75 0.41 0.78 39 14 0.36

India 0.25 0.11 0.31 73 9 0.12
0.50 0.25 0.42 79 10 0.13
0.75 0.58 0.77 71 8 0.11
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did not address worker welfare in this paper, our mod-
eling framework can also be used to characterize wel-
fare over a class of incentive contracts and allows for
welfare considerations to be explicitly incorporated into
the optimal contracting problem (e.g., by imposing con-
straints on agent utility). Investigating the tradeoff
between worker welfare and quality in crowdwork
may be a fruitful direction for future work.

6. Conclusion
We proposed an approach for estimating parameters
that govern agent production in a moral-hazard princi-
pal-agent model. First, we presented an estimator for a
nonparametric agent model, and showed it to be statis-
tically consistent. To avoid computational drawbacks
of solving the estimator exactly, we proposed an ap-
proximate estimator based on a restricted parameter set
and characterized the approximation error both asymp-
totically and in a finite-sample setting. To solve the
restricted estimator, we developed a novel column gen-
eration technique that uses hypothesis testing to select
variables, which we showed preserves consistency.
Numerical results show that the approximation scheme
and solution technique produce accurate estimates in a
computationally efficient manner. Last, we applied our
estimator to data from a randomized experiment on a
crowdwork platform to demonstrate how our method
can be used to characterize performance over a class of
incentive contracts and identify optimal incentives from
the estimated model.

We conclude by noting some possible directions for
future work. Our estimation procedure is built upon a
general but simple moral-hazard agent model; it may
be useful to extend our approach to accommodate
other common features of principal-agent models,
such as unobserved heterogeneity and risk aversion.
There may also be fertile ground in generalizing our
statistical column generation algorithm to other integer
programming problems. In particular, our approach
may be relevant to other estimation problems where
the parameter space is a very large set of discrete

distributions. Last, estimating an agent model from data
may be valuable for investigating questions related to
worker welfare, which is an issue of increasing promi-
nence in online labor platforms.

Endnotes
1 For example, Lyft offers drivers bonuses for fulfilling a target
number of rides within a predefined time frame (Lyft 2021), and
Postmates offers a similar incentive (Postmates 2021). Similarly,
freelance platforms Upwork and Amazon Mechanical Turk allow
clients to provide workers with bonuses at their own discretion.
2 We extend our model to accommodate heterogeneous agents in
Section EC.3 of the e-companion.
3 Throughout the paper, we shall use estimator to refer to an optimi-
zation problem or algorithm and estimate to refer to its solutions.
4 The assumption that the contract data ri, i ∈ I is generated by a
continuous density function f (r) is important for our technical
results. Intuitively, because the ri are input data, assuming this con-
tinuity provides the estimator with more information, which makes
precise inference of p0 possible under the identifiability condition in
Assumption 2. If the contract data are instead generated by a discrete
distribution supported on a subset of R, then a stronger identifiability
than Assumption 2 is needed to compensate for the loss of informa-
tion. We consider such a case in Section EC.4 of the e-companion.
5 Because we assume the data are generated by n independent
agents making decisions simultaneously, which is plausible in
online labor platforms, the i.i.d. assumption is not particularly
restrictive for our setting. Moreover, this assumption is not strictly
necessary to achieve consistency, depending on the problem setup.
In Section EC.4 of the e-companion, we consider a variation of the
model where p0 can be estimated by dynamically selecting the con-
tracts to offer the agent. This breaks the independence assumption
on the contracts ri but allows for consistent estimation of p0 under a
different set of assumptions.
6 The parameter set Π̃ may be empty if the requirement that pa ∈ V
for a ∈ A conflicts with the requirement that p ∈Qπ from (6). In this
case, nonemptiness of Π̃ can be guaranteed by projecting the candi-
date distributions contained in V onto the polyhedron Qπ.
7 Both benchmark methods are implemented using MATLAB’s Sta-
tistics and Machine Learning Toolbox using default settings.
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Figure 6. (Color online) Empirical Bonus Probabilities and 95% Prediction Intervals of Six Contracts Implemented onmTurk

Notes. (a) United States. (b) India.
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e-companion to Kaynar and Siddiq: Estimating Effects of Incentive Contracts ec1

Electronic Companion for “Estimating Effects of Incentive
Contracts in Online Labor Platforms”

EC.1. Identifying an Optimal Incentive Contract

A natural question is whether it is possible to use our estimated model to identify an optimal

incentive contract from the set R. Here, we establish an important property of our model: our

agent-based method for estimating the mapping from contracts to outcomes yields an optimal

contracting formulation that is simple and tractable. This tractability is a direct consequence of

our specification of the agent model, and is not guaranteed if alternative methods are used to

estimate the mapping from contracts to outcomes.

Let ζj(r) be the utility (e.g., of a principal) under outcome {ξ = j} and contract r, and suppose we

are interested in identifying a contract r∈R that maximizes expected utility: U(r) =
!

j∈J
Pr(ξ =

j|r)ζj(r). As we have assumed throughout, the distribution Pr(ξ = j|r) may be unknown in practice,

which implies the utility function U(r) is also unknown. However, given data on past contracts and

outcomes, a reasonable approximation is to first estimate P̂r(ξ = j|r) for all r∈R, which produces

an estimate of U :

Û(r) =
#

j∈J

P̂r(ξ = j|r)ζj(r).

Then, a sensible approximation is to find a contract in R that maximizes the estimated expected

utility:

(OC) maximize
r∈R

Û(r).

Next, suppose ζj(r) is convex in r, and let R be a convex set. Then, the tractability of the optimal

contracting problem (OC) depends critically on the expression for P̂r(ξ = j|r), which in turn is

determined by the method used to estimate it.

A useful structural property of our approach is that the expression for P̂r(ξ = j|r) makes problem

OC quite straightforward. Specifically, within our modeling framework, we have P̂r(ξ = j|r) = π̂â(r),j,

where â(r)∈ argmax
a∈A

)!
j∈J

π̂ajrj − ca

*
. Then, for a given estimate π̂, we can write the optimal

contracting problem as:

maximize
r

π̂â(r),jζj(r) (EC.1a)

(OC(π̂)) subject to â(r)∈ argmax
a∈A

#

j∈J

π̂ajrj − ca, (EC.1b)

r∈R. (EC.1c)

This formulation leads to the following result, which we present without proof:



ec2 e-companion to Kaynar and Siddiq: Estimating Effects of Incentive Contracts

Lemma EC.1. If R is a convex set and ζj(r) is convex in r, then an optimal solution to OC(π̂)

can be obtained by solving |A| convex problems.

To see why the lemma holds, consider the following formulation for a fixed action a:

maximize
r

#

j∈J

π̂ajζj(r) (EC.2a)

subject to
#

j∈J

rjπ̂aj − ca ≥
#

j∈J

rjπ̂bj − cb, b∈A, (EC.2b)

r∈R. (EC.2c)

The subproblem (EC.2) finds a utility-maximizing contract from Ra(π̂) – the subset of R such that

action a is optimal for the agent under π̂. Specifically, the objective (EC.2a) gives the expected

payoff under contract r and action a, the constraint (EC.2b) restricts the contracts r to those

that make action a optimal for the agent, and constraint (EC.2c) restricts r to the set R. The

subproblem (EC.2) is clearly convex if R is a convex set and ζj(r) is convex in r. Therefore, OC(π̂)

can be easily solved by solving the subproblem (EC.2) once for each action a∈A, and selecting the

action and corresponding contract that maximizes (EC.2a). Note that (EC.2) may be infeasible

if Ra(π̂) is empty (i.e., there exists an action such that no contract makes it optimal), but that

at least one Ra(π̂) must be non-empty, so it is always possible to solve OC(π̂). In summary, once

equipped with an estimate π̂, our model allows us to easily optimize over the set R to identify an

optimal contract.

As a point of comparison, note that the general form optimal contracting problem OC may not

be straightforward to solve if an alternative method is used to estimate P̂r(ξ = j|r). For example,

in the context of multinomial logistic regression (where the contract vector r are the independent

variables and the outcomes j ∈ J are classes), P̂r(ξ = j|r) is given by the logit function, which

is non-convex in r, making OC non-trivial to solve. Similarly, in non-parametric classification

methods such as classification trees, there may not exist a closed form expression for P̂r(ξ = j|r),

in which case solving OC is far from straightforward.

EC.2. Additional Computational Results
EC.2.1. Prediction Error Comparison with Multinomial Logistic Regression and

Classification Trees

In this section, we further examine the predictive performance of the estimator using synthetic

data. In particular, we assess the predictive performance of PA-D+ and the benchmark methods

under different specifications of the underlying data generation process. The setup is as follows: For

each observation i∈ I, we construct ri by drawing d values from the standard uniform distribution
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and sorting them in ascending order, so that ri
j
≤ ri

j+1 for j = 1, . . . , d−1, which reflects the notion

that higher outcomes should correspond to higher payments. For PA-D+, action costs are given by

ca = a/m for a= 1, . . . ,m. We then simulate the outcome data from discrete distributions of the

form

Pr(ξ = j|r) = gj(r)!
d

k=1 gk(r)
,

where gj(r), j ∈ J are functions that determine the outcome distribution under a contract r.

We test different underlying models by considering gj(r) = rj, gj(r) =
√
rj and gj(r) = (1 + r2

j
)

(a natural interpretation is that we are testing predictive performance under different “ground-

truth” models). For each of these three models, we consider six problem sizes: (m,d,n) ∈

{(2,2,100), (2,2,1000), (4,5,100), (4,5,1000), (5,10,100), (5,10,1000)}. For each of these six in-

stances, we again fit all three models to a bootstrap sample of size n, and measure predictive

performance on the out-of-bootstrap sample, for 100 repetitions. The prediction error is measured

using the mean absolute error (MAE) given in (16). In a second set of experiments, we add a noise

term 0 to gj(r), where 0 is drawn independently from the standard uniform distribution for each

observation i∈ I.

Tables 6 and 7 show the average prediction errors over 100 bootstrap repetitions with and without

the additional noise term, respectively. Minimum prediction errors are shown in bold. Table 6 shows

that all three methods have comparable performance when there is no noise term. In contrast,

Table 7 shows that when the noise term is included to generate the outcome data, the predictive

performance of MLR degrades considerably, whereas PA-D+ performs well across all instances.

Intuitively, this difference in performance is due to the non-parametric nature of PA-D+, which

makes predictions based on empirical distributions found within each bootstrap sample, allowing

it to fit the data well. We also find that classification trees are competitive in several instances in

Table 7, which is unsurprising given their flexibility.

Interestingly, PA-D+ shows little evidence of overfitting. This may be because the estimator

searches over the restricted parameter set (Π, which is constructed from the data, instead of the

full space of possible distributions Π. While this restriction on the parameter space is motivated by

computational tractability, it may also help the model avoid overfitting by forcing the estimator to

only choose among a finite set of empirical distributions that appear in the data (see Algorithm 2).

Lastly, it is worth noting that all three methods may be tuned further; for example, one can adjust

the maximum number of splits in the classification trees, or adjust the parameters ρ, α and S in

PA-D+; doing so may produce different results. Nonetheless, given that we do not exhaustively

tune PA-D+ to the data, Tables 6 and 7 suggest that PA-D+ performs favorably compared to

well-known prediction methods, and is robust to the underlying data generation process.
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gj(r) m d n PA-D+ MLR CT

rj

2 2 100 0.08 0.09 0.09
2 2 1000 0.03 0.03 0.02

4 5 100 0.07 0.08 0.07

4 5 1000 0.02 0.03 0.02

5 10 100 0.04 0.06 0.05
5 10 1000 0.02 0.02 0.02

√
rj

2 2 100 0.09 0.03 0.11
2 2 1000 0.03 0.03 0.03

4 5 100 0.06 0.06 0.06

4 5 1000 0.02 0.02 0.02

5 10 100 0.04 0.05 0.05
5 10 1000 0.02 0.02 0.01

(1+ rj)
2

2 2 100 0.08 0.09 0.09
2 2 1000 0.03 0.02 0.03
4 5 100 0.07 0.08 0.07

4 5 1000 0.02 0.03 0.02

5 10 100 0.05 0.05 0.06
5 10 1000 0.02 0.02 0.02

Table 6. Out-of-bootstrap prediction errors of PA-D+, multinomial logistic regression
(MLR) and classification trees (CT) under varying data generation processes (without noise),
averaged over 100 bootstrap repetitions. Minimum errors are bolded.

gj(r) m d n PA-D+ MLR CT

rj + 0

2 2 100 0.07 0.20 0.25
2 2 1000 0.02 0.34 0.22
4 5 100 0.06 0.28 0.10
4 5 1000 0.02 0.22 0.02

5 10 100 0.04 0.16 0.05
5 10 1000 0.02 0.13 0.02

√
rj + 0

2 2 100 0.11 0.33 0.32
2 2 1000 0.03 0.35 0.20
4 5 100 0.07 0.27 0.08
4 5 1000 0.02 0.22 0.02

5 10 100 0.05 0.15 0.06
5 10 1000 0.02 0.13 0.02

(1+ rj)
2 + 0

2 2 100 0.10 0.19 0.31
2 2 1000 0.03 0.23 0.20
4 5 100 0.06 0.30 0.11
4 5 1000 0.02 0.25 0.03
5 10 100 0.05 0.15 0.05

5 10 1000 0.02 0.13 0.02

Table 7. Out-of-bootstrap prediction errors of PA-D+, multinomial logistic regression
(MLR) and classification trees (CT) under varying data generation processes (with noise),
averaged over 100 bootstrap repetitions. Minimum errors are bolded.
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EC.2.2. Solution Time Comparison with Maximum Likelihood Estimation

Naturally, one might ask whether π0 can also be estimated through a maximum likelihood esti-

mation (MLE) approach. Here, we present numerical examples to show that an MLE approach

may not be tractable for the non-parametric agent model that we study in this paper, due to the

potentially large search space represented by the parameter set Π and the nonconvexity of the

likelihood function.

Note that for each i∈ I, ξi is the outcome in J that was observed under ri. Then, based on the

agent model (1), the log-likelihood of seeing the data (ri, ξi), i∈ I under the parameter π is

L̃(π) =
#

i∈I

log(πa,ξi), where a= argmax
a∈A

"
#

j∈J

πajr
i

j
− ca

$
. (EC.3)

One challenge with maximizing the log-likelihood function L̃(π) is that it is discontinuous at values

of π where two or more actions are optimal. Intuitively, this is because for these values of π, a

small change in the parameter π can make the agent’s optimal action “jump” from one action

to another, which leads to a discontinuity in L̃(π). Therefore, non-linear optimization techniques

that require the likelihood function to be continuous and differentiable cannot be used to maximize

L̃(π).

An intuitive approach to optimizing L̃(π) that does not require differentiability of L̃(π) is to

perform an exhaustive grid search over the parameter set Π. We set up the following numerical

experiment to test the viability of this method. First, we randomly generate problem data using

the process described in §4.4.1, where (m,d) ∈ {(2,2), (2,3), (2,4), (2,5), (3,2), (3,3), (3,4)}, and

n∈ {100,500,1000}. We then discretize the parameter set Π in increments of 0.1 for each element

(a, j) in the matrix π. For example, in the instances where d= 2, we search over the set
.

a∈A
Pgrid,

where Pgrid = {(0,1), (0.1,0.9), (0.2,0.8), . . . , (0.9,0.1), (1,0)}. We then evaluate the log-likelihood

function L̃(π) for each value of π in the grid, and set the estimate as the solution that yields the

largest value of L̃(π). We set a time limit of 3600 CPU seconds for each instance.

Table 8 summarizes the results of this search procedure, averaged over 10 repetitions per problem

size. The results indicate that for even small instances, an exhaustive search may require up to

one CPU hour, making this method impractical for larger problem sizes. This is an unsurprising

result, given that the number of solutions to be evaluated grows exponentially in the number of

actions, m, and the number of outcomes, d. It can be observed from the results in Table 1 that

our estimation procedure obtains comparable estimation errors in approximately 1 CPU minute

for similar problem sizes. We note here that other heuristics for searching over Π (e.g. genetic

algorithms) may be more fruitful than a simple grid search, although they will also be subject to

a search space where the number of grid points grows exponentially in m and d.
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MLE
m d n Time Error

2 2 100 0 0.11
2 2 500 0 0.05
2 2 1000 1 0.04

2 3 100 8 0.07
2 3 500 14 0.05
2 3 1000 22 0.04

2 4 100 144 0.07
2 4 500 264 0.05
2 4 1000 424 0.05

2 5 100 1751 0.08
2 5 500 3301 0.05
2 5 1000 - -

3 2 100 3 0.09
3 2 500 5 0.08
3 2 1000 7 0.08

3 3 100 488 0.08
3 3 500 931 0.07
3 3 1000 1471 0.07

3 4 100 - -
3 4 500 - -
3 4 1000 - -

Table 8. Solution time (CPU seconds) and normalized estimation error of MLE via grid search,

averaged over 10 trials. Number of actions, outcomes and sample size are denoted by m, d, and n,

respectively. Instances that did not solve to optimality under 3600 CPU seconds are omitted when

calculating average estimation error. Dashes indicate no instance solved to optimality within 3600

CPU seconds in any trial.

EC.3. Agent Heterogeneity

The estimation procedure developed in §2 and §3 can be naturally extended to accommodate

heterogeneous agents. We model heterogeneity non-parametrically by assuming each agent has a

categorical type that is observable from the data, and allow an agent’s action costs and outcome

distributions to depend on the agent’s type.

In this section, we show that our main estimator PA can be modified to incorporate agent

heterogeneity, and that consistent estimation remains possible in the heterogeneous setting. In

particular, we present an analogous result to Theorem 1 for an estimator that accounts for agent

heterogeneity. Note that similar results to Proposition 2 and Theorem 3 can also be obtained under

agent heterogeneity, by applying similar arguments. For conciseness, we will only formally present

an analogue to Theorem 1 under agent heterogeneity.
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We also show how a priori information about the relative efficiency of different agent types can

be incorporated into our estimator. Note that because agent types are observable, an intuitive

procedure is to simply segment the data according to agent type, and then apply the base esti-

mator PA-D+ to each segment separately. However, if additional information about the relative

performance of different agent types is available, then one might expect an estimator that pools the

data across all agent types to outperform a naive application of PA-D+ to each type separately.

We present numerical results that show that incorporating this additional efficiency information

can indeed improve estimation accuracy when data is limited, but can degrade accuracy when data

is abundant, due to our approximation scheme.

The extension of our model to heterogeneous agents is intuitive; therefore, the development in

this section will closely follow §2 and §3. In §EC.3.1, we present the estimator formulation in the

presence of agent heterogeneity, and discuss how a priori information about the relative efficiency

of different agent types can be embedded in the parameter set Π. In §EC.3.2, we present a corollary

to Theorem 1 that shows consistent estimation is possible under agent heterogeneity. In §EC.3.3,
we present the optimization model and column generation algorithm used to produce an analogue

to the base estimator PA-D+, and provide numerical examples. We present the proof of our main

result in §B.4.

EC.3.1. Estimator

Suppose that in addition to observing the contract ri and outcome ξi, we also observe the agent’s

type, θi. Agent types are categorical and indexed by the set K. Thus, each historical observation

consists of the triple (ri, ξi,θi). With a slight abuse of notation, we define the agent model using

the parameter π ∈ Rm×d×|K|
+ , where πk

aj
is the probability that action a leads to outcome j when

taken by a type k agent. As before, we let π0 denote the true model parameter to be estimated,

where Π⊆ Rm×d×|K|
+ is the parameter set and π0 ∈Π. Next, let ck

a
be the cost of taking action a

for a type k agent, and let ck denote a type k agent’s cost vector. We assume all agents have the

same outcome set, A.8 Let Ak(r
i,π) = argmax

a∈A

{
!

j∈J
πk

aj
ri
j
− ck

a
} denote the set of optimal actions

for a type k agent under the contract ri, and define Ik = {i∈ I|θi = k} as the subset of observations

where the agent is type k. The loss function Lk

n
(π) for a type k agent is then

Lk

n
(π) =minimize

x,η,ω
"π−ω"1 (EC.4a)

subject to xi ∈Ak(r
i,π), i∈ Ik, (EC.4b)

ωaj =
1

|{i∈ Ik|xi = a}|
#

i∈{i∈Ik|xi=a}

yi

j
, a∈A, j ∈ J. (EC.4c)

8 The assumption that all agent types share the same set of actions is without loss of generality; an action a for agent
k, we may assume cka =∞.
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Note that the loss function (EC.4) is similar to the loss function provided for a single agent type

in §2.2, but is defined over the subset of observations Ik instead of I. The estimate of π0 is then

attained at a minimizer of the sum of loss functions over Π:

(PA-H) π̂n = argmin
π∈Π

#

k∈K

Lk

n
(π).

Note that PA-H is not necessarily equivalent to solving PA for each agent type separately, because

the parameter set Π may link estimation problem across agent types based on a priori information.

In particular, if we have additional information about the relative performance of different agent

types, then pooling the data and solving PA-H effectively allows us to use data generated by one

agent type to estimate the parameters for another. Next, we provide two examples of how a priori

information can be incorporated into the model.

EC.3.1.1. Outcome efficiency. It is common in incentive problems for agents to be hetero-

geneous with respect to some notion of efficiency (Laffont and Martimort 2009). Here we illustrate

how different definitions of agent efficiency can be captured within our framework. Without loss of

generality, assume outcomes are ordered based on the preferences of the principal, so that outcome

j + 1 is preferred to outcome j, for j = 1, . . . , d− 1. Suppose also that all agents share the same

action costs (c1 = c
2 = . . . ,c|K|). Now suppose that the outcome distributions πk

a
are unknown,

except for the following (strict) first-order stochastic dominance relation: For any action a and

outcome j, a type k+1 agent is more likely to obtain an outcome at least as good as j when taking

action a as a type k agent. Here, agent k+1 can be said to be more efficient than agent k, in the

sense that agent k+1 is more productive under each possible action. This ordering between agent

types can be captured by the following parameter set:

Π=

"
π ∈Qπ

%%%%%π≥ 0,
#

j∈J

πk

aj
= 1 for a∈A,k ∈K

$
, (EC.5)

where

Qπ =

"
π

%%%%%

d#

h=j

πk

ah
+ 0≤

d#

h=j

πk+1
ah

, for a∈ {1,2, . . . ,m− 1}, j ∈ J,k ∈ {1,2, . . . , |K|− 1}
$
, (EC.6)

where 0 > 0 is a small constant. The inequalities given in (EC.6) restrict the parameter set so

that the outcome distribution is stochastically dominated when taken by a higher type (i.e., more

efficient) agent. For an example where this kind of ordering may arise, consider an employee bonus

program where the action set A corresponds to employee effort levels, and employees are one of

two types: inexperienced (k= 1) or experienced (k= 2). Here, the outcome distribution πk

a
may be

interpreted as a type k agent’s productivity under action a. If the productivity of both agent types
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is unknown, but there is other evidence to suggest that experienced agents are more productive

than inexperienced agents (all else equal), then we might use a parameter set like the one given in

(EC.5) to simultaneously estimate π1 and π2, which can be interpreted as the agents’ production

functions.

EC.3.1.2. Cost efficiency. Agents may also be heterogeneous with respect to action costs.

Naturally, we can model heterogeneity in agent costs by assuming all agents have the same outcome

distributions (π1 = π2 = . . .= π|K|), and assuming that action costs decrease in agent type: c1
a
≥

c2
a
≥ . . .≥ c|K|

a
, for all a ∈A. A more general and richer model for heterogeneity in action costs is

the following:

Qπ =

"
π

%%%%%

d#

h=j

πk+1
ah

≤
d#

h=j

πk

bh
only if ck+1

b
≥ ck

a

$
. (EC.7)

The parameter set in (EC.7) implies that high-type agents are more cost efficient than low-type

agents in the following sense: an action b taken by a low-type agent can only (weakly) stochastically

dominate (i.e. be more productive than) an action a of a high-type agent if it is more costly for

the low-type agent. In other words, for the low-type agent, there exists no action that is both less

costly and more productive than any action of a high-type agent.

EC.3.1.3. Limiting model complexity. One potential challenge associated with our ap-

proach to incorporating agent heterogeneity is that it increases the number of parameters to be

estimated; for instance, in the two examples above, the number of free parameters in the model is

on the order of m · d · |K|. As with any model fitting problems, if the amount of available data is

limited relative to the number of free parameters, there is a risk of the model overfitting the data,

which leads to poor out-of-sample performance. A typical approach to preventing overfitting is to

limit or penalize model complexity (i.e., through regularization). Within our framework, model

complexity can be limited by imposing additional constraints on the parameter set Π. In particular,

consider the following parameter set:

Πreg =

/
0

1π ∈Π

%%%%%
#

(a,b)∈A×A

#

(k,k′)∈K×K

1{πk

a
∕=πk

′
b
}≤ ℓ

2
3

4 , (EC.8)

where ℓ is an integer and ℓ≤m · |K|. The set Πreg may be interpreted as a regularized counterpart

to Π. In words, Πreg permits at most ℓ unique distributions to be used by the estimator PA-H in

the construction of the matrices π1,π2, . . . ,π|K|. Note that this regularization constraint can easily

be imposed in the optimization formulation for PA-H (given in EC.3.3 below) through constraints

on the binary assignment variables w.
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EC.3.2. Statistical consistency

Next, we show that the consistent estimation is possible under agent heterogeneity as well. Similar

to (5), it will be helpful to define

Rk

a
(π) =

"
r∈R

%%%%a∈ argmax
a∈A

#

j∈J

πk

aj
rj − ck

a

$
.

Next, we present two assumptions that parallel Assumptions 1 and 2.

Assumption EC.1 (Data). The data (ri, ξi,θi) are independent samples of random variables

(r, ξ,θ), where (i) (r, ξ,θ) is jointly distributed with support R × J × K, (ii) r has continuous

marginal density function f(r), (iii) ξ has conditional mass function π0k
aj

= Pr(ξ = j|r ∈ Rk

a
(π)),

and (iv) for any π ∈Π, Pr(r∈Rk

a
(π))> 0 for all a∈A, j ∈ J , and k ∈K.

Assumption EC.2 (Identifiability). For every π ∈Π such that π ∕=π0, there exists an (a, j, k)

such that

πk

aj
∕=
#

b∈A

π0k
bj

·Pr(r∈Rb(π
0k)|r∈Ra(π

k)).

We can now present a corollary to Theorem 1, which establishes that PA-H provides consistent

estimates.

Corollary EC.1. Let Assumption EC.1 hold. Then π̂n −→π0 if and only if Assumption EC.2

holds.

Corollary EC.1 confirms that the estimates produced by PA-H converge to the true model param-

eters. Next, we show how the integer programming formulation PA-D and the statistical column

generation algorithm given in §4.3 can be extended to incorporate agent heterogeneity.

EC.3.3. Optimization, solution algorithm, and numerical examples

Similar to the single type estimator PA, we can formulate a proxy estimator for PA-H, represent

this proxy estimator exactly as a mixed-integer formulation, and then obtain an integer program-

ming formulation of a restricted estimator that limits each distribution πk

a
to a set of candidate

distributions V . Because this development follows in a parallel manner to §3, we skip directly to

the formulation of the restricted estimator.

Let w, x and φ be binary variables with the following interpretations, parallel to §4.1: wk

as
= 1 if

the candidate distribution vs is assigned to distribution πk

a
, xi

s
= 1 if the action that candidate dis-

tribution vs is assigned to is optimal under contract ri, and φi

as
= 1 if vs is assigned to distribution

πk

a
and action a is optimal under ri and πk. Let zk ∈Rd×S

+ be auxiliary variables. Then, analogous

to PA-D, we can formulate the restricted estimator as the following optimization problem:
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minimize
π,w,x,z,φ

#

k∈K

#

s∈S

#

j∈J

zk
sj

(EC.9a)

subject to zk
sj
≥ 1

n

#

i∈Ik

(ξi
j
− vsj)x

i

s
, j ∈ J, s∈ S,k ∈K, (EC.9b)

zk
sj
≥ 1

n

#

i∈Ik

(vsj − ξi
j
)xi

s
, j ∈ J, s∈ S,k ∈K, (EC.9c)

#

b∈A

#

s∈S

&
#

j∈J

vsjr
i

j
− ck

b

'
φi

bs
≥
&
#

j∈J

vs′jr
i

j
− ck

a

'
wk

as′ , i∈ Ik, a∈A,s′ ∈ S,k ∈K,

(EC.9d)

(PA-DH)
#

s∈S

wk

as
= 1, a∈A,k ∈K, (EC.9e)

#

a∈A

#

s∈S

φi

as
= 1, i∈ I, (EC.9f)

xi

s
=
#

a∈A

φi

as
, i∈ I, s∈ S, (EC.9g)

φi

as
≤wk

as
, i∈ Ik, a∈A,s∈ S,k ∈K, (EC.9h)

πk

aj
=
#

s∈S

wk

as
vsj, a∈A, j ∈ J,k ∈K, (EC.9i)

xi

s
∈ {0,1}, i∈ I, s∈ S, (EC.9j)

wk

as
∈ {0,1}, a∈A,s∈ S,k ∈K, (EC.9k)

φi

as
∈ {0,1}, i∈ I, a∈A,s∈ S, (EC.9l)

π ∈Qπ. (EC.9m)

The candidate distributions in the formulation above can be constructed in an analogous way to

Algorithm 1. The main difference is that we first segment the data according to agent type, which

is the key step in obtaining “good” candidate distributions. Recall that the intuition behind the

sample-based construction of candidate distributions (given in Algorithm 1) is to use the data to

approximate the true outcome distributions, π0
a
, a ∈ A. Because each cluster in Algorithm 1 is

constructed to contain similar contracts, we anticipate that for some clusters, all contracts that

are contained within it induce the same (hidden) action from the agent. If, for a given cluster,

all contracts lead to the same hidden action, then the empirical mass function over outcomes (i.e.

the candidate distribution) should be informative about the outcome distribution π0
a
for some

unknown a ∈A. In the case where agents are heterogeneous, segmenting the data by agent types

before constructing the candidate distributions helps to preserve this information. A summary is

given in Algorithm 3.

Next, we discuss how to use the statistical column generation algorithm to return a sufficiently

“representative” subset of the candidate distributions in the presence of agent heterogeneity. Recall
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Algorithm 3: Construction of candidate distributions with agent heterogeneity

Input: Data (ri, ξi,θi), i∈ I, parameter, ρ> 0.
1. For each k ∈K, randomly sample a subset Sk from Ik.
2. for s∈ Sk, k ∈K:

Bs = {r∈R|"rs − r"2 ≤ ρ},
Is = {i∈ Ik|ri ∈Bs}.
for j ∈ J :

vsj =
1

|Is|
!

i∈Is
yi

j
.

Output: Candidate distributions V = {vs for s∈ Sk, k ∈K}.

that the statistical column generation algorithm terminates when there is no candidate distribution

in the set of omitted distributions V − that is statistically different from every distribution in

V +. We use the same argument to build the corresponding algorithm in the presence of agent

heterogeneity. We first define a vector ψk

s
∈Zd

+, where the jth entry is the frequency of outcome j

in the candidate distribution vs for s∈ Sk, obtained in Algorithm 3. Then using the test functions

introduced in §4.3.1, we identify a subset of candidate distributions V + and solve PA-HD over V +

instead of V . Algorithm 4 provides an overview. Note that when there is no additional structure

that links the agent types, then Algorithm 3 and 4 is equivalent to running Algorithm 1 and 2 for

each agent type separately.

Algorithm 4: Statistical column generation (PA-DH+)

Input: Data (ri, ξi,θi), i∈ I, candidate distributions V produced by Algorithm 3,
significance level α> 0.

Initialize: Set t= 0. Select any s∈ Sk, k ∈K. Set S+ = {(s, k)} and S− = S \ {(s, k)}.
1. Let (s∗, k∗) = argmax(s,k)∈S− inf(s′,k′)∈S+{Hα(ψ

k

s
,ψk

′
s′ )}.

if inf(s′,k′)∈S+

)
Hα(ψ

k
∗

s∗ ,ψ
k
′

s′ )
*
≤ 0 or S− = ∅,

Solve PA-HD(S+) and obtain solution π+
n
, set T = t, and terminate.

else Update t← t+1, S+ ← {S+, (s∗, k∗)}, and S− ← S− \ {(s∗, k∗)}. Return to Step 1.
Output: Parameter estimate π+

n
, iteration count T .

We conclude this section by providing a simple numerical example to investigate how incorporat-

ing a priori information about the relative efficiency of agents affects estimation error, compared

to naively applying our base estimator to each agent type separately. We consider two agent types,

L and H, which have true parameters π0L and π0H , respectively. Suppose a type H agent is known

to be more outcome-efficient than a type L agent (§EC.3.1.1). Then the unknown parameters π0L

and π0H must satisfy the following inequalities, where 0> 0 is a small constant:

d#

h=j

π0L
ah

+ 0≤
d#

h=j

π0H
ah

, for a∈ {1,2, . . . ,m− 1}, j ∈ J. (EC.10)
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Without outcome efficiency With outcome efficiency
m d n Type L Type H Mean Type L Type H Mean

2 2 100 0.135 0.112 0.123 0.104 0.080 0.092
2 2 500 0.094 0.095 0.095 0.069 0.091 0.080
2 2 1000 0.077 0.060 0.069 0.084 0.085 0.084

4 5 100 0.058 0.052 0.055 0.054 0.043 0.049
4 5 500 0.054 0.053 0.054 0.043 0.040 0.041
4 5 1000 0.042 0.044 0.043 0.052 0.041 0.046

Table 9. Normalized estimation error with and without outcome efficiency constraints,
averaged over 10 trials.

Recall that m and d denote the number of actions and outcomes, respectively. We consider two

problem sizes, given by (m,d) ∈ {(2,2), (4,5)}. For each of the two problem sizes, we consider

three sample sizes, given by n∈ {100,500,1000}. Then for each combination (m,d,n), we randomly

generate π0L and π0H from Π given by (EC.5), where Qπ is given by (EC.6). We use the same

data generation procedure described in §4.4.1.

Table 9 summarizes the estimation errors over 10 trials for both agent types, with and without

including (EC.10) in the parameter set Qπ during estimation. Observe that the mean estimation

error tends to decrease when the outcome efficiency information represented by the inequalities

(EC.10) is included, when n = 100 and n = 500. Conversely, for n = 1000, the estimation error

increases when the outcome efficiency information is incorporated. The intuition for this result

is as follows. Note that including the constraint (EC.10) in Qπ can be interpreted as restricting

the search space for the estimator LPA-DH. When n is small, the candidate distributions are poor

approximations of the rows of π0L and π0H , and this restriction of the search space steers the

estimator LPA-DH toward candidate distributions that approximate π0L and π0H well. However,

when the sample size is large, the candidate distributions are good approximations of the rows

of π0L and π0H , and the constraint (EC.10) restricts the search space for the estimator without

providing additional information, which has the net effect of causing errors to increase.

EC.4. A Dynamic Principal-Agent Model with Hidden Actions

Our focus in this paper has been on estimating the agent model in an offline setting, where all

data on historical contracts and outcomes is available at the outset, and the contract data r
i, i∈ I

is given exogenously. In this section, we consider an online counterpart to our model, where the

principal can select the contracts to be offered to the agent in a dynamic manner. We note here

that while extending our principal-agent framework to a dynamic setting raises new and important

theoretical questions, a complete treatment of the dynamic setting is beyond the scope of this paper.
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Therefore, our focus will be to present results that parallel the offline setting, namely, presenting a

complete solution algorithm for the dynamic contracting problem, and proving consistency of the

corresponding estimates.

The remainder of this section is organized as follows. In §C.1, we briefly discuss related literature.

In §C.2, we formulate a dynamic variant of our principal-agent model. In §C.3, we present an

“0-greedy” algorithm for the dynamic contracting problem, which involves iteratively solving an

integer program and a sequence of linear programs. In §C.4, we present two consistency results

related to the 0-greedy algorithm, and illustrate its performance with a simple numerical example.

Proofs are contained in §C.5.

EC.4.1. Related literature

There is an extensive literature on dynamic principal-agent models with hidden actions; for exam-

ples of foundational work, see Radner (1981), Rogerson (1985), Spear and Srivastava (1987), and

Abreu et al. (1990). This line of research has typically focused on characterizing the principal’s

optimal decisions in an environment where parameters of the agent model are known, including

the stochastic dependence of outcomes on agent actions.

The dynamic setting we consider is closer to the multi-armed bandit problem, which is a broad

modeling framework for dynamic decision-making problems (see Slivkins (2019) for a recent review

of bandit algorithms). A general setup for the multi-armed bandit problem with stochastic rewards

is as follows. In each of T rounds, a utility-maximizing decision maker chooses from a set of actions

(“arms”). The chosen arm generates a reward for the decision-maker, where the reward is an i.i.d.

sample from an unknown distribution that depends on the arm. Because the reward distribution

for each arm is unknown, the decision-maker faces what is often called an exploration-exploitation

trade-off: they must balance exploiting “good” arms (which have been observed to produce high

rewards in previous rounds) with exploring the full set of arms (which will improve knowledge

about each arm’s reward distribution).

Note that our paper focuses on estimating the distribution over outcomes induced by each

possible agent action. For this reason, it is natural to use the multi-armed bandit framework to

formulate a dynamic variant of our principal-agent model, where each arm represents a contract,

and the selected contract generates a random reward for the principal (via the agent’s hidden

action). Further, unlike the offline setting, here we assume that the principal has preferences over

the outcome set J . This setting is similar to work by Ho et al. (2016), who also address a dynamic

principal-agent problem within a multi-armed bandit framework. Similar to our paper, the authors

consider a principal-agent problem where a contract is a mapping of agent payments to outcomes,

and outcomes depend on an unobservable agent action. A key distinction between Ho et al. (2016)

and our work is that they assume the distribution over agent types is unknown, whereas we assume

the dependence of outcomes on agent actions is the unknown parameter.
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EC.4.2. Model

The principal-agent interaction proceeds over T time periods. In period t, the principal selects and

offers to the agent a contract r
t ∈ R. As in the offline setting, the agent selects the action that

maximizes their expected utility under the selected contract. As before, the agent’s action remains

hidden to the principal, who instead observes an outcome ξt ∈ J in each period. If the agent takes

action a, then ξt = j with probability π0
aj
, where π0 is unknown to the principal. Upon observing

the outcome ξt, the principal selects a new contract rt+1, which initiates the next period.

Note that principal’s preferences over the outcomes J are irrelevant for estimation in the offline

setting, because the contract data is already fixed. However, because in the dynamic setting the

principal now chooses the contracts rt, they must also balance estimation of π0 with maximizing

their own utility over the T rounds. Let ζj(r) be the principal’s utility under outcome {ξt = j},
which may include the payment rj to the agent. Recall that a(r) is the optimal action of the agent

under r and π0; the principal’s expected payoff under a contract r is then

U(r) =
#

j∈J

π0
a(r),jζj(r). (EC.11)

The principal’s dynamic contracting problem is to select the sequence of contracts r
1,r2, . . . ,rT

that maximizes their expected payoff over T periods:

max
rt∈R

T#

t=1

U(rt). (EC.12)

We shall call any r
∗ that satisfies r∗ ∈ argmaxr∈R

U(r) an optimal contract. Note that the optimal

solution to (EC.12) is to simply let r
t = r

∗ for all t≥ 1. However, solving (EC.12) is challenging

because the principal’s utility function U(r) – and therefore the optimal contract r∗ – depends on

the unknown parameter π0. Therefore, the principal must trade-off learning U(r) (by estimating

π0) with maximizing U(r) (by selecting high-utility contracts).

EC.4.3. Algorithm overview

We now present a solution algorithm for the principal’s dynamic contracting problem (EC.12). Our

approach is similar to 0-greedy algorithms found in the multi-armed bandit literature, which are

intuitively simple and have been observed to perform well empirically (Kuleshov and Precup 2014).

Within an 0-greedy framework, the decision-maker chooses an exploratory action in period t with

probability 0t, and chooses a utility-maximizing action with probability 1− 0t. Here, “greediness”

refers to naively maximizing the decision maker’s utility using the incumbent parameter estimates.

In our setting, exploration means exploring the contract set R, which is necessary for learning

the parameter π0; exploitation means selecting the contract in R that maximizes the principal’s

expected single-period utility U(r), based on the current estimate of π0.

Before presenting the steps of our 0-greedy algorithm, we first define two new optimization

problems: one for each of the exploration and exploitation steps of the algorithm.
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EC.4.3.1. Exploration step. Note that the decision set to be explored is the continuous set

R. To make exploration of R tractable, we first randomly sample a set of contracts rs, s∈ S from

the contract set R, which remain fixed for the entire algorithm. Here, each rs, s∈ S is analogous to

one “arm” in the multi-armed bandit setting. Let nt

s
be the number of times rs has been selected

after the tth round. Then we can construct the candidate distribution associated with r
s as

v
t

s
=

1

nt
s

t#

i=1

1{ξi = j}.

We assume that the agent’s true optimal action a(rs) is unique under each r
s (note that this is

almost surely the case if the initial arms r
s, s ∈ S are selected by randomly sampling from R

according to a continuous distribution). Each v
t

s
can then be interpreted as an empirical distribution

constructed by sampling nt

s
times from the distribution π0

a(rs).

Next, define a set of error variables ε1,ε2, . . . ,ε|S|, and let was be a binary variable equal to 1 if

vs is assigned to a∈A. We now define the following optimization problem:

minimize
w,ε

#

s∈S

|εs| (EC.13a)

subject to
#

a∈A

&
#

j∈J

vt
sj
rsj − ca

'
was + εs ≥

#

a∈A

&
#

j∈J

vt
s′jrsj − ca

'
was′ , s∈ S, s′ ∈ S,

(EC.13b)
#

a∈A

was = 1, s∈ S, (EC.13c)

(PA-T)
#

s∈S

was ≥ 1, a∈A, (EC.13d)

was ∈ {0,1}, a∈A,s∈ S. (EC.13e)

εs ≥ 0, s∈ S. (EC.13f)

Intuitively, formulation PA-T assigns each contract r
s to the action a ∈ A that is believed to be

optimal under rs and the true model π0. Constraint (EC.13c) ensures every contract rs is assigned

to exactly one action, and (EC.13d) ensures every action has at least one contract assigned to

it. The key constraint of this formulation is (EC.13b): Given a contract r
s, constraint (EC.13b)

forces the action associated with r
s to yield at least as large of a utility for the agent as the

action associated with r
s
′
, for every s′ ∈ S. Note that because v

t

s
is an approximation of π0

a
for

some a∈A, constraint (EC.13b) may not hold when εs = 0, even if the binary decision variable w

correctly assigns each r
s to the agent’s true optimal action. Therefore, εs is required to serve as

a slack variable that maintains feasibility of PA-T. Intuitively, εs can be interpreted as measuring

the sub-optimality of the assignment encoded by w.
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Let (w̄t, ε̄t) be the optimal solution to PA-T in round t. Then we construct the estimate π̂t as

follows:

π̂t

aj
=

!
s∈S

vt
sj
nt

s
w̄t

as!
s∈S

nt
s
w̄t

as

, for a∈A, j ∈ J.

Intuitively, π̂t

a
is the average of all candidate distributions assigned to action a, weighted by their

sample sizes nt

s
.

EC.4.3.2. Exploitation step. The exploitation step consists of solving the optimal contract-

ing problem OC(π̂t), described in §EC.1 of the electronic companion, under the incumbent estimate

π̂t.

EC.4.3.3. Algorithm summary. Having defined the optimization models PA-C and OC,

we can now summarize the steps of the 0-greedy algorithm (Algorithm 5). At each iteration, an

exploration action is taken with probability 0t, by randomly selecting one of the contracts from

{r1,r2, . . . ,r|S|} and updating the set of candidate distributions accordingly, and an exploitation

action is taken with probability 1 − 0t, by selecting the optimal contract based on the current

estimate, π̂.

Algorithm 5: 0-greedy algorithm for dynamic contracting

Input: Exploration parameters 01, 02, . . . , 0T .
1. Initialize: Randomly sample S contracts r1,r2, . . . ,rS from set R. Initialize nt

s
= 1 for s∈ S and t= 1.

2. for t= 1,2, . . . , T :
with probability 0t:

Set r̂t = r̂
t−1.

Randomly select s̄∈ S. Select contract rs̄ and observe outcome ξ̄. Set st = s̄ and ξt = ξ̄.

Update nt

s̄
← nt

s̄
+1 and vt

s̄j
= 1

n
t
s̄

!
t

i=1 1{ξi = j, si = s̄} for j ∈ J .

with probability 1− 0t:

Solve PA-T and obtain w̄
t. For each a∈A, j ∈ J , set π̂t

aj
=

"
s∈S v

t
sjn

t
sw̄

t
as"

s∈S nt
sw̄

t
as

.

Solve OC(π̂t) and obtain r̂
t.

Output: Estimates π̂T and r̂
T .

EC.4.4. Consistency, numerical examples, and discussion

We now present the main theoretical result of this section. First, consider the following assumption:

Assumption EC.3. For each s∈ S, there exists s′ ∈ S such that

#

j∈J

(π0

a(rs
′
),j

−π0
a(rs),j)r

s

j
> c̄− c, (EC.14)

where c̄= sup
a∈A

{ca} and c= infa∈A{ca}.
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Assumption EC.3 is an identifiability condition that ensures precise inference of π0, similar to

Assumption 2 in the offline setting. Loosely speaking, this condition ensures that if there exists a

solution w̄ to PA-T that assigns a candidate distribution vs to the wrong action, then the assign-

ments encoded in w̄ will eventually (as more data is collected) violate the optimality conditions in

(EC.13b). This has the effect of guaranteeing that the solution to PA-T identifies the correct action

for each candidate distribution vs in the limit. Next, Proposition EC.1 states that the condition in

EC.3 is sufficient for Algorithm 5 to uncover the true values of π0.

Proposition EC.1. Let Assumption EC.3 hold. Then the estimate π̂T produced by Algorithm

5 is consistent:

π̂T −→π0.

Note that Assumption EC.3 is stronger than the analogous condition in the offline setting, Assump-

tion EC.2). The reason for this difference is as follows: In the online setting, we restrict attention to

the subset of contracts {r1,r2, . . . ,r|S|} when estimating π̂. While focusing on this discrete subset of

R improves tractability, it also reduces variation in the data compared to the offline setting, which

reduces the information available to the estimator. Because the online setting has less variation

in contract data, a stronger identifiability condition is required to ensure that learning the precise

values of the parameter π0 remains possible.

Corollary EC.2. Let Assumption EC.3 hold. Then the contract r̂T produced by Algorithm 5

converges to a minimizer of the principal’s per-period regret:

%%%%
1

T

T#

t=1

U(r̂T )− 1

T

T#

t=1

U(r∗)

%%%%−→ 0.

The intuition behind Corollary EC.2 is straightforward – because π̂T is a consistent estimate of

π0, then solving OC(π̂T ) will eventually produce an optimal contract for the principal, as T −→∞.

We now illustrate Algorithm 5 through numerical examples. We consider two problem sizes,

given by (m,d)∈ {(2,2), (5,10)}. For each problem size, we construct the contract set as R= [1,2]d,

the agent cost vector c as a random sample from [0,1]m. We specify the principal’s utility as

ζj(r) = ζ̄j − rj, where ζ̄j is a random sample from [1,10]d. We construct the true parameter π0

by letting π0
a
for each a ∈A be randomly generated from the (d− 1)-dimension simplex. We test

six parameterizations of the exploration probability 0t. We first consider three “fixed” exploration

schemes, where 0t = 0, for each 0 ∈ {0.5,0.9,0.99}. We then consider three “variable” exploration

schemes, where 0t = exp(−λ · t), for each λ∈ {10−2,10−3,10−4}. For each problem size and param-

eterization of 0t, we run 10 trials of Algorithm 5 with T = 1000, where π0, ζ̄, and c are randomly

constructed in each trial.
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0t = 0 0t = exp(−λ · t)
m d T 0= 0.5 0= 0.9 0= 0.99 λ= 10−2 λ= 10−3 λ= 10−4

2 2 50 0.21 0.11 0.07 0.06 0.06 0.06
2 2 100 0.20 0.11 0.07 0.06 0.06 0.06
2 2 500 0.16 0.08 0.07 0.05 0.06 0.06
2 2 1000 0.13 0.08 0.07 0.06 0.06 0.06

2 2 50 0.12 0.16 0.14 0.10 0.14 0.16
2 2 100 0.09 0.16 0.15 0.09 0.14 0.16
2 2 500 0.08 0.14 0.16 0.03 0.11 0.16
2 2 1000 0.08 0.14 0.16 0.02 0.09 0.16

Table 10. Estimation errors (top) and per-period regret (bottom) for six exploration
schemes, averaged over 10 trials (m= 2, d= 2).

0t = 0 0t = exp(−λ · t)
m d T 0= 0.5 0= 0.9 0= 0.99 λ= 10−2 λ= 10−3 λ= 10−4

5 10 50 0.05 0.06 0.06 0.05 0.05 0.05
5 10 100 0.06 0.06 0.06 0.05 0.05 0.05
5 10 500 0.06 0.06 0.05 0.05 0.05 0.05
5 10 1000 0.06 0.06 0.05 0.05 0.05 0.05

5 10 50 0.78 0.82 0.87 0.78 0.84 0.85
5 10 100 0.77 0.83 0.87 0.74 0.83 0.84
5 10 500 0.78 0.82 0.85 0.58 0.79 0.83
5 10 1000 0.79 0.82 0.85 0.56 0.73 0.83

Table 11. Estimation errors (top) and per-period regret (bottom) for six exploration
schemes, averaged over 10 trials (m= 5, d= 10).

A summary of results is provided in Table 10 (m= 2, d= 2) and Table 11 (m= 5, d= 10). For each

of the six exploration schemes, we report the average estimation error and average per-period regret

at t= 100, t= 500 and t= 1000. Among the fixed exploration schemes, aggressive exploitation (0t =

0.5) attains the lowest regret and highest estimation error, and aggressive exploration (0t = 0.99)

attain the highest regret and lowest estimation error. These results demonstrate the exploration-

exploitation trade-off in our dynamic contracting problem. Comparing all six exploration schemes,

the variable scheme with λ= 10−2 appears to weakly dominate, by producing similar estimation

errors as the other approaches, but with significantly lower regret. This suggests that λ = 10−2

handles the exploration-exploitation trade-off the most efficiently. We also observe that the decrease

in regret is significantly more pronounced for the variable scheme with λ= 10−2 compared to the

other approaches, because it exploits the most aggressively as t increases (e.g., by t = 500, this

scheme exploits with probability 0.99.)

We conclude by highlighting directions for future work. First, the algorithm we presented in

this section is based on 0-greedy approaches found in the multi-armed bandit literature. Other
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well-known bandit algorithms may also be applicable in our setting, such as those based on upper

confidence bounds or Thompson sampling (Slivkins 2019). Second, while we have focused our

analysis in this section on asymptotic results, the standard performance measure of a dynamic

decision-making algorithm is a finite-sample bound on regret. It may be possible to obtain similar

bounds in our dynamic contracting setting. However, doing so will require addressing two technical

challenges of our setting that are not present in classical bandit problems: the continuous nature of

the decision space R (instead of a discrete set of arms), and discontinuity in the principal’s payoff

in r (due to jumps in the agent’s optimal action as r changes). Third, we have assumed throughout

that the agent behaves myopically by optimizing their single-period payoff. It may also be the case

that agents behave strategically, which would introduce new and challenging dynamics into the

problem.

Note also that the performance of Algorithm 5 is sensitive to how R is specified. Because R is

the exploration space, if the values in R are large compared to the principal’s utility, then the

algorithm may spend a large number of iterations exploring regions of R that are inefficient from

the principal’s perspective. This sensitivity to the contract set R occurs because the Algorithm

5 does not consider regret when selecting a contract to explore, which is common in 0-greedy

approaches.

EC.5. Proofs

Because the proof for Theorem 2 is long, we group all proofs into four subsections for ease of

navigation: §EC.5.1 contains the proofs for Theorem 1 and Proposition 1; §EC.5.2 contains the

proof of Theorem 2; §EC.5.3 contains the proofs of Proposition 2, Theorem 3, and Theorem 4; and

§E.4 contains the proofs for Sections EC.3 and EC.4.

EC.5.1. Proofs of Theorem 1 and Proposition 1

Before proving Theorem 1, we prove two supporting results, given in Lemmas EC.2 and EC.3.

Lemma EC.2 shows that the loss function Ln(π) is lower semicontinuous. Lemma EC.3 shows

that as n−→∞, the loss function Ln(π) converges point-wise to a function L(π), where L(π) is

uniquely minimized by the true parameter π0 if and only if Assumption 2 holds. Both of these

results are used to prove the consistency result in Theorem 1.

Lemma EC.2. Ln(π) is lower semicontinuous in π on Π for all n≥ 1.

Proof. Define N(δ) = {π ∈ Π|"π − π̄"1 < δ}. To show that Ln(π) is lower semicontinuous at all

π̄ ∈ Π and n ≥ 1, it suffices to prove the following statement (Rockafellar and Wets 2009): For

every ε> 0, there exists δ > 0 such that Ln(π̄)−Ln(π)< ε for all π ∈N(δ). The proof proceeds



e-companion to Kaynar and Siddiq: Estimating Effects of Incentive Contracts ec21

in two steps. First, we show that there exists δ̄ > 0 such that for all δ ∈ (0, δ̄) and π ∈ N(δ),

A(ri,π)⊆A(ri, π̄) for all i∈ I. Second, we show lower semicontinuity of Ln(π) at π̄. Step 1. Fix π̄

and n. By way of contradiction, suppose that for all δ> 0, there exists π̌ ∈N(δ), a∈A(ri, π̌) and

i∈ I such that a /∈A(ri, π̄). Note that a /∈A(ri, π̄) and a∈A(ri, π̌) implies there exists a b∈A \ a
such that the following two inequalities hold:

#

j∈J

π̄ajr
i

j
− ca <

#

j∈J

π̄bjr
i

j
− cb (EC.15)

#

j∈J

π̌ajr
i

j
− ca ≥

#

j∈J

π̌bjr
i

j
− cb. (EC.16)

Combining (EC.15) and (EC.16) yields

#

j∈J

(π̌aj − π̄aj)r
i

j
− ca >

#

j∈J

(π̌bj − π̄bj)r
i

j
− cb.

Letting δ −→ 0 implies "π̌− π̄"1 −→ 0 and thus 0> 0, a contradiction. It follows that there exists

δ̄ > 0 such that for all δ ∈ (0, δ̄) and π ∈N(δ), A(ri,π)⊆A(ri, π̄) for all i ∈ I. Step 2. Fix ε> 0.

By way of contradiction, suppose Ln(π) is not lower semicontinuous; that is, for every δ> 0, there

exists π̌δ ∈N(δ) such that Ln(π̄)−Ln(π̌δ)> ε. Next, let (x(π),ω(π)) be an optimal solution to

(4) under π= π̌δ. By Step 1, if δ ∈ (0, δ̄), then A(ri, π̌δ)⊆A(ri, π̄) for all i∈ I. Because A(ri, π̌δ)⊆
A(ri, π̄) for all i ∈ I, it is feasible to set π = π̄ and (x,ω) = (x(π̌δ),ω(π̌δ)) in (4). It follows that

Ln(π̄) = "π̄−ω(π̄)"1 ≤ "π̄−ω(π̌δ)"1. Therefore,

ε<Ln(π̄)−Ln(π̌δ)≤ "π̄−ω(π̌δ)"1 −Ln(π̌δ) = "π̄−ω(π̌δ)"1 −"π̌−ω(π̌δ)"1.

Further, it is straightforward to verify that

"π̄−ω(π̌δ)"1 −"π̌δ −ω(π̌δ)"1 ≤ "π̄− π̌δ"1.

Thus, ε ≤ "π̄ − π̌δ"1. Letting δ −→ 0 implies "π̄ − π̌δ"1 −→ 0, which yields a contradiction. We

conclude that for every ε> 0, there exists δ> 0 such that Ln(π̄)−Ln(π)< ε for all π ∈N(δ), and

thus Ln(π) is lower semicontinuous. □

Lemma EC.3. There exists L(π) : Π −→ R such that (i) L(π) <∞ and |Ln(π)− L(π)| −→ 0

for all π ∈Π, (ii) L(π0) = 0, and (iii) L(π0)<L(π) for every π ∈Π such that π ∕=π0 if and only

if Assumption 2 holds.

Proof. The proof proceeds in two steps. In Step 1, we show the following supporting result: For

any (a, j),

limn→∞ωaj(π) =
1

Pr(r∈Ra(π))

#

b∈A

π0
bj
·Pr(r∈Ra(π),r∈Rb(π

0)), (EC.17)
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where Ra(π) is defined in (5). In Step 2, we prove there exists a function L(π) such that statements

(i), (ii) and (iii) hold. Step 1. Pick any (a, j). Note that xi = a holds in (4) holds if and only if

r
i ∈Ra(π). For each (a, j), we can then write ωaj as

ωaj(π) = n · 1
n
·ωaj(π) =

n!
n

i=1 I{ri ∈Ra(π)}

5

6 1

n

#

i∈{i|ri∈Ra(π)}

yi

j

7

8 . (EC.18)

Consider the first term on the right-hand side of (EC.18). By Assumption 1, letting n−→∞ yields

n!
n

i=1 I{ri ∈Ra(π)}
=

1

Pr(r∈Ra(π))
. (EC.19)

For the second term on the right-hand side of (EC.18), we have

lim
n→∞

1

n

#

i∈{i|ri∈Ra(π)}

yi

j
= lim

n→∞

1

n

n#

i=1

I{ξi = j,ri ∈Ra(π)},

=Pr(ξ = j,r∈Ra(π)),

=
#

b∈A

Pr(ξ = j,r∈Ra(π)|r∈Rb(π
0)) ·Pr(r∈Rb(π

0)).

The first equality above follows because yi

j
= I{ξi = j}, by definition. The second equality follows

from the strong law of large numbers. The third equality follows from the law of total probability.

Next, note that by Assumption 1, the events {ξ = j} and {r∈Ra(π)} are conditionally independent

given {r∈Rb(π
0)}. Therefore,

Pr(ξ = j,r∈Ra(π)|r∈Rb(π
0)) = Pr(ξ = j|r∈Rb(π

0)) ·Pr(r∈Ra(π)|r∈Rb(π
0)),

= π0
bj
·Pr(r∈Ra(π)|r∈Rb(π

0)),

where the second equality follows by definition of π0. It follows that

lim
n→∞

1

n

#

i∈{i|ri∈Ra(π)}

yi

j
=
#

b∈A

π0
bj
·Pr(r∈Ra(π)|r∈Rb(π

0)) ·Pr(r∈Rb(π
0)),

=
#

b∈A

π0
bj
·Pr(r∈Ra(π),r∈Rb(π

0)). (EC.20)

Next, combining (EC.18), (EC.19), and (EC.20) yields

lim
n→∞

ωaj(π) =
1

Pr(r∈Ra(π))

#

b∈A

π0
bj
·Pr(r∈Ra(π),r∈Rb(π

0)),

as desired. Step 2. Define L(π) =
!

a∈A

!
j∈J

|πaj − limn→∞ωaj(π)|. We prove (i), (ii) and (iii)

in order. (i). Note by continuity of the absolute value function, limn→∞ |πaj − ωaj(π)| = |πaj −

limn→∞ωaj(π)| for all (a, j) and π ∈Π. It follows by definition of L(π) that |Ln(π)−L(π)|−→ 0.

Further, L(π0)<∞ follows by definition of L(π) and because limn→∞ωaj(π)<∞ by Step 1. (ii).
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By definition of L(π), to show that L(π0) = 0, it suffices to show that π0
aj
= limn→∞ωaj(π

0) for all

(a, j). Pick any (a, j), and note

π0
aj
=

1

Pr(r∈Ra(π0))
·π0

aj
·Pr(r∈Ra(π

0)),

=
1

Pr(r∈Ra(π0))

#

b∈A

π0
bj
·Pr(r∈Ra(π

0),r∈Rb(π
0)),

= lim
n→∞

ωaj(π
0),

where the first equality follows by multiplying and dividing by Pr(r∈Ra(π
0)), the second equality

follows because Pr(r ∈ Ra(π
0),r ∈ Rb(π

0)) = 0 for all b ∕= a by continuity of f(r), and the third

equality follows from Step 1. Therefore, L(π0) = 0. (iii). Next, we establish that L(π)> 0 for all

π ∕= π0 if and only if Assumption 2 holds. First, let Assumption 2 hold. Pick any π̄ ∕= π0, and

suppose by way of contradiction that L(π̄) = 0. It follows that for all (a, j),

π̄aj = lim
n→∞

ωaj(π̄),

=
1

Pr(r∈Ra(π̄))

#

b∈A

π0
bj
·Pr(r∈Ra(π̄),r∈Rb(π

0)),

=
#

b∈A

π0
bj
·Pr(r∈Rb(π

0)|r∈Ra(π̄)),

where the first line follows because L(π̄) = 0, the second line follows from Step 1, and the third

line follows by the probability chain rule. However, by Assumption 2, there exists an (a, j) such

that π̄aj ∕=
!

b∈A
π0
bj
·Pr(r ∈Rb(π

0)|r ∈Ra(π̄)), which yields a contradiction. Therefore, L(π)> 0

for all π ∕=π0. Conversely, if Assumption 2 does not hold, then by parallel argument to the above,

there exists π̌ ∈Π where π̌ ∕=π0 such that π̌aj = limn→∞(π̌) for all (a, j). By definition of L(π), it

follows that L(π0) =L(π̌) = 0. □

Proof of Theorem 1. The proof proceeds in two steps. First, we show |Ln(π̂n)−Ln(π
0)|−→ 0.

Second, we show plim
n→∞π̂n =π0 if and only if Assumption 2 holds. Step 1. Because Ln(π

0)−→

L(π0) by Lemma EC.3(i) and L(π0) = 0 by Lemma EC.3(ii), we have Ln(π
0)−→ 0. Next, note

0≤Ln(π̂n)≤Ln(π
0),

where the first and second inequalities follow by definition of Ln(π) and π̂n, respectively. It

follows that Ln(π̂n) −→ 0. Therefore, |Ln(π̂n) − Ln(π
0)| −→ 0. Step 2. Because Ln(π) is lower

semicontinuous by Lemma EC.2, |Ln(π̂n)−Ln(π
0)|−→ 0 by Step 1, and Π is compact, by Theorem

5.14 of Van der Vaart (2000), plim
n→∞π̂n ∈ argminπ∈ΠL(π). Next, suppose Assumption 2 holds.

Then by Lemma EC.3, argminπ∈ΠL(π) = π0, which implies plim
n→∞π̂n = π0. If Assumption 2
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does not hold, then by Lemma EC.3(iii), there exists π̃ ∕=π0 such that L(π̃) =L(π0) = 0, in which

case plim
n→∞π̂n ∕=π0. □

Proof of Proposition 1. We prove statements (i), (ii) and (iii) in order. Part (i). To show that

the minimizer of PA-C also minimizes the proxy loss function Zn(π), it suffices to show that solving

PA-C and minimizing Zn(π) are equivalent problems in the following sense: (a) For any (π,x,z)

that is feasible for PA-C, π ∈Π; (b) For any π ∈Π, there exists (x,z) such that (π,x,z) is feasible

to PA-C; and (c) for any (π,x,z) feasible for PA-C, Zn(π) = ZC

n
(π,x,z), where ZC

n
(π,x,z) is the

objective of PA-C. Statements (a) and (b) follow immediately by the construction of PA-C and the

proxy loss problem (8); it remains to prove (c). Let π be fixed in PA-C, and let (x,z) be a solution

to the resulting subproblem. Next, note

#

i∈I

(πaj − yi

j
)xi

a
=

#

i∈{i|xi=a}

(πaj − yi

j
),

= (πaj −ωaj)|{i|xi = a}|,

= (πaj −ωaj)ηaj, (EC.21)

where the first equality follows because xi

a
= 1 if and only if i ∈ {i|xi = a}, the second equality

follows from the definition of ω, and the third equality follows by definition of η. Then we have

ZC

n
(π,x,z) =

#

a∈A

#

j∈J

%%%
1

n

#

i∈I

(πaj − yi

j
)xi

a

%%%,

=
1

n

#

a∈A

#

j∈J

%%%(πaj −ωaj)ηaj

%%%,

=Zn(π),

where the first equality follows from (10a)−(10c), the second equality follows from (EC.21), the

third equality follows by definition of the element-wise norm " · "1, and the final equality follows

by definition of Zn(π). Therefore, Zn(π) =ZC

n
(π,x,z) for any (π,x,z) feasible for PA-C. It follows

that π∗
n
∈ argminπ∈ΠZn(π). Part (ii). The proof of Theorem 1 establishes that Ln(π̂n)−→ 0. Note

Ln(π̂n) ≤ Ln(π̄n), because π̂n is a minimizer of Ln(π) by definition. Therefore, by definition of

Ln(π), it suffices to show that for all (a, j) and ε> 0,

Pr

5

6 1

|Ia(π̄n)|
#

i∈Ia(π̄n)

yi

j
− (π̄aj)n >

ε

md

7

8−→ 0, (EC.22)

where Ia(π) = {i∈ I|ri ∈Ra(π)}. In the remainder of the proof, we suppress dependence of π̄n on

n for conciseness. Next,

Pr

5

6 1

|Ia(π̄)|
#

i∈Ia(π̄)

yi

j
− π̄aj >

ε

md

7

8=Pr

5

6
#

i∈Ia(π̄)

yi

j
− π̄aj|Ia(π̄)|>

ε|Ia(π̄)|
md

7

8 ,
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≤Pr

5

6
#

b∈A

#

j∈J

%%%
#

i∈Ia(π̄)

yi

j
− π̄aj|Ia(π̄)|

%%%>
ε|Ia(π̄)|
md

7

8 ,

=Pr

9
nZn(π̄)>

ε|Ia(π̄)|
md

:
,

≤Pr

9
nZn(π

0)>
ε|Ia(π̄)|
md

:
,

where the first line follows by multiplying both sides of the inequality by |Ia(π̄)|, the second line

follows by non-negativity of the absolute value and summing over b ∈ A and j ∈ J , the third

line follows by definition of Zn(π), and the fourth line follows because π̄ ∈ argminπ∈Π̄Zn(π), by

definition. We can now write

Pr

9
nZn(π

0)>
ε|Ia(π̄)|
md

:
=Pr

5

6
#

b∈A

#

j∈J

%%%
#

i∈Ib(π
0)

yi

j
−π0

bj
|Ib(π0)|

%%%>
ε|Ia(π̄)|
md

7

8

≤
#

b∈A

#

j∈J

Pr

5

6
%%%

#

i∈Ib(π
0)

yi

j
−π0

bj
|Ib(π0)|

%%%>
ε|Ia(π̄)|
m2d2

7

8

≤
#

b∈A

#

j∈J

n#

k=0

Pr

5

6
%%%

#

i∈Ib(π
0)

yi

j
−π0

bj
|Ib(π0)|

%%%>
εk

m2d2

%%%%%|Ia(π̄)|= k

7

8Pr(|Ia(π̄)|= k)

≤ 2
#

b∈A

#

j∈J

n#

k=0

exp

&
−
9

εk

m2d2

:2

· 1

|Ib(π0)|

'
Pr(|Ia(π̄)|= k)

≤ 2d
#

b∈A

n#

k=0

exp

&
−
9

εk

m2d2

:2

· 1
n

'
Pr(|Ia(π̄)|= k),

where the first line follows by definition of Zn(π), the second line follows from the union bound,

the third line follows by conditioning on |Ia(π̄)|, the fourth line follows by Hoeffding’s inequality,

and the fifth line follows by summing over j ∈ J and because n≥ |Ib(π0)| for all b ∈ A. Thus, to

prove that (EC.22) holds, it remains to show that for each a∈A,

n#

k=0

exp

&
−
9

εk

m2d2

:2

· 1
n

'
Pr(Ia(π̄) = k)−→ 0.

Next, using the fact that Pr(|Ia(π̄)| = k), k = 1, . . . , n are binomial probabilities with parameter

Pr(r∈Ra(π̄)), and Pr(r∈Ra(π))> 0 for all a∈A and π ∈Π (Assumption 1), it can be shown with

some effort that for any δ ∈ (0,1), there exists n > 0 and K ∈ [0, n] such that Pr(|Ia(π)|≤K)≤ δ

for any π ∈Π and exp(−( εk
m2d2

)2 · 1
n
)< δ for all k≥K. It follows that

K#

k=0

Pr(|Ia(π̄)|= k) = Pr(|Ia(π̄)|≤K)≤ δ (EC.23)
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and

n#

k=K

δ ·Pr(|Ia(π̄)|= k) = δ
n#

k=K

Pr(|Ia(π̄)|= k)≤ δ. (EC.24)

Then we can write

n#

k=0

exp

&
−
9

εk

m2d2

:2

· 1
n

'
Pr(|Ia(π̄)|= k)≤

K−1#

k=0

Pr(|Ia(π̄)|= k)+
n#

k=K

δ ·Pr(|Ia(π̄)|= k)

≤ 2δ,

where the first term after the first inequality follows because exp(−( εk
m2d2

)2 · 1
n
) ≤ 1 for all

k ∈ [0,K − 1] and n≥ 0, and the second term follows because exp(−( εk
m2d2

)2 · 1
n
)≤ δ for all k ≥K.

Letting δ −→ 0 yields the result. Part (iii). Because |Ln(π
∗
n
)− Ln(π̂n)| −→ 0 by part (ii) above,

and |Ln(π̂n)−Ln(π
0)|−→ 0 by Theorem 1, |Ln(π

∗
n
)−Ln(π

0)|−→ 0. The remainder of the proof

follows by parallel argument to the proof of Theorem 1, with π∗
n
in place of π̂n. □

EC.5.2. Proof of Theorem 2

We first present two helpful supporting results in Lemmas EC.4 and EC.5. Lemma EC.4 is a

concentration inequality that bounds the distance between an empirical mass function obtained

from sampling from a discrete distribution and the discrete distribution itself. In Lemma EC.5,

we define a Bernoulli random variable ea(π
0,π), whose value depends on the realization of r, and

is equal to 1 if the agent’s optimal action is a under the true parameter π0 but not under an

alternative model π. Intuitively, the event {ea(π0,π) = 1} represents a “mis-classification” of the

agent action by the model π. Lemma EC.5 develops a bound on the probability that ea(π
0,π) is

positive (i.e., equal to 1), which is the key result that we use to obtain the bound in Theorem 2.

Lemma EC.4. Let ξ1, ξ2, . . ., ξn be i.i.d. discrete random variables with support J = {1,2, . . . , d}

and mass function λj =Pr(ξ = j) for j ∈ J . Define fj =
1
n

!
n

i=1 I{ξi = j} to be the empirical prob-

ability. Then

Pr

9
sup
j∈J

|fj −λj|> ε

:
≤ 2exp(−nε2).

Proof. For convenience, let Λj =
!

j

k=1 λk be the cumulative distribution and let Fj =
!

j

k=1 fk be

the empirical cumulative distribution. With some effort, it can be shown that sup
j∈J

|fj − λj| ≤

2 sup
j∈J

|Fj −Λj|. It follows that for any ε> 0,

Pr

9
sup
j∈J

|fj −λj|> ε

:
≤Pr

9
2 sup

j∈J

|Fj −Λj|> ε

:
=Pr

9
sup
j∈J

|Fj −Λj|> ε/2

:
≤ 2exp(−nε2),

where the final inequality is the Dvoretzky−Kiefer−Wolfowitz inequality (Massart 1990). □
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Lemma EC.5. Let Assumption 3 hold. Let ea(π
0,π) be a Bernoulli random variable equal to

1 if the events {r∈Ra(π
0)} and {r /∈Ra(π)} both occur. Then there exists π̄ ∈Π, and constants

δ1 ∈ (0,1) and δ2 ∈ (0,1) such that

Pr(ea(π
0,π)> 0)≤ 4m(1− δ1(1− δ2))

n (EC.25)

for all a∈A.

Proof. The proof proceeds in four steps. In the first step, we construct π̄. In the second and third

steps, we prove two useful inequalities. In the fourth step, we prove the inequality (EC.25) in the

lemma statement. Step 1. By Assumption 3, for each a ∈ A, there exists a cluster s(a) ∈ S such

that Bs(a) ∈Ra(π
0). Pick s(a) accordingly for each a∈A, and set was = 1 for s= s(a) and was = 0

for s ∈ S \ s(a). Then let π̄a =
!

s∈S
vswas, for a ∈ A. Note that by construction, π̄a = vs(a) for

a ∈ A. Step 2. First, we define the following useful quantity, which will be used throughout the

proof of Theorem 2:

ua(r,π) = inf
b∈A\a

"
#

j∈J

(πaj −πbj)rj + cb − ca

$
.

Intuitively, ua(r,π) represents the difference in agent utility between action a and the highest-

utility action other than a. Based on this definition, note that an action a is optimal if and only

if ua(r,π)≥ 0. In this step, we show that there exists δ1 ∈ (0,1) and δ2 ∈ (0,1) such that Pr(r ∈

Bs)≥ δ1 for all s∈ S, and

;

Ra(π0)

exp

&
−k

9
ua(r,π

0)

2r̄d

:2
'
f(r)dr≤ δ2 (EC.26)

for all k≥ 0 and a∈A. Recall that r̄= supr∈R
"r"0 <∞; that is, r̄ is an upperbound on the largest

agent payment rj. First, for the existence of δ1 ∈ (0,1), it follows from the continuity of f(r) on R

(Assumption 1) and Bs ⊆R that Pr(r∈Bs)> 0 for all s∈ S. Letting δ1 = infs∈S Pr(r∈Bs) implies

Pr(r ∈ Bs) ≥ δ1 for all s ∈ S, as desired. Next, for the existence of δ2 ∈ (0,1) such that (EC.26)

holds, first consider the case where k= 0. Then

;

Ra(π0)

exp

&
−0

9
ua(r,π

0)

2r̄d

:2
'
f(r)dr=

;

Ra(π0)

f(r)dr< 1,

for all a∈A, where the final inequality follows because Ra(π
0)⊂R for all a∈A (Assumption 1). It

follows there exists δ̃ ∈ (0,1) such that (EC.26) holds for k= 0 and all a∈A. Now consider the case

where k≥ 1. Observe that for all r such that ua(r,π
0)> 0, exp(−(ua(r,π

0)/(2r̄d))2)< 1. Therefore,
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for each a∈A there exists δ̃a ∈ (0,1) such that if ua(r,π
0)> 0, then 0< exp(−(ua(r,π

0)/(2r̄d))2)≤

δ̃a < 1. Next, exponentiating and integrating both sides of the preceding inequality yields

;

Ra(π0)

exp

&
−k

9
ua(r,π

0)

2r̄d

:2
'
f(r)dr≤

;

Ra(π0)

(δ̃a)
kf(r)dr≤ (δ̃a)

k.

The result follows from setting δ2 = sup{δ̃, sup
a∈A

δ̃a}. Step 3. In this step, we show that for π̄ as

constructed in step 1 and any a∈A,

Pr

9
sup
j∈J

|π̄bj −π0
bj
|> ua(r,π

0)

2r̄d

:
≤ 2(1− δ1(1− δ2))

n

for all b∈A. For convenience, let Is = {i∈ I|ri ∈Bs}. Then for each b∈A,

Pr

9
sup
j∈J

|π̄bj −π0
bj
|> ua(r,π

0)

2r̄d

:
=Pr

5

6sup
j∈J

%%%%
1

|Is(a)|
#

i∈Is(a)

yi

j
−π0

bj

%%%%>
ua(r,π

0)

2r̄d

7

8

=
n#

k=0

Pr

5

6sup
j∈J

%%%%
1

|Is(a)|
#

i∈Is(a)

yi

j
−π0

bj

%%%%>
ua(r,π

0)

2r̄d

%%%%|Is(a)|= k

7

8Pr(|Is(a)|= k)

=
n#

k=0

<

=
;

R

Pr

5

6sup
j∈J

%%%%
1

k

#

i∈Is(a)

yi

j
−π0

bj

%%%%>
ua(r,π

0)

2r̄d

%%%%|Is(a)|= k

7

8f(r)dr

>

?Pr(|Is(a)|= k)

≤ 2
n#

k=0

@;

Ra(π0)

exp

&
−k

9
ua(r,π

0)

2r̄d

:2
'
f(r)dr

A
Pr(|Is(a)|= k)

≤ 2
n#

k=0

δ̃kPr(|Is(a)|= k),

The first line follows because π̄aj = vs(a),j = (1/|Is(a)|)
!

i∈Is(a)
yi

j
for all (a, j), by construction of

vs (Algorithm 1) and π̄ (Step 1). The second line follows from the total probability rule, because

|Is(a)| is a binomial random variable. The third line follows from conditioning on r and integrating

over R, and because yi

j
for i ∈ |Is(a)| are independent of r. The fourth line follows from Lemma

EC.4, and because Ra(π
0) ⊆ R. The fifth line follows from Step 2 of the proof. Next, note that

|Is| is the number of observations that are contained in the ball Bs. Therefore, |Is| is a binomial

random variable with parameter λs =Pr(r∈Bs). We can now write

2
n#

k=0

δk2 ·Pr(|Is(a)|= k) = 2
n#

k=0

(δ2 ·λs(a))
k

n!

k!(n− k)!
(1−λs(a))

n−k

= 2(1−λs(a)(1− δ2))
n

≤ 2(1− δ1(1− δ2))
n,

where the first equality follows from writing the binomial probabilities Pr(|Is(a)|= k) explicitly and

grouping terms raised to the kth power, the second equality follows immediately from the binomial
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theorem, and the third inequality follows from Step 2. The result follows. Step 4. We now prove

inequality (EC.25). Note that by definition, ea(π
0, π̄)> 0 implies r /∈Ra(π̄), which implies there

exists b∈A such that
!

j∈J
(π̄bj − π̄aj)rj > cb − ca. Therefore, by the union bound,

Pr(ea(π
0, π̄)> 0)≤

#

b∈A\a

Pr

&
#

j∈J

(π̄bj − π̄aj)rj > cb − ca

'
.

In the remainder of the proof, we bound Pr
B!

j∈J
(π̄bj − π̄aj)rj > cb − ca

C
for each b ∈ A \ a. For

each b∈A \ a, we have

Pr

&
#

j∈J

(π̄bj − π̄aj)rj > cb − ca

'
,

≤Pr

&
#

j∈J

(π̄bj −π0
bj
)rj −

#

j∈J

(π̄aj − π̄0
aj
)rj >ua(r,π

0)

'
,

≤Pr

&"
#

j∈J

(π̄bj −π0
bj
)rj >

ua(r,π
0)

2

$
∪
"
#

j∈J

(π̄0
aj
− π̄aj)rj >

ua(r,π
0)

2

$'
,

≤Pr

9D
sup
j∈J

|π̄bj −π0
bj
|> ua(r,π

0)

2r̄d

E
∪
D
sup
j∈J

|π0
aj
− π̄aj|>

ua(r,π
0)

2r̄d

E:
,

≤Pr

9
sup
j∈J

|π̄bj −π0
bj
|> ua(r,π

0)

2r̄d

:
+Pr

9
sup
j∈J

|π0
aj
− π̄aj|>

ua(r,π
0)

2r̄d

:
,

≤ 4(1− δ1(1− δ2))
n.

The first inequality follows because ua(r,π
0)≤

!
j∈J

(π0
aj
− π0

bj
)rj + cb − ca for all b ∈A, by defini-

tion of ua(r,π
0). The second inequality follows because

!
j∈J

(πbj − π0
bj
)rj −

!
j∈J

(π̄aj − π0
aj
)rj >

ua(r,π
0) implies at least one of

!
j∈J

(π̄bj −π0
bj
)rj >ua(r,π

0)/2 or
!

j∈J
(π0

aj
− π̄aj)rj >ua(r,π

0)/2

holds. The third inequality follows because |J | sup
j∈J

{(π0
aj
− π̄aj)rj}≥

!
j∈J

(π0
aj
− π̄aj)rj, |J |= d,

and r̄ ≥ rj for all j ∈ J . The fourth inequality follows from the union bound. The fifth inequality

follows from Step 3. The result follows by summing the final inequality over b∈A. □

Proof of Theorem 2. We prove the result by constructing a sequence of feasible solutions π̄n

to PA-D, and bounding the objective function under π̄n. For conciseness we suppress dependence

of π̄n and π̃n on n. By Assumption 3, for each a ∈ A, there exists a cluster s(a) ∈ S such that

Bs(a) ∈Ra(π
0). Pick s(a) accordingly for each a ∈A. Set w̄as = 1 for s= s(a) and w̄as = 0 for all

s∈ S \ s(a). Fix w= w̄ in PA-D and let (z̄, x̄, φ̄) be the solution of the resulting subproblem. Then

(w̄, z̄, x̄, φ̄) is a feasible solution to PA-D, and the associated estimate is given by

π̄a =
#

s∈S

vsw̄as = vs(a), a∈A.
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Because π̄ is attained at a feasible solution to PA-D, Zn(π̃)≤Zn(π̄). It follows that

Pr(|Zn(π̂)−Zn(π̃)|> ε)≤Pr(Zn(π̃)> ε)≤Pr(Zn(π̄)> ε),

for any ε > 0. Therefore, it suffices to show that Pr(Zn(π̄) > ε) = O(n2κn) for some κ ∈ (0,1).

Because Zn(π) =
!

a∈A

!
j∈J

|Ia(π)|
n

|πaj −ωaj(π̄)| by definition, we shall bound Zn(π̄) by bounding
|Ia(π)|

n
|π̄aj −ωaj(π̄)| for each (a, j). Next, pick any (a, j). Then

|Ia(π̄)|
n

|π̄aj −ωaj(π̄)|=
|Ia(π̄)|

n

%%π̄aj −π0
aj
+π0

aj
−ωaj(π

0)+ωaj(π
0)−ωaj(π̄)

%% ,

≤ |Ia(π̄)|
n

,%%π̄aj −π0
aj

%%+
%%π0

aj
−ωaj(π

0)
%%+

%%ωaj(π
0)−ωaj(π̄)

%%- ,

≤ |π̄aj −π0
aj
|+ |π0

aj
−ωaj(π

0)|+ |ωaj(π
0)−ωaj(π̄)|, (EC.27)

where the second line follows by the triangle inequality, and the third line follows because |Ia(π)|≤
n for any π ∈Π. The remainder of the proof proceeds in three steps. In each step, we bound one of

the terms in the right-hand side of (EC.27), from left to right. Step 1. For the first term, |π̄aj−π0
aj
|,

note

Pr(|π̄aj −π0
aj
|> ε) =

n#

k=0

Pr(|π̄aj −π0
aj
|> ε||Is(a)|= k)Pr(|Is(a)|= k)

=
n#

k=0

Pr

5

6
%%%%

1

|Is(a)|
#

i∈Is(a)

yi

j
−π0

aj

%%%%> ε

%%%%%|Is(a)|= k

7

8Pr(|Is(a)|= k)

≤
n#

k=0

2exp(−ε2k)Pr(|Is(a)|= k).

The first line follows by conditioning on |Is(a)|= k. The second line follows because π̄aj = vs(a),j =

(1/|Is(a)|)
!

i∈Is(a)
yi

j
by the construction of π̄aj above and the definition of vs(a) (Algorithm 1). For

the third line, note that (1/|Is(a)|)
!

i∈Is(a)
yi

j
is the empirical mass function for the independent

variables ξi for all i∈ Is(a), generated by π0. The inequality, therefore, follows by an application of

Lemma EC.4. Next, because the r
i are i.i.d. (Assumption 1), |Is(a)| is a binomial random variable

with parameter Pr(r∈Bs(a)). For conciseness, define λs(a) =Pr(r∈Bs(a)). We now have

n#

k=0

,
2exp(−ε2k)

-
Pr(|Is(a)|= k) =

n#

k=0

,
2exp(−ε2k)

- n!

k!(n− k)!
λk

s(a)(1−λs(a))
n−k

= 2
n#

k=0

,
λs(a) exp(−ε2)

-k n!

k!(n− k)!
(1−λs(a))

n−k,

where the first equality follows from writing the binomial probabilities Pr(|Is(a)| = k) explicitly,

and the second equality follows from grouping terms raised to the kth power. Finally, we have

2
n#

k=0

,
λs(a) exp(−ε2)

-k n!

k!(n− k)!
(1−λs(a))

n−k = 2(1−λs(a)(1− exp(−ε2)))n

≤ 2(1− δ1(1− exp(−ε2)))n,
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for some δ1 ∈ (0,1), where the equality follows by applying the binomial theorem, and the inequality

follows by letting δ1 = infs∈S λs(a). Therefore,

Pr(|(π̄aj −π0
aj
|> ε)≤ 2(1− δ1(1− exp(−ε2)))n. (EC.28)

Step 2. Next, we bound the second term |π0
aj

− ωaj(π
0)| in (EC.27). Because ωaj(π

0) =

(1/|Ia(π0)|)
!

i∈Ia(π0) y
i

j
, it follows immediately from Lemma EC.4 that

Pr(|π0
aj
−ωaj(π

0)|> ε)≤ 2exp(−nε2). (EC.29)

Step 3. Next, we bound the third term |ωaj(π
0)−ωaj(π̄)| in (EC.27). For convenience, let βaj(π)

be a Bernoulli random variable equal to 1 if the events {i∈ Ia(π)} and {yj = 1} both occur, and let

βi

aj
(π) be the realized value of βaj(π) in the ith observation. Using the definition of βi

aj
, it follows

that

|ωaj(π
0)−ωaj(π̄)|=

%%%%
1

|Ia(π0)|
#

i∈Ia(π0)

yi

j
− 1

|Ia(π̄)|
#

i∈Ia(π̄)

yi

j

%%%%

=

%%%%
1

|Ia(π0)|
#

i∈I

βi

aj
(π0)− 1

|Ia(π̄)|
#

i∈I

βi

aj
(π̄)

%%%%.

Next, we have
%%%%

1

|Ia(π0)|
#

i∈I

βi

aj
(π0)− 1

|Ia(π̄)|
#

i∈I

βi

aj
(π̄)

%%%%≤
%%%%max

D
1

|Ia(π0)| ,
1

|Ia(π̄)|

E#

i∈I

βi

aj
(π0)− 1

|Ia(π̄)|
#

i∈I

βi

aj
(π̄)

%%%%

≤
%%%%

1

|Ia(π̄)|
#

i∈I

(βi

aj
(π0)−βi

aj
(π̄))+

%%%%
1

|Ia(π̄)|
− 1

|Ia(π0)|

%%%%
#

i∈I

βi

aj
(π̄)

%%%%

≤
%%%%

1

|Ia(π̄)|
#

i∈I

(βi

aj
(π0)−βi

aj
(π̄))

%%%%+
%%%%

1

|Ia(π̄)|
− 1

|Ia(π0)|

%%%%
#

i∈I

βi

aj
(π̄),

(EC.30)

where the first two lines are consequences of the max{·} operator, and the third line follows from

the triangle inequality. We shall bound each of the two terms on the right-hand side of (EC.30)

separately. For the first term on the right-hand side of (EC.30), observe that by definition of

βi

aj
(π),

!
j∈J

βi

aj
(π) = 1 if and only if i ∈ Ia(π). Recall from Lemma EC.5 that ea(π

0, π̄) is a

Bernoulli variable equal to 1 if the events {r∈Ra(π
0)} and {r /∈Ra(π̄)} both occur. Further, note

βi

aj
(π0)−βi

aj
(π̄)> 0 implies ri /∈Ra(π̄), which implies ei

a
(π0, π̄) = 1. Therefore,

%%%%
1

|Ia(π̄)|
#

i∈I

(βi

aj
(π0)−βi

aj
(π̄))

%%%%≤
1

|Ia(π̄)|
#

i∈I

ei
a
(π0, π̄).

Next, for any ε∈ (0,1),

Pr

&
1

|Ia(π̄)|
#

i∈I

ei
a
(π0, π̄)> ε

'
≤Pr

&
#

i∈I

ei
a
(π0, π̄)> ε

'

≤
#

i∈I

Pr
,
ei
a
(π0, π̄)> ε

-

≤ nPr
,
ea(π

0, π̄)> ε
-
,
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where the first inequality follows because |Ia(π̄)|≥ 1 by Assumption 3 and the construction of π̄, the

second inequality follows from applying the union bound, and the third inequality follows because

the ei
a
are i.i.d. (Assumption 1). Next, by Lemma EC.5, Pr (ea(π

0, π̄)> ε)≤ 4m(1− δ1(1− δ2))
n.

Therefore, for any ε∈ (0,1),

Pr

&%%%%
1

|Ia(π̄)|
#

i∈I

(βi

aj
(π0)−βi

aj
(π̄))

%%%%> ε

'
≤ 4mn(1− δ1(1− δ2))

n. (EC.31)

Next, we bound the second term in (EC.30). For any ε∈ (0,1), note

Pr

&%%%%
1

|Ia(π̄)|
− 1

|Ia(π0)|

%%%%
#

i∈I

βi

aj
(π̄)> ε

'
≤ nPr

9%%%%
1

|Ia(π̄)|
− 1

|Ia(π0)|

%%%%> ε

:
,

which follows from the union bound and because βi

aj
(π̄)≤ 1 for all i∈ I. Next, note that

%%%%
1

|Ia(π̄)|
− 1

|Ia(π0)|

%%%%≤ ||Ia(π0)|− |Ia(π̄)||,

which follows because |Ia(π0)| ≥ 1 and |Ia(π̄)| ≥ 1 by Assumption 3 and by construction of π̄.

Therefore,

n ·Pr
9%%%%

1

|Ia(π̄)|
− 1

|Ia(π0)|

%%%%> ε

:
≤ n ·Pr

,
||Ia(π0)|− |Ia(π̄)||> ε

-

= n ·Pr
&%%%%

#

i∈I

#

j∈J

,
βi

aj
(π0)−βi

aj
(π̄)

- %%%%> ε

'

≤ n ·Pr
&
#

i∈I

ei
a
(π0, π̄)> ε

'

≤ n2 ·Pr
,
ea(π

0, π̄)> ε
-

≤ 4mn2(1− δ1(1− δ2))
n, (EC.32)

where the second line follows because |Ia(π)|=
!

i∈I

!
j∈J

βi

aj
(π) by definition of βi

aj
(π), the third

line follows because
!

j∈J
(βi

aj
(π0) − βi

aj
(π̄)) ≤ ei

a
(π0, π̄) for all i ∈ I, the fourth line follows by

applying the union bound and noting that the ei
a
(π0, π̄) are i.i.d. (Assumption 1), and the fifth

line follows from Lemma EC.5. Therefore, combining (EC.31) and (EC.32) produces the following

bound on the third term in (EC.27) for any ε∈ (0,1):

Pr
,
|ωaj(π

0)−ωaj(π̄)|> ε
-
≤ 4mn(n+1)(1− δ1(1− δ2))

n. (EC.33)

Combining (EC.27), (EC.28), (EC.29) and (EC.33) and applying the union bound yields

Pr

9
|Ia(π̄)|

n
|π̄aj −ωaj(π̄)|> ε

:

≤Pr
,
|π̄aj −π0

aj
|> ε/3

-
+Pr

,
|π0

aj
−ωaj(π

0)|> ε/3
-
+Pr

,
|ωaj(π

0)−ωaj(π̄)|> ε/3
-

≤ 2
,
exp(−n(ε/3)2)+ (1− δ1(1− exp(−(ε/3)2)))n +2mn(n+1)(1− δ1(1− δ2))

n
-
. (EC.34)
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for any ε∈ (0,1) and each a∈A and j ∈ J . It follows that for any ε∈ (0,1),

Pr(Zn(π̄)> ε) = Pr

&
#

a∈A

#

j∈J

|Ia(π̄)|
n

|π̄aj −ωaj(π̄)|> ε

'
(EC.35)

≤
#

a∈A

#

j∈J

Pr
B
|π̄aj −ωaj(π̄)|>

ε

md

C

≤ 2md(exp(−n(ε/(3md))2)+
,
1− δ1(1− exp(−(ε/(3md))2))

-n
(EC.36)

+ 2mn(n+1)(1− δ1(1− δ2))
n)). (EC.37)

where the first line follows by definition of Zn(π), the second line follows from applying the union

bound over all a ∈ A and j ∈ J and noting m = |A| and d = |J |, and the third line follows from

(EC.34). Note that the third term in (EC.37) is dominant, which implies Pr(Zn(π̄)> ε)≤O(n2κn),

where κ= 1− δ1(1− δ2). Lastly, note κ∈ (0,1) because δ1 ∈ (0,1) and δ2 ∈ (0,1). □

EC.5.3. Proofs of Proposition 2, Theorem 3, and Theorem 4

Proof of Proposition 2. The proof proceeds in two steps. First, we show Zn(π̃n)−→ 0. Second,

we prove the main result. Step 1. Note that for any π̄ attained at a feasible solution to PA-D(S),

0≤Zn(π̃n)≤Zn(π̄). Therefore, we prove the result by constructing a feasible solution (π̄, x̄, w̄, z̄, φ̄)

for each n≥ 0 and showing Zn(π̄)−→ 0. Because Zn(π
0)−→ 0 by Lemma EC.3, it suffices to show

π̄ −→ π0. By Assumption 3, for each a ∈ A there exists s ∈ S such that Bs ⊆ Ra(π
0). For each

n ≥ 0, let (π̄, x̄, w̄, z̄, φ̄) be constructed as follows: for each a ∈ A, set w̄as = 1 for s = s(a) and

w̄as = 0 for all s ∈ S \ s(a). Fix w = w̄ in PA-D and let (π̄, x̄, z̄, φ̄) be the solution of the resulting

subproblem. Then

Pr

9
sup
j∈J

|π̄aj −π0
aj
|> ε

:
≤Pr

9
sup
j∈J

|(vs(a)j −π0
aj
|> ε

:

≤Pr

5

6sup
j∈J

%%%
1

|Is(a)|
#

i∈Is(a)

yi

j
−π0

aj

%%%> ε

7

8

≤ 2exp(−ε2|Is(a)|),

where the first line follows from constraint (13i), the second line follows by definition of vs(a),

and the third line follows from Lemma EC.4. Because f(r) is continuous on R (Assumption

1), |Is(a)| −→ ∞ as n −→ ∞ for all a ∈ A. Therefore, π̄n −→ π0, as desired. Step 2. Note

0 ≤ Zn(π
∗
n
) ≤ Zn(π̃n) by defintion of π∗

n
. Because Zn(π̃n) −→ 0 by Step 1, it follows that

Zn(π
∗
n
)−→ 0. Therefore, |Zn(π

∗
n
)−Zn(π̃n)|−→ 0, as desired. □

Proof of Theorem 3. Let w̃ be obtained at an optimal solution to PA-D, and define

Ṽ = {vs ∈ V |
!

a∈A
w̃as = 1}. Let S̃ index the candidate distributions in Ṽ . Let V +

T
denote the
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candidate distributions at termination of Algorithm 2, with index set S+
T
. For conciseness, we

suppress dependence of Ṽ , V +
T
, S̃ and S+

T
on n. The proof proceeds in two steps. First, we show

|Zn(π̃n) − Zn(π
+
n
)| −→ 0. Second, we prove the main result. Step 1. Observe that if Ṽ ⊆ V +

T
,

then Zn(π
+
n
) ≤ Zn(π̃n). By optimality of π̃n with respect to PA-D(S), Zn(π̃n) ≤ Zn(π

+
n
). Thus

|Zn(π̃n) − Zn(π
+
n
)| −→ 0 if Ṽ ⊆ V +

T
. It therefore suffices to show that for any vs ∈ Ṽ , there

exists vs′ ∈ V +
T

such that |vs − vs′ | −→ 0. Suppose otherwise. Then for all n ≥ 0, there exists

vs ∈ Ṽ such that vs ∕= vs′ for all vs′ ∈ V +
T
. By the weak law of large numbers, for each s ∈ S

there exists νs ∈ Rd such that vs −→ νs as ns −→ ∞. It follows that for all n ≥ 0, there exists

s ∈ S̃ such that νs ∕= νs
′ for all s′ ∈ S+

T
. Note vsj = ψsj/(

!
j∈J

ψsj). Then for all n ≥ 0, there

exists s ∈ S̃ such that Hα(ψs,ψs′) < 0 and νs ∕= νs
′ for all s′ ∈ S+

T
. Next, it is straightforward

to verify that because the density function f(r) is continuous on R (Assumption 1), ns −→ ∞
and ns′ −→∞ as n−→∞. Hence, Pr(Hα(ψs,ψs′)≥ 0|νs ∕= νs

′)−→ 1, a contradiction. Therefore,

|Zn(π̃n)−Zn(π
+
n
)|−→ 0. Step 2. By Step 1 of the proof of Proposition 2, we have Zn(π̃n)−→ 0.

Because |Zn(π̃n)− Zn(π
+
n
)| −→ 0 from the first step of this proof, it follows that Zn(π

+
n
) −→ 0.

Following a parallel argument to the proof of Proposition 1, it can be shown that Zn(π
+
n
) −→ 0

implies |Ln(π
+
n
)−Ln(π̂n)|−→ 0. Because |Ln(π̂n)−Ln(π

0)|−→ 0 from the first step of the proof

of Theorem 1, |Ln(π
+
n
) − Ln(π̂n)| −→ 0 implies |Ln(π

+
n
) − Ln(π

0)| −→ 0. The remainder of the

proof follows by a parallel argument to the second step of the proof of Theorem 1, with π+
n

in

place of π̂n. □

Proof of Theorem 4. The proof proceeds in two steps. First, we show Pr(T >m)≤ αmS. Second,

we prove the main result. Step 1. By assumption, for each s ∈ S, there exists a ∈ A such that

Bs ⊆Ra(π
0). In words, this means that for each ball Bs, every contract r ∈Bs induces the same

action from the agent. Accordingly, each candidate distribution s ∈ S is mapped to exactly one

action a∈A. If there exists an s∈ S+ such that s is mapped to an action a, we say that the action

a is represented in S+. For each s ∈ S−, let Es be the event that there exists s′(s) ∈ S+ such that

Bs ⊆Ra(π
0) and Bs′ ⊆Ra(π

0); that is, Es is the event that the action a that s ∈ S− maps to is

already represented in S+. Next, pick an iteration t, and let s∗
t
be the cluster selected in the tth

iteration of Algorithm 2. Then Es
∗
t
is the event that the candidate distribution selected in iteration

t is mapped to an action that is already represented in S+. We can now write

Pr(Es
∗
t
)≤Pr (∪s∈S− {∩s′∈S+{Hα(ψs,ψs′)≥ 0},Es})

≤
#

s∈S−

Pr (∩s′∈S+{Hα(ψs,ψs′)≥ 0},Es)

≤
#

s∈S−

Pr
B
∩s′∈S+{Hα(ψs,ψs′)≥ 0}

%%%Es

C
Pr(Es)
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≤
#

s∈S−

Pr
B
∩s′∈S+{Hα(ψs,ψs′)≥ 0}

%%%Es

C
, (EC.38)

The first inequality follows by definition of sτ (Algorithm 2) and Es. The second inequality fol-

lows from the union bound, the third inequality follows from conditioning on Es, and the fourth

inequality follows because Pr(Es)≤ 1 for all s∈ S. Next, for each s∈ S, we have

Pr
B
∩s′∈S+ {Hα(ψs,ψs′)≥ 0}

%%%Es

C
≤Pr

B
Hα(ψs,ψs′(s))≥ 0

%%%Es

C
(EC.39)

≤Pr
B
Hα(ψs,ψs′(s))≥ 0

%%%νs = νs′(s)

C
(EC.40)

≤ α, (EC.41)

where the first inequality follows from dropping the events {Hα(ψs,ψs′)≥ 0} from the intersection

for all elements in S+ \ s′(s), the second inequality follows because the event νs = νs′(s) implies the

event Es, and the third inequality follows by definition of Hα(ψs,ψs′). By combining (EC.38) and

(EC.39) and noting |S−|≤ |S| for all t= 1, . . . , T , it follows that Pr(Es
∗
t
)≤ α|S|. Next, note that

the event {T >m} implies {∪m−1
t=0 Es

∗
t
} by the pigeonhole principle. Therefore, by the union bound,

Pr(T >m)≤Pr
,
∪m−1

k=0 Es
∗
t

-

≤
m−1#

k=0

Pr(Es
∗
t
)

≤
m−1#

k=0

α|S|

≤ αm|S|,

as desired. Step 2. Note E[T ] =
!∞

k=0Pr(T > k) by definition of the expectation. It follows that

∞#

k=0

Pr(T > k) =

|S|−1#

k=0

Pr(T > k)

=
m−1#

k=0

Pr(T > k)+

|S|−1#

k=m

Pr(T > k)

≤m+

|S|−1#

k=m

Pr(T > k),

where the first equality follows because T is bounded above by |S|, the second equality follows

from separating the summation, and the inequality follows because
!

m−1

k=0 Pr(T > k) ≤m. Next,

note that the event T > k implies T >m for k =m, . . . , |S|− 1, and thus Pr(T > k)≤ Pr(T >m)

for k=m, . . . , |S|− 1. Therefore,

m+

|S|−1#

k=m

Pr(T > k)≤m+

|S|−1#

k=m

Pr(T >m) =m+Pr(T >m)(|S|−m)≤m[1+α · |S| · (|S|−m)],

where the final inequality follows because Pr(T >m)≤ αm|S| as established in Step 1. □
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EC.5.4. Proofs for Sections EC.3 and EC.4

Proof of Corollary EC.1. The proof proceeds similarly to the proof of Theorem 1: First, we show

|
!

k∈K
(Lk

n
(π̂n)−Lk

n
(π0)) | −→ 0. Second, we show plim

n→∞π̂n = π0 if and only if Assumption

EC.2 holds. Step 1. By Lemma EC.2, Lk

n
(π) is lower semicontinuous for all k ∈K. Because the sum

of lower semicontinuous functions is lower semicontinuous (Dietze and Schäuble 1985), it follows

that
!

k∈K
Lk

n
(π) is lower semicontinuous. Next, we show |

!
k∈K

(Lk

n
(π̂n)−Lk

n
(π0)) |−→ 0. By the

triangle inequality, %%%%%
#

k∈K

,
Lk

n
(π̂n)−Lk

n
(π0)

-
%%%%%≤

#

k∈K

|Lk

n
(π̂n)−Lk

n
(π0)|.

By the proof of Theorem 1 and Assumption EC.1, we have |Lk

n
(π̂n) − Lk

n
(π0)| −→ 0. Because

Lk

n
(π) ≥ 0 for any π, it follows that |

!
k∈K

(Lk

n
(π̂n)−Lk

n
(π0)) | −→ 0. Step 2. For each k ∈ K,

define Lk(π) =
!

a∈A

!
j∈J

|πk

aj
− limn→∞ωk

aj
(π)|. Because

!
k∈K

Lk

n
(π) is lower semicontinuous,

|
!

k∈K
Lk

n
(π̂n)−

!
k∈K

Lk

n
(π0)|−→ 0, and Π is compact, by Theorem 5.14 of Van der Vaart (2000),

plim
n→∞π̂n ∈ argmin

π∈Π

#

k∈K

Lk(π).

Next, by parallel argument to Lemma EC.3, it can be shown that π0 is the unique minimizer of
!

k∈K
Lk(π) if and only if Assumption EC.2 holds. Suppose Assumption EC.2 holds. It follows

that Lk(π0) = 0 and Lk(π) > 0 for π ∕= π0. Therefore, argmin
π∈Π

!
k∈K

Lk

n
(π) = π0, which implies

plim
n→∞π̂n = π0. Conversely, if Assumption EC.2 does not hold, then there exists π̃ ∕= π0 such

that
!

k∈K
L(π̃) =

!
k∈K

L(π0) = 0, which implies plim
n→∞π̂n ∕=π0. □

Proof of Proposition EC.1. For convenience, let Zt(wt,εt) be the objective function value of

PA-T under (wt,εt), and let (w̄t, ε̄t) be the optimal solution to PA-T in iteration t of Algorithm

5. Let “−→” denote convergence in probability as T −→∞. The proof proceeds in four steps. We

prove useful supporting results in the first three steps: In Step 1 we show v
T

s
−→ π0

a(rs) for each

s∈ S; in Step 2 we show ZT (w̄T , ε̄T )−→ 0; in Step 3 we show Pr(w̄T

as
= 1)−→ 1 for a= a(rs) and

Pr(w̄T

as
= 0) −→ 1 for a ∕= a(rs), where a(rs) is the agent’s true optimal action under r

s and π0.

In Step 4, we combine these results to prove the statement of Proposition EC.1. Step 1. Because

0t > 0 for each t ≥ 1, by Algorithm 5 we have nT

s
−→∞ as T −→∞. It follows by construction

of vt

s
in Algorithm 5 and by Lemma EC.4 that v

T

s
−→ π0

a(rs). Step 2. For each t≥ 1, construct a

solution w̃ as follows: for each s∈ S, set w̃as = 1 for a= a(rs) and w̃as = 0 for a ∕= a(rs). Note that

w̃ satisfies constraints (EC.13c)-(EC.13e) for all t≥ 1. Next, fix w̃ as a parameter in PA-T. Then

for each t, PA-T simplifies to the following subproblem:
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minimize
ε

#

s∈S

|εs| (EC.42a)

subject to

&
#

j∈J

vt
sj
rs
j
− ca(rs)

'
+ εs ≥

&
#

j∈J

vt
s′jr

s

j
− c

a(rs
′
)

'
, s∈ S, s′ ∈ S, (EC.42b)

εs ≥ 0, s∈ S. (EC.42c)

Let ε̃t be the optimal solution to the above subproblem in round t. It follows from constraint

(EC.42b) and (EC.42c) that for each s∈ S,

ε̃t
s
=max

s′∈S

"&
#

j∈J

vt
s′jr

s

j
− c

a(rs
′
)

'
−
&
#

j∈J

vt
sj
rs
j
− ca(rs)

'
,0

$
. (EC.43)

Note that
!

j∈J
πt

a(rs
′
),j
rs
j
− c

a(rs
′
) ≤

!
j∈J

πt

a(rs),jr
s

j
− ca(rs) for all k ∈ S and t ≥ 1, by optimality

of a(rs) with respect to contract r
s. Because v

T

s
−→ π0

a(rs) for each s ∈ S by Step 1, it follows

from (EC.43) that ε̄T
s
−→ 0 for each s ∈ S. Therefore, ZT (w̃, ε̃T )−→ 0. By optimality of (w̄t, ε̄t)

with respect to PA-T, we have Zt(w̄t, ε̄t) ≤ Zt(w̃, ε̃t) for all t ≥ 1. Therefore, ZT (w̄t, ε̄t) −→ 0.

Step 3. For each s ∈ S and t ≥ 1, let āt(rs) be the action for which w̄
t

as
= 1. Suppose by way of

contradiction that Pr(āT (rs) = a(rs))−→ 1 does not hold for each s∈ S. Then there exists s̃∈ S and

a subsequence tb, b= 1,2, . . . such that ātb(rs̃) ∕= a(rs̃) for all b≥ 1. Next, by constraint (EC.13b),

we have

ε
tb
s̃
≥max

s′∈S

"
#

j∈J

(vt
s′j − vt

sj
)rs̃

j
+ cā(rs̃) − c

ā(rs
′
),0

$

≥max
s′∈S

"
#

j∈J

(vt
s′j − vt

sj
)rs̃

j
+ c− c̄,0

$

for all b≥ 1, where the second inequality follows by definition of c and c̄. Because v
tb
s′ −→ π0

a(rs
′
)

as b −→ ∞ for all s′ ∈ S by Step 1, and by Assumption EC.3 there exists s′ ∈ S such that
!

j∈J
(π0

a(rs
′
),j

−π0
a(rs̃),j

)rs̃
j
+ c− c̄ > 0, it follows that limb→∞ ε

tb
s̃
> 0. Hence limb→∞Ztb(w̄tb , ε̄tb)> 0,

which implies limT→∞ZT (w̄t, ε̄t) > 0. However, by Step 2, ZT (w̄t, ε̄t) −→ 0, which yields a con-

tradiction. Therefore, Pr(āT (rs) = a(rs)) −→ 1 for all s ∈ S. By definition of āt(rs), this implies

Pr(w̄T

as
= 1)−→ 1 for a= a(rs) and Pr(w̄T

as
= 0)−→ 1 for a ∕= a(rs), as desired. Step 4. We now show

π̂T −→π0. For convenience, let Sa = {s|a(rs) = a}. Then by construction of π̂t from Algorithm 5,

π̂t

aj
=

!
s∈S

vt
sj
nt

s
w̄t

as!
s∈S

nt
s
w̄t

as

=

!
s∈Sa

vt
sj
nt

s
w̄t

as
+
!

s∈S\Sa
vt
sj
nt

s
w̄t

as!
s∈Sa

nt
s
w̄t

as
+
!

s∈S\Sa
nt
s
w̄t

as

,



ec38 e-companion to Kaynar and Siddiq: Estimating Effects of Incentive Contracts

for all (a, j). By Step 3, Pr(w̄T

as
= 1)−→ 1 for s ∈ Sa and Pr(w̄T

as
= 0)−→ 1 for s ∈ S \Sa. Further,

by Step 1, vT

s
−→ π0

a(rs). It follows that for each j ∈ J , vT
sj
w̄T

as
−→ π0

aj
for s ∈ Sa, and vT

sj
w̄T

as
−→ 0

for s∈ S \Sa. Therefore,

plim
T→∞

π̂T

aj
=plim

T→∞

!
s∈Sa

vT
sj
nT

s
w̄T

as
+
!

s∈S\Sa
vT
sj
nT

s
w̄T

as!
s∈Sa

nT
s
w̄T

as
+
!

s∈S\Sa
nT
s
w̄T

as

=plim
T→∞

π0
aj

!
s∈Sa

nT

s!
s∈Sa

nT
s

= π0
aj
.

for all (a, j). Because π̂T

aj
−→ π0

aj
for all (a, j), it follows that π̂T −→π0. □

Proof of Corollary EC.2. It suffices to show |U(r̂T )−U(r∗)|−→ 0. The proof proceeds in two

steps. First, we show Û(r)−→U(r) for any r∈R. Second, we prove the main result. Step 1. Note

|U(r̂)−U(r∗)|= |U(r̂)− Û(r̂)+ Û(r̂)− Û(r∗)+ Û(r∗)−U(r∗)|

≤ |U(r̂)− Û(r̂)|+ |Û(r̂)− Û(r∗)|+ |Û(r∗)−U(r∗)|

where the equality follows from adding and subtracting Û(r̂) and Û(r∗), and the inequality

follows from the triangle inequality. Next, note that by the definitions of Û(r) (given above)

and U(r) (given in (EC.11)), π̂T −→ π0 implies Û(r)−→ U(r) for any r ∈R. Step 2. By Step 1,

|U(r̂T )− Û(r̂T )| −→ 0 and |Û(r∗)− U(r∗)| −→ 0. It remains to show that |Û(r̂T )− Û(r∗)| −→ 0.

Suppose not. Then there exists a subsequence tb, b≥ 1 such that |Û(r̂tb)− Û(r∗)|> 0 for all b≥ 1.

Further, because for all t ≥ 1, r̂t ∈ argmaxr∈R
Û(r) by definition, we have Û(r̂tb) > Û(r∗) for all

b ≥ 1. Letting b −→∞ and noting Û(r) −→ U(r) for all r ∈ R yields plim
b→∞Û(r̂tb) > U(r∗). It

is straightforward to obtain a contradiction to the preceding inequality using Û(r)−→ U(r) from

Step 1, and r
∗ = argmaxr∈R

U(r) by definition of r∗. □
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