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Abstract

Two-sided platforms, such as labor marketplaces for hiring freelancers, typically generate revenue by matching

prospective buyers and sellers and extracting commissions from completed transactions. Disintermediation,

where sellers transact off-platform with buyers to bypass commission fees, can undermine the viability of

these marketplaces. Although circumventing the platform allows sellers to avoid commission fees, it also

leaves them fully exposed to risky buyers (given the absence of the platform’s payment protections) and

incurs switching costs (given the absence of the platform’s transaction infrastructure). In this paper, we con-

sider interventions for addressing disintermediation, focusing on the pricing and informational levers available

to the platform, where the latter refers to the accuracy of the signal sellers receive about buyers’ riskiness.

First, while intuition suggests platforms should counter disintermediation by lowering commission rates, in a

high-information environment a platform may be better off raising them. Further, when information quality

is high, an increase in sellers’ switching costs may hurt platform revenue. Finally, a platform may strictly

benefit from sellers receiving a partially-informative buyer signal (i.e., not perfectly revealing nor concealing

a buyer’s riskiness), particularly when switching costs are low. As extensions, we examine the efficacy of

two interventions: implementing platform-access fees to capture revenue upfront and banning sellers caught

disintermediating. Overall, our results shed light on how disintermediation disrupts platform operations and

offer prescriptions for platforms seeking to counteract it.

1 Introduction

Two-sided platforms that generate revenue through commission fees are vulnerable to disinterme-

diation, where buyers and sellers transact off-platform to avoid paying the commission. Disinter-

mediation can lead to significant revenue losses – the talent outsourcing platform ZBJ estimates

that up to 90% of their service providers’ transactions may occur off-platform (Zhu et al. 2018). In

extreme cases, disintermediation can threaten the viability of the platform itself – for example, the

demise of home-cleaning platform HomeJoy in 2015 has been partly attributed to disintermediation

(Farr 2015). Although disintermediation is difficult to detect, there is growing empirical evidence

of it occurring in multiple online marketplaces (Lin et al. 2022, Karacaoglu et al. 2022, Gu 2024,
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Chintagunta et al. 2023). These risks are well-recognized by platforms: Airbnb explicitly warns

hosts of buyers attempting to pay through alternative channels (Airbnb 2023b), and the freelance

platform Upwork encourages users to report attempts at circumvention (Upwork 2023a). However,

platforms’ efforts to clamp down on this behavior have been less than successful (Chintagunta et al.

2023), as also acknowledged by Upwork in a recent 10-K filing:

“Despite our efforts to prevent them from doing so, users circumvent our work marketplace and

engage with or take payment through other means to avoid the fees that we charge, and it is

difficult or impossible to measure the losses associated with circumvention.” (Upwork 2024b).

Given the limited efficacy of such enforcement measures, effectively addressing disintermediation

requires an understanding of what drives sellers to transact off-platform in the first place. Nat-

urally, the platform’s commission rate can play a major role in sellers’ inclination to circumvent

the marketplace, as it can amount to a substantial share of their earnings.1 However, although

disintermediating allows sellers to recoup commission fees, it also entails giving up the benefits of-

fered by the platform, including transaction support and policies that protect sellers against risky or

even fraudulent behavior by buyers. With respect to the latter, such protections are commonplace:

Airbnb insures hosts against property damage by guests (Airbnb 2023a), Upwork holds payments

in escrow to safeguard freelancers (Upwork 2023c), and eBay protects sellers against various forms

of buyer fraud (eBay 2023). In deciding whether to disintermediate, sellers must therefore weigh

the benefits of avoiding commission fees against full exposure to risky buyers, in addition to the

switching costs induced by forgoing the platform’s infrastructure (Hagiu and Wright 2024).

Whether a seller decides to transact off-platform depends on their assessment of buyer riskiness. In

online marketplaces, sellers’ trust in buyers depends on the quality of information they obtain via

the platform. Thus, to encourage on-platform transactions, many platforms include communication

tools and reputation systems for both buyers and sellers. However, high information quality can

also improve sellers’ ability to screen risky buyers (Jin et al. 2025), diminishing the value of the

platform’s protections. Under the threat of disintermediation, the directional impact of information

on platform revenue is therefore unclear – while to some extent necessary to facilitate on-platform

transactions, high information quality may also increase the attractiveness of circumventing the

platform entirely (Gu and Zhu 2021).

The quality of information that sellers obtain about buyers, whether through reputation systems

or direct communication, varies by platform and context. Ratings may be unreliable or prone to

1For example, Airbnb hosts pay a commission of 14-16%, Upwork charges its freelancers up to 15% of their revenue,
and Fiverr charges a commission rate of 20%.
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inflation, reducing their usefulness in differentiating users (Nosko and Tadelis 2015), and users may

also be imperfect in their ability to interpret ratings (Tadelis 2016). Additionally, communication-

related policies differ across platforms: Airbnb algorithmically blocks email addresses and phone

numbers in their on-platform chat until bookings are confirmed, while Upwork prohibits sharing

contact information, but does not block it. A key question, then, is how the quality of information

available to sellers shapes market outcomes in the face of disintermediation. Moreover, the trade-off

between trust and disintermediation suggests that platforms may benefit from carefully controlling

the information available to sellers, to the extent doing so is practical.

How might platforms alter their pricing strategy to respond to disintermediation? Reducing com-

mission rates may encourage on-platform transactions, but also needlessly sacrifice revenue if some

degree of disintermediation is inevitable. Fundamentally, disintermediation poses a challenge to

commission-based platforms due to a misalignment between the platform’s value proposition (con-

necting sellers to buyers) and its pricing strategy (charging for completed transactions). Recognizing

this gap, some platforms eschew commission fees and instead charge sellers for access to buyers – for

example, the home services platform Thumbtack charges sellers for inquiries from potential buyers

(“leads”) (Thumbtack 2023), and the caregiver platform Care.com charges service providers for the

ability to exchange messages with prospective clients (Care.com 2023). Clearly, charging sellers

access fees upfront reduces the incentive to disintermediate, but its revenue implications are less

clear, as some sellers may be unwilling to incur the cost of entry.

1.1 Contributions

This paper examines how disintermediation impacts the operations of two-sided platforms and strate-

gies to address this phenomenon, with a focus on the platform’s pricing and informational levers. In

our model, heterogeneous sellers set their prices in an online (i.e., on-platform) transaction channel

prior to being matched to a buyer. The platform charges the seller a fixed fraction of the price if the

transaction is completed online. Alternatively, a seller may attempt to bypass the commission by

negotiating an off-platform price with the buyer and completing the transaction in an offline chan-

nel, if doing so is mutually beneficial net of a seller-side switching cost. Buyers’ types are private

information; in particular, risky buyers impose higher transaction costs on sellers in both channels,

and also do not pay sellers when transacting offline.2 To capture information quality, we assume

the platform has a technology that generates, with varying degrees of accuracy, a noisy signal of the

buyer’s type, which the seller observes after selecting their online price and prior to their choice of

2This approximates a variety of payment-related risks that buyers can pose to sellers off-platform. For example, on
Upwork, clients may pose risks such as declined payment, delays in payment, chargebacks, client bankruptcy, or
fraud, all of which Upwork protects freelancers against only if they transact on-platform (Upwork 2024b).

3



transaction channel.

Within this setup, we aim to analyze how the threat of disintermediation forces platforms to recon-

sider their core design decisions to combat sellers’ incentives to transact offline. Specifically, we focus

on information quality (which facilitates trust) and pricing strategies by examining the following

questions:

1. How does a platform’s vulnerability to disintermediation impact its choice of commission fee,

and consequently, its revenue? (Section 3)

2. What is the platform’s optimal information policy in light of disintermediation? (Section 4)

3. In what environment should the platform adopt access-based pricing over commission fees?

(Section 5)

Our main results are summarized as follows. First, intuition might suggest that the platform should

set a low commission rate to combat disintermediation. Yet, we show that when sellers can easily

transact off-platform, the platform’s optimal commission rate may be higher than when they cannot.

This result is a consequence of which transactions the platform chooses to capture value from.

Specifically, a platform that is more vulnerable to disintermediation (i.e., low switching costs) must

decide whether to prevent circumvention entirely, which requires restricting its commission rate, or

to permit disintermediation for some transactions and maximize revenue from those that remain

on-platform, which frees the platform to increase its commission rate. We find the latter strategy is

optimal when information quality is sufficiently high.

Moreover, when the platform is already prone to disintermediation, an increase in sellers’ switching

costs can further decrease revenue. In short, this occurs because sellers pass on the switching cost to

on-platform buyers in the form of higher prices and continue to transact off-platform, which hurts

the platform by depressing demand. This suggests that interventions that increase sellers’ perceived

cost of disintermediation (e.g., adding transaction-related features) without substantively deterring

it may undermine platform revenue in equilibrium.

Our findings above suggest that the accuracy of information available to sellers (regarding buyers’

riskiness) plays a central role in determining how platforms respond to the threat of disinterme-

diation. Motivated by this, we analyze a setting where the platform can control the information

provided to sellers, and characterize when a no-, full-, or partial-information disclosure policy is

optimal. In short, we show the optimal policy depends on the competing effects induced by in-

formation: higher information quality boosts the volume of on-platform transactions and leads to

more revenue-efficient pricing by sellers, but also weakens the platform’s pricing power by raising
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the threat of disintermediation. We show how the relative strength of these two effects shapes the

platform’s optimal information policy.

Lastly, we examine the efficacy of access-based pricing, in which sellers are charged upfront to join

the platform instead of paying commission fees. By design, access fees immunize the platform against

disintermediation by removing the incentive to transact offline. Despite their promise, however, we

find that access fees can fall short of the optimal revenue under commissions, depending on the

degree of heterogeneity in sellers’ qualities. This result speaks to the prevalence of commission fees

in practice, despite their vulnerability to disintermediation.

In addition, we extend our model to consider (i) switching costs for buyers, (ii) banning sellers who

are caught disintermediating, and (iii) repeated transactions between buyers and sellers. Overall, our

findings build on a recent and growing body of empirical work on quantifying disintermediation (He

et al. 2020, Gu and Zhu 2021, Karacaoglu et al. 2022, Astashkina et al. 2022, Gu 2024, Chintagunta

et al. 2023) by exploring prescriptions for counteracting it.

1.2 Related Work

Disintermediation. In its most general sense, disintermediation refers to the circumvention of market

intermediaries, and has been studied in a number of contexts, including supply chains (Ritchie and

Brindley 2000, Federgruen and Hu 2016). Our work bears some similarity to prior work on the cost-

benefit trade-off of intermediation in supply chains and other operational settings (e.g., Agrawal

and Seshadri (2000), Belavina and Girotra (2012)), although our focus is on platforms that mediate

transactions between individual users, rather than firms.

Recently, there is a growing recognition of the threat posed by disintermediation (or platform leakage)

to a variety of two-sided platforms. For the most part, the extant literature on platform disinter-

mediation is empirical, and uses novel identification approaches to quantify this phenomenon (He

et al. 2020, Gu and Zhu 2021, Gu 2024, Astashkina et al. 2022, Karacaoglu et al. 2022, Lin et al.

2022, Chintagunta et al. 2023). For example, Gu and Zhu (2021) use a randomized control trial

to find evidence of disintermediation on a large outsourcing platform, Karacaoglu et al. (2022) use

data from a home cleaning platform and estimate that the platform loses out on 24% of potential

transactions due to disintermediation, and Lin et al. (2022) find the rate of disintermediation on

Airbnb to be around 5.4% based on data from Austin, Texas. Our work is especially related to Gu

and Zhu (2021), who find that providing more information about freelancer quality positively im-

pacts the volume of transactions, but also increases the likelihood of disintermediation. Our model

provides analytical support for the empirical results in Gu and Zhu (2021), and further sheds light
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on the impact of information quality on a platform’s revenue and commission rate.

On the modeling side, He et al. (2023) study drivers of disintermediation and investigate the impact

of risky sellers under-delivering in two settings: when platforms provide perfect information, or no

information at all. In contrast, the risk in our model stems from nonpayment by buyers, and

we model information as a continuous parameter. They also propose mechanisms that platforms

can implement to avoid disintermediation (e.g., upskilling sellers), whereas we consider pricing and

information quality as levers to address disintermediation. Hagiu and Wright (2024) also present a

model for platform disintermediation, although their setting differs in a few notable ways: there is no

private information on either side of the market, buyers are homogeneous and have zero bargaining

power over the off-platform price, and sellers face no risks from transacting offline.

Information disclosure in platforms. Our paper is related to a growing literature on how information

influences the decisions of platform users, which has consequences for social welfare or platform

revenue. Papanastasiou et al. (2018) show that strategically withholding information from consumers

can induce exploration of new or alternative products in a manner that ultimately improves consumer

surplus; similarly, Gur et al. (2023) consider how information can be used as a lever to influence

sellers’ prices, also with the aim of improving consumer surplus. In a similar vein, Kanoria and

Saban (2021) show that matching markets (e.g., dating platforms) can improve welfare by hiding

the quality of users. With respect to platform revenue, Bimpikis et al. (2024) and Shi et al. (2023)

describe mechanisms through which mislabeling high-quality sellers can benefit the platform, and

Jin et al. (2025) and Johari et al. (2019) identify conditions under which it is revenue-maximizing

for platforms to filter out low-quality users. More generally, there is a burgeoning literature on

information design in a variety of operational contexts (Bimpikis and Papanastasiou 2019, Bimpikis

et al. 2019, Lingenbrink and Iyer 2019, Candogan and Drakopoulos 2020, Drakopoulos et al. 2021,

Liu et al. 2021, Ma et al. 2024, Anunrojwong et al. 2023, Bimpikis and Mantegazza 2023, Bimpikis

et al. 2025). Our paper contributes to this literature by considering a new mechanism through which

information shapes platform revenue, namely, disintermediation.

Commissions vs. upfront pricing. Platform designers often have a wide range of pricing levers

at their disposal, and characterizing the trade-offs between the different mechanisms is an active

area of study. For instance, there is a rich literature on advance selling that predates online market-

places (Xie and Shugan 2001, Randhawa and Kumar 2008, Cachon and Feldman 2011), and it is now

well known that a monopolist firm can often extract more revenue from subscriptions than per-use

pricing. However, in the case of two-sided platforms with heterogeneous users, the effectiveness of

upfront pricing may suffer by excluding users who are uncertainty averse (Edelman and Hu 2016) or
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derive low utility from the platform (Birge et al. 2021, Cui and Hamilton 2022). As a consequence,

commissions remain the de facto pricing strategy in most modern marketplaces.

Naturally, a number of papers have looked at how platforms should set these commissions and

whether they should be coupled with other mechanisms, e.g., a fixed fee (Benjaafar et al. 2019,

Hu and Zhou 2020, Feldman et al. 2023, Cachon et al. 2025). For instance, Cachon et al. (2025)

consider how pricing control (i.e., whether the platform or sellers set prices) impacts the performance

of commission and per-unit fees, and show that a two-part tariff that combines them performs well

in both centralized and decentralized marketplaces. Birge et al. (2021) identify conditions under

which it is optimal for platforms to use subscriptions or commissions, and show that platforms can

lose out on revenue by not charging payments from both sides of the market. Our focus is on how the

threat of disintermediation influences both the optimal commission rate and the efficacy of upfront

pricing, in part motivated by recent interest in the interplay between pricing, information, and

distortions in platform operations (Belavina et al. 2020, Mostagir and Siderius 2023, Papanastasiou

et al. 2023).

2 Model

Consider a platform with a unit mass of sellers that are heterogeneous in quality. Let i ∈ {L,H}

index the sellers’ types, where a type-i seller’s quality is qi and where qH > qL > 0. Let µ ∈ [0, 1]

be the share of sellers that are type-H. Seller quality is public information and all sellers earn a

reservation profit of 0 off the platform. As in many two-sided marketplaces, each seller chooses their

own price p for transactions completed on the platform.

Each seller is randomly matched to a buyer. Buyers are heterogeneous in their quality sensitivity,

θ, where a buyer with sensitivity θ has valuation v = θq for a quality-q seller. We assume θ is

distributed uniformly in [0, 1] and that the distribution is common knowledge. Each buyer belongs

to one of two types – risky or safe – where a buyer’s type is private information and indexed by

j ∈ {r, s}. The buyer type influences sellers’ costs in two ways. First, a type-s buyer imposes lower

transaction costs on sellers both online and offline, cs < cr; for simplicity, we assume cs = 0 and

cr = c > 0. Second, a type-s buyer pays sellers in full in both transaction channels, whereas a type-r

buyer does not pay if the transaction occurs off-platform.3 A buyer is type-s with probability λ,

which is known to sellers and the platform and is independent of the buyer’s quality sensitivity θ.

We focus on a setting where a minority of buyers are risky by assuming λ ∈ [12 , 1].

3Our results extend to a setting where the type-r buyer instead pays offline with probability δ ∈ [0, 1).

7



The platform selects a commission rate γ ∈ [0, γm], where γm ≤ 1
2 .

4 For a transaction completed on

the platform at price p, the seller and platform receive (1− γ)p and γp, respectively. The platform

has a technology that generates a noisy signal σ of the buyer’s type, where σ ∈ {r, s}. We use

“type-j” to refer to a buyer’s true and private type, and “σ = j” to refer to the buyer’s label from

the platform signal, where j ∈ {r, s}. To capture variability in the signal’s accuracy, we assume the

signal correctly reveals the buyer’s type with probability α ∈ [12 , 1], where α is known to all parties.5

We refer to α as information quality.

Each buyer-seller pair chooses between two transaction channels: they may transact online (i.e., on-

platform) at the seller’s posted price p, or transact offline (i.e., off-platform) at a different, mutually

beneficial price b, if such a price exists. More precisely, we model the offline price b as the solution

to a symmetric Nash bargaining game (Nash 1953, Binmore et al. 1986), which in our setting is the

price that maximizes the product of the buyer’s and seller’s surpluses from disintermediating (see

Section 2.2). The outcome if price negotiation fails (i.e., the disagreement point of the bargaining

game) is to transact online at price p, which is set by the seller prior to accepting the buyer and is

thus fixed at the time of negotiation.

Lastly, sellers incur a switching cost of ϕ ≥ 0 if they disintermediate, which represents the relative

inconvenience of transacting off-platform.

Timeline. The sequence of events is as follows:

1. The platform sets the commission rate γ.

2. Each seller chooses their online price p.

3. Each seller is randomly matched to a buyer. After observing the seller’s price p, the buyer

decides whether to contact the seller to initiate a transaction. (If the buyer does not make

contact, no transaction occurs.)

4. Each contacted seller observes a noisy signal σ of the buyer’s type, updates their belief of the

buyer’s type, and decides whether to transact with or reject the buyer. (If the seller rejects

the buyer, no transaction occurs.)

5. If a seller accepts the buyer, both parties attempt to negotiate an offline price, b. The trans-

action occurs offline at price b if the negotiation succeeds; otherwise, the transaction occurs

online at price p.

4We upper-bound the maximum commission rate by 1
2
for analytical convenience. Our results continue to hold using

γm ≤ 1− ϵ for any ϵ > 0 if Assumption 1 is modified to include qH ≥ 2c/ϵ.
5Note the assumption that α ≥ 1

2
is without loss of generality, because a signal with accuracy α < 1

2
is equivalent to

one with accuracy 1− α with the buyer type flipped.
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In the third step, we assume buyers only contact sellers to initiate a transaction if the online price

yields non-negative utility for the buyer (i.e., θq ≥ p).6

2.1 Model Discussion

Our work is primarily motivated by the prevalence of disintermediation in online labor platforms

for hiring freelancers. Our stylized model aims to capture the key drivers of disintermediation for

sellers – specifically, trust in buyers and the cost of transacting off-platform – and abstracts away

from many nuances in the exact operations of these marketplaces. Below, we briefly comment on

how our key modeling choices relate to practice and their limitations.

Information quality. The variability in the platform’s signal accuracy α ∈ [12 , 1] reflects the fact that

platforms may differ significantly in the informativeness of their reputation systems (Garg and Johari

2021), or in the level of inflated or fraudulent reviews (Filippas et al. 2022, Donaker et al. 2019). For

example, the pet-sitting platform Rover does not allow sitters to rate owners, which corresponds to

an uninformative signal (α ≈ 1
2), whereas Upwork displays aggregate client information such as the

total number of jobs and average rating (intermediate α). In contrast, the freelance platform Fiverr

publicly displays the reviews received by a buyer on their profile in addition to awarding “badges” to

high-spenders (large α). Moreover, because the accuracy of the “safe buyer” signal σ = s increases

in α, one can interpret α as a proxy for the level of trust between users (in our case, that sellers have

in buyers), which has been theorized to play a role in disintermediation (Gu and Zhu 2021).

Seller switching cost. The sellers’ cost ϕ of transacting off-platform may stem from the plat-

form’s “superior transaction infrastructure” (Hagiu andWright 2024), including project management

tools (Fiverr 2024), AI assistants (Upwork 2024a), or handling cross-currency payments. Similar

to Hagiu and Wright (2024), we interpret the switching cost ϕ as parameterizing the platform’s

vulnerability to disintermediation. This interpretation aligns with the notion that platforms can

limit disintermediation by providing value for its users on-platform, thus making it more costly to

disintermediate (Gu and Zhu 2021, He et al. 2023).

Single-period model. We use a single-period model to capture interactions on the platform, meaning

buyers and sellers are assumed to have not previously interacted, and sellers rely exclusively on

the platform’s signal to assess buyer risk. This assumption allows us to isolate how the quality of

information obtained via the platform influences disintermediation. Further, in several contexts (e.g.,

website design, home repair), the vast majority of transactions are between freelancers and employers

6Our model precludes outcomes where a buyer contacts a seller whose price exceeds the buyer’s valuation (i.e., θq < p)
with the hope of negotiating a lower price upon disintermediating. This reflects a natural assumption where buyers
only contact sellers with acceptable posted prices, and where disintermediation occurs only after both parties have
agreed to transact.
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who have not engaged previously; empirical evidence suggests that the risk of disintermediation is

significant even during first-time transactions (Gu and Zhu 2021, Chintagunta et al. 2023). To

capture the possibility that sellers may also obtain information based on previous interactions with

a buyer, we consider an extension of our model with repeated transactions in Appendix F.

Matching. Given that disintermediation occurs after buyers and sellers have already been matched,

we abstract away details of the platform’s matching algorithm. As a consequence, each seller in our

model is (always) matched to a randomly chosen buyer, who is safe with probability λ and risky

otherwise.

Buyer riskiness. In freelance and other platforms, unprofessional buyers create friction throughout

the engagement, for instance by changing project scope, being unresponsive, or creating payment

problems (e.g., delays or non-payment) (Kazi 2020, Shevchuk and Strebkov 2015). Our model treats

these different types of buyer risk as correlated by assuming that risky buyers (type-r) expose sellers

to both non-payment and higher transaction costs. Empirical evidence suggests that opportunistic

client behavior in online labor markets generates both payment-related risks and operational dis-

ruptions that are costly to freelancers (Shevchuk and Strebkov 2015). Further, these risks depend

on the transaction channel: given that many platforms typically protect sellers (e.g., through es-

crow or insurance), non-payment is primarily a concern when sellers disintermediate, whereas higher

transaction costs may be incurred both on- and off-platform.

Our assumption that safe buyers constitute a majority (λ ≥ 1
2) allows us to isolate how disinterme-

diation alters the role of information in platform design, which is the focal question of this paper.

When this assumption does not hold (i.e., λ < 1
2), platforms benefit from low information quality

(small α) even without disintermediation, as they profit from deceiving sellers into transacting with

risky buyers. In contrast, our model aligns with how most platforms function in practice, where

higher information quality increases transaction volume (e.g., see Tadelis (2016)), but simultaneously

makes disintermediation more attractive for sellers.

Seller qualities. We assume each seller’s quality is both exogenous and observable. Given our focus

on freelance marketplaces, quality can be interpreted as the degree to which a seller’s skillset matches

the needs of buyers on the platform (as in Bimpikis et al. (2024)), which are typically advertised

publicly in sellers’ profiles (e.g., PHP-based web design). This also aligns with the notion that

sellers typically engage more frequently with the platform than buyers do, which gives the platform

reasonably high accuracy information about sellers, which it can pass on to buyers (e.g., in the form

of reviews). Our assumption of public and exogenous seller quality allows us to focus on the risks

sellers face in disintermediating, rather than buyers.
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2.2 Preliminaries

We conclude this section by discussing the sellers’ profit, offline price, and conditions under which

disintermediation occurs. We also state two assumptions that are imposed in the paper.

2.2.1 Sellers’ Profit

Consider a seller with quality q, and suppose p and b are the prices in the online and offline channels,

respectively. Since θ is uniformly distributed over [0, 1] and the buyer has a payoff of θq − p for

an online transaction, only buyers with θ ≥ p/q contact a quality-q seller. Given an online price

p ≤ q, the quality-q seller’s expected profit from an online transaction if matched to a signal-σ buyer

is

((1− γ)p− (1− ωσ)c)

(
1− p

q

)
,

where ωσ is the seller’s posterior belief that the buyer is type-s (i.e., safe) conditioned on the signal

σ. Note the seller’s expected transaction cost for any transaction (online or offline) depends on their

belief of the buyer’s type, and that only risky buyers impose the cost c.

To determine the seller’s offline profit, recall that only type-s buyers pay when transacting offline.

Given an offline price of b, the seller’s expected payment offline is then ωσb. The seller’s expected

profit from an offline transaction with a signal-σ buyer at the price b under a switching cost of ϕ is

then

(ωσb− ϕ− (1− ωσ)c)

(
1− p

q

)
.

If neither transaction channel is profitable for the seller (i.e., both profit expressions above are

negative), the seller rejects the buyer and collects their reservation profit of 0. Relatedly, we impose

an assumption throughout the paper that the two seller types are well-separated with respect to

quality:

Assumption 1. The seller qualities qL and qH satisfy qL ≤ (1− λ)c and qH ≥ 4c.

Under Assumption 1, for any commission rate γ ∈ [0, γm] and information quality α ∈ [12 , 1], the

type-H seller transacts with both σ = r and σ = s buyers under their optimal price, and the

type-L seller rejects σ = r buyers under their optimal price (see Lemma A.5 in Appendix A). This

assumption allows us to focus on the interesting case where the type-L seller’s quality is low enough

that they can transact profitably only with type-s buyers, and thus have an interest in screening

out type-r buyers.
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2.2.2 Offline Price Bargaining

Next, to specify the offline price, we model the buyer’s surplus from disintermediating as simply

the price reduction7 p − b, whereas the seller’s surplus is the expected increase in payment from

disintermediating ωσb − (1 − γ)p less the switching cost ϕ. The product of the buyer and seller’s

surpluses is then (p − b)(ωσb − (1 − γ)p − ϕ). Note that the Nash product is strictly concave and

quadratic in b. Solving for the unique maximizer yields the offline price bσ(p), where

bσ(p) :=
p(1− γ + ωσ) + ϕ

2ωσ
.

The expression for bσ(p) satisfies intuition: for a fixed price p, a higher commission rate strengthens

the buyer’s bargaining position and produces a lower offline price. Conversely, a large switching

cost reduces sellers’ incentive to disintermediate, leading to a higher offline price. Further, because

ωs > ωr, the offline price is higher for σ = r buyers than σ = s, reflecting the increased risk assumed

by the seller.

2.2.3 Commission Thresholds and Platform Revenue

Given a fixed online price p, the buyer and seller choose to disintermediate if and only if both prefer

transacting offline at price bσ(p) over transacting online at price p. The following remark describes

when this occurs.

Remark 1. Let p be a seller’s online price. Then both the buyer and seller prefer transacting offline

at price bσ(p) over transacting online at price p if and only if γ > γ̂σ(p), where

γ̂σ(p) := 1− ωσ +
ϕ

p
.

The offline channel is preferred by both the buyer and seller if and only if the commission rate is

sufficiently high. Note ωσ is the probability a signal-σ buyer pays the seller offline, which implies the

commission threshold for disintermediation γ̂σ(p) is decreasing in the seller’s posterior belief that

the buyer is safe (ωσ). It can be shown that γ̂s(p) < γ̂r(p) for each p > 0, which implies that at

a given price p and commission rate γ, one of three outcomes is possible: a seller transacts offline

with no buyers, with only σ = s buyers, or with all buyers.

Finally, since the seller’s online price p depends on the commission rate γ, one can endogenize this

dependence in the expression for the disintermediation thresholds in Remark 1. As a consequence,

for each seller-buyer pair, we can derive a unique threshold γiσ that is independent of price, such

that type-i sellers disintermediate with signal-σ buyers if and only if γ > γiσ (see Appendix A.3

7This assumption corresponds to an online and offline buyer utility of θq − p and θq − b, respectively.
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for details). Further, after endogenizing the seller’s price p, the platform’s revenue is a piecewise

function of γ with breakpoints defined by the thresholds γiσ (see Lemma A.11).

Figure 1 depicts how the commission thresholds γiσ evolve with information quality α. Note sellers

disintermediate at lower (higher) commission rates with σ = s (σ = r) buyers as α increases, due

to the improved accuracy of the platform signal σ. Note γLr does not appear in Figure 1, because

type-L sellers do not transact at all with σ = r buyers under Assumption 1.
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Figure 1. Commission thresholds for disintermediation at different levels of information quality α (λ = 0.5, c = 1,
ϕ = 0.1). Type-i sellers disintermediate with signal-σ buyers if and only if γ > γi

σ. Regions I–V each correspond
to a different set of seller-buyer pairs (i, σ) that disintermediate: I = {∅}, II = {(H, s)}, III = {(H, s), (L, s)},
IV = {(H, s), (L, s), (H, r)}, and V = {(H, s), (H, r)}.

To exclude the uninteresting case where all transactions occur offline and the platform earns zero

revenue, we focus on a setting where no seller disintermediates with a σ = r buyer, which holds

under the following assumption:

Assumption 2. The maximum commission rate γm and the probability that the σ = r buyer pays

the seller offline ωr satisfy the inequality γm + ωr < 1 for all α ∈ [12 , 1], where ωr depends on the

share of safe buyers λ and information quality α.

In simple terms, the above assumption guarantees that for all ϕ ≥ 0 and γ ≤ γm, at least one type of

transaction occurs on the platform. Specifically, under Assumption 2, sellers always transact online

with the σ = r buyers. Lastly, in choosing a revenue-maximizing commission rate, we assume the

platform breaks ties by choosing the smallest rate.

3 Platform Commission and Revenue under Disintermediation

We begin by considering how disintermediation influences the platform’s optimal commission rate

(Section 3.1) and revenue (Section 3.2) under different information quality levels. In particular, we
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focus on comparative statics with respect to the switching cost ϕ, which parametrizes the ease of

disintermediation for sellers. In what follows, we assume information quality α is exogenous, which

allows us to compare across platforms that vary in their informational environments (we consider the

setting where the platform can jointly optimize over both information quality α and the commission

rate γ in Section 4).

3.1 Impact of Disintermediation on the Optimal Commission Rate

A platform’s commission rate is arguably its most natural lever for responding to disintermediation.

Given that a high commission rate incentivizes sellers to transact offline (e.g., Figure 1), intuition

might prescribe setting a lower commission rate when the threat of disintermediation is strong. Our

first result shows that this prescription does not hold universally.

Proposition 1. Let γ∗(ϕ) be the platform’s optimal commission rate under switching cost ϕ. There

exist thresholds α ∈ (12 , 1] and ᾱ ∈ [α, 1) such that the following statements hold.

(i) Suppose information quality is low, i.e., α ≤ α. Then the optimal commission rate γ∗(ϕ)

weakly increases in the switching cost ϕ for all ϕ ≥ 0.

(ii) Suppose information quality is high, i.e., α > ᾱ. Then there exists ϕ̄ > 0 such that for each

ϕ ≥ ϕ̄, the optimal commission rate is higher in the absence of switching costs, γ∗(0) ≥ γ∗(ϕ),

where the inequality is strict if γ∗(ϕ) < γm. Further, there exists ϕ ∈ (0, ϕ̄] such that γ∗(ϕ)

strictly decreases in ϕ on ϕ ∈ [0, ϕ] wherever γ∗(ϕ) < γm.

All proofs for this section are in Appendix B. Proposition 1 suggests that platforms that are

vulnerable to disintermediation (i.e., ϕ = 0) may operate under a higher commission rate than

platforms that are not (ϕ ≥ ϕ), provided information quality is also high (α ≥ ᾱ). To unpack the

intuition, consider that the platform can adopt one of two strategies to respond to disintermediation

via the commission rate γ: a “back down” strategy, in which the platform chooses a low commission

rate to prevent disintermediation entirely; or a “double down” strategy, in which the platform chooses

a high commission rate that forfeits some revenue to disintermediation, but extracts maximal revenue

from on-platform transactions. When information quality is low (Proposition 1(i)), the back down

strategy is viable, because sellers’ trust in σ = s buyers is low enough that the platform can set a high

commission rate γ without triggering disintermediation. Then, as the switching cost ϕ increases,

the platform’s pricing power (i.e., with respect to setting the commission rate γ) is only further

strengthened, leading the optimal commission rate γ∗ to increase in ϕ.

Proposition 1(ii) shows that the prescription from part (i) is reversed when information quality is

high. In this setting, the signal σ is highly reliable, and thus sellers face minimal risk in transacting
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offline with σ = s buyers. In this high-trust environment, disintermediation with σ = s buyers is

inevitable at all but the very lowest commission rates, which makes the back down strategy sacrifice

substantial revenue. As a consequence, the platform is better off adopting the double down strategy

– that is, absorbing the revenue losses from sellers disintermediating with σ = s buyers, and using

a high commission rate to maximize revenue from the on-platform transactions with σ = r buyers.

Alternatively, one may interpret Proposition 1(ii) as providing conditions under which it is optimal

for the platform to not compete with sellers’ “outside option” of disintermediating, and instead

specialize in handling risky transactions on-platform.

What does Proposition 1 imply for platforms facing potential disintermediation by sellers? For

platforms that operate with a high degree of trust between participants, attempting to thwart dis-

intermediation by lowering commission rates may be ill-advised due to excessive revenue losses.

Moreover, many platforms have been criticized for their high commission rates (e.g., see Gurley

(2013)), and some have naturally argued that high commission rates cause disintermediation (Edel-

man and Hu 2016). Our finding here lends support to the alternative view that a high commission

rate may in fact be the correct response to disintermediation, for a revenue-maximizing platform.

Indeed, Proposition 1 may help reconcile the apparent tension behind the freelance platform Up-

work’s decision to raise its commission rate twice in the last two years despite its ongoing concerns

over disintermediation (Upwork 2024b).

3.2 Impact of Disintermediation on the Platform’s Optimal Revenue

It is also natural to ask how the maximal revenue attainable under commissions is impacted by a

platform’s vulnerability to disintermediation. Analogous to Proposition 1, we find that the direc-

tional impact of switching costs on the platform’s optimal revenue depends on information quality.

Strikingly, the platform may be worse off as disintermediation becomes more costly for sellers:

Proposition 2. Let R(γ∗) be the platform’s revenue under the optimal commission rate γ∗. There

exist thresholds α ∈ (12 , 1] and ᾱ ∈ [α, 1) such that the following statements hold.

(i) Suppose information quality is low, α ≤ α. Then the platform’s optimal revenue R(γ∗) weakly

increases in the switching cost ϕ on ϕ ∈ [0,∞).

(ii) Suppose information quality is high, α ≥ ᾱ. Then there exists ϕ such that the platform’s

optimal revenue R(γ∗) strictly decreases in the switching cost ϕ on ϕ ∈ [0, ϕ].

To understand Proposition 2, it is helpful to consider the effects induced by an increase in the

switching cost ϕ. The first is a “pricing power effect”: an increase in ϕ raises the cost of disinterme-

diating for sellers, which the platform can exploit by setting a higher commission rate and extracting
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more revenue. However, an increase in ϕ can also induce a “cost pass-on effect”: in anticipation

of disintermediation, sellers set higher online prices to defray the switching cost. In other words,

sellers partially pass on the switching cost ϕ to on-platform buyers, which depresses on-platform

demand, and thus platform revenue, as visualized in the left panel of Figure 2. As a consequence,

the difference in behavior in parts (i) and (ii) of Proposition 2 depends on which of the two effects

described above dominates.
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Figure 2. Left: Platform revenue as a function of the type-H seller’s price when transacting on-platform with σ = r
buyers and disintermediating with σ = s buyers (γ = 0.1, µ = 0.9, λ = 0.7, c = 1, qH = 4, α = 0.7). Price p̄ maximizes
the sellers’ contribution to platform revenue via commissions. Here, p0 and p1 represent the seller’s optimal price
under switching costs ϕ = 0 and ϕ = 1, respectively. Right: Impact of switching cost on optimal platform revenue
for varying information quality levels, depicting Proposition 2(ii).

When information quality is sufficiently low, the platform is immune to disintermediation due to

the high risk sellers face offline. In this case, the cost pass-on effect is absent because sellers do not

factor the switching cost ϕ into their on-platform price. As a consequence, an increase in ϕ acts

only to improve the platform’s pricing power, which lifts revenue (Proposition 2(i)). In contrast,

when information quality is high and switching costs are low, sellers are undeterred from transacting

offline, and the (revenue-decreasing) cost pass-on effect is at play. Further, in this regime the pricing

power effect is weak, because sellers simply abandon the platform at higher commission rates. The

net result is that platform revenue decreases in ϕ (Proposition 2(ii)). Figure 2 (right panel) depicts

a numerical example. Note the threshold in Figure 2 (ϕ ≈ 0.1) is the point at which sellers cease

transacting off-platform; beyond this point, further increases in the switching cost improve platform

revenue, as expected.

Proposition 2 adds an important caveat to the intuitive prescription from the literature (Gu and Zhu

2021, Hagiu and Wright 2024) that recommends combating disintermediation by building value for

users on-platform (e.g., through improved transaction support or other features). In particular, this

result suggests that if sellers are committed to transacting off-platform, adding incremental value to
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the platform may simply be internalized by sellers as the cost of disintermediating, which ultimately

distorts their on-platform prices and undermines the platform’s revenue. Nonetheless, platforms can

still benefit by substantially increasing sellers’ switching costs, which brings sellers back on-platform

and restores the platform’s pricing power.

4 Optimal Information Design

Our results in Section 3 indicate that the quality of information available to sellers plays a central role

in shaping the platform’s pricing response to disintermediation. Although we assumed information

quality to be exogenous in the previous section, in practice marketplace designers may have some

limited ability to influence the information available to sellers (Fradkin et al. 2021, Garg and Johari

2021); for example, by altering the platform’s reputation system or moderating sellers’ ability to

communicate with buyers (Astashkina et al. 2022). In our setting, because the quality of information

α influences sellers’ decisions to disintermediate, the platform could plausibly boost revenue by

judiciously choosing the information quality α alongside the commission rate γ. This informational

advantage may arise from the platform’s proprietary data on buyer payment history, chat logs, and

private reviews from past sellers. To that end, this section considers the conditions under which

it is optimal for the platform to withhold information about buyers’ riskiness in light of potential

disintermediation.

As a warmup, we first consider how the platform’s optimal revenue changes when α varies exoge-

nously. This exercise allows us to isolate the potentially competing effects of information quality on

platform revenue before considering endogenous information quality. Moreover, in situations where

the platform cannot optimize information quality, Lemma 1 provides insight into whether small

improvements in the signal’s accuracy are in the platform’s best interest.

Lemma 1. There exist thresholds ϕ > 0 and ϕ̄ ≥ ϕ such that the following statements hold.

(i) Suppose the switching cost is high, ϕ > ϕ̄. Then the platform’s optimal revenue R(γ∗) weakly

increases in information quality α on α ∈ [12 , 1].

(ii) Suppose the switching cost is low, ϕ ≤ ϕ. Then there exists α ∈ (12 , 1], ᾱ ∈ [α, 1) and λ̄ ∈ [12 , 1)

such that the platform’s optimal revenue R(γ∗) weakly increases in α on α ∈ [12 , α] for all

λ ∈ [12 , 1] and strictly decreases in α on α ∈ [ᾱ, 1] if λ ≥ λ̄.

All proofs for this section are in Appendix C. Lemma 1 presents conditions under which the platform

benefits from – or is hurt by – an increase in information quality α, and is depicted in Figure 3. To

see why it holds, note that an increase in α generates two effects on platform revenue. First, as α
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increases, sellers set more efficient prices, which we call the “price effect”. Second, as α increases, a

greater share of type-s buyers are correctly identified as such to the sellers, which we call the “trust

effect”. The net impact of an increase in α on platform revenue depends on the sum of these two

effects.

To understand the price effect, it is helpful to examine the optimal price of type-L sellers (see Lemma

A.3 in the Appendix):

p∗ =
1

2

qL +
(1− ωs)c

1− γ︸ ︷︷ ︸
κ

 .

In the optimal price p∗, the first term 1
2qL reflects that buyers’ valuations increase in a seller’s

quality. The second term 1
2κ is a “premium” charged by sellers due to the risk of transacting with

a type-r buyer mislabeled with the signal σ = s. The premium 1
2κ is a pricing inefficiency that

stems from the information asymmetry faced by the seller. The premium hurts platform revenue

because it raises the price strictly higher than 1
2qL, which is the price that maximizes the type-L

seller’s commissions to the platform. As information quality α increases, the signal σ becomes more

informative to sellers, compelling them to reduce the premium, which benefits the platform.

In both parts of Lemma 1, the price effect acts to lift platform revenue. However, the direction of the

trust effect is ambiguous, which drives the divergence between parts (i) and (ii) of Lemma 1. When

switching costs are high enough such that disintermediating is prohibitive for sellers, the trust effect

only further increases the on-platform transaction volume, which boosts platform revenue (Lemma

1(i)). However, when switching costs are low and information quality is high, the platform is prone

to disintermediation, and the direction of the trust effect is reversed – higher information quality

amplifies disintermediation by pulling a greater share of transactions off the platform. Lemma 1(ii)

states that in the high-information setting where sellers disintermediate (with σ = s buyers), the

harmful trust effect dominates the helpful price effect, provided the share of buyers that are non-risky

is not excessively low (λ ≥ λ̄).

The behavior in Lemma 1 suggests that sellers having perfect information about buyers’ types (i.e.,

α = 1) may in some cases lead to sub-optimal platform revenue. Therefore, the platform faces a

clear trade-off: a highly accurate signal σ may lead to large revenue losses from disintermediation,

but an inaccurate signal may throttle on-platform transactions and lead to inefficient pricing by

sellers. This naturally raises the question of when the platform should adopt a no-, partial-, or

full-information policy, which we address in the next result.

Proposition 3. Let α∗ be the platform’s revenue-maximizing information quality when jointly op-
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Figure 3. Left: Platform revenue against varying information quality (α) for fixed commission rate γ and different
switching costs ϕ (λ = 0.7, c = 1, γ = 0.2), depicting Lemma 1. Right: Optimal information quality α∗ for varying
shares of type-H sellers µ, at different switching costs ϕ (λ = 0.5, c = 1, γm = 0.35), depicting Proposition 3. The
profit margin of on-platform sellers increases in the share of type-H sellers µ. This leads the platform to set a higher
commission rate (not shown), and compensate for the increased risk of disintermediation by lowering information
quality.

timized with the commission rate. There exist thresholds µ̄ ∈ [0, 1], ϕ̄ > 0, α ∈ (12 , 1) and ᾱ ∈ (α, 1)

such that the following statements hold.

(i) A no-information policy is optimal α∗ = 1
2 if the share of type-H sellers is large µ > µ̄ and

there is no switching cost ϕ = 0.

(ii) A partial-information policy is optimal α∗ ∈ [α, ᾱ] if the share of type-H sellers is small µ ≤ µ̄

and there is no switching cost ϕ = 0. Further, α∗ strictly decreases in µ for all µ ∈ [0, µ̄].

(iii) A full-information policy is optimal α∗ = 1 for all µ ∈ [0, 1] if the switching cost is high ϕ ≥ ϕ̄.

Proposition 3 shows how the optimal information quality α∗ depends on the share µ of sellers that

are type-H (i.e., high-quality) and the sellers’ switching cost ϕ. Part (iii) captures the baseline

setting where the switching cost is high enough such that no disintermediation occurs – in this

case, full-information is optimal because it maximizes the beneficial trust and price effects of the

platform’s signal, as discussed following Lemma 1. Parts (i) and (ii) focus on the more interesting

case where the platform is vulnerable to disintermediation, which is exemplified in the case with

no switching costs (ϕ = 0). The main results are that the optimal information quality α∗ is a

strictly interior solution α∗ ∈ (12 , 1) when the share of type-H sellers is not too large (µ ≤ µ̄), where

additionally, α∗ strictly decreases in µ.

At a high level, the behavior described in parts (i) and (ii) is driven by the different ways in

which information quality and the commission rate generate revenue for the platform. In short,

the commission rate γ extracts value predominantly from type-H sellers, who command high prices

on the platform and thus pay high commission fees. In contrast, the information quality lever α
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generates value through type-L sellers, because these sellers only transact with σ = s buyers, and

thus are the ones for whom the beneficial price and trust effects described above are at play. The

tension arises because choosing a large value of α – which increases revenue from type-L sellers – also

lowers the commission threshold beyond which type-H sellers transact offline, limiting the largest

commission rate the platform can impose without triggering disintermediation.

As a consequence of these trade-offs, when the share of type-H sellers µ is sufficiently large, it is

optimal for the platform to disclose no information at all (α = 1
2). While this policy sacrifices all

revenue from type-L sellers, it allows the platform to compensate by choosing a large commission

rate γ without risking disintermediation (part (i)). At smaller values of µ, the potential revenue

from type-L sellers is too large for the platform to ignore entirely, so the platform should adopt a

partial-information policy α∗ ∈ (12 , 1) to balance the revenue from both seller types. The intuition

for why α∗ strictly decreases in µ follows similarly. Figure 3 visualizes the behavior described in

Proposition 3 for different values of the switching cost ϕ.

Proposition 3(ii) describes a setting where partial-information is optimal when there is no switching

cost ϕ = 0. The following corollary provides an alternative characterization that shows a partial-

information policy can also be optimal when switching costs are strictly positive.

Corollary 1. There exist thresholds µ̄ ∈ [0, 1), ϕ ≥ 0, and ϕ̄ > ϕ such that partial-information is

optimal α∗ ∈ (12 , 1) if the switching cost is moderate ϕ ∈ [ϕ, ϕ̄] and the share of type-H sellers is

large µ > µ̄.

High-information environments have been classically viewed as strictly beneficial for two-sided mar-

ketplaces (e.g., Resnick and Zeckhauser (2002)). Lemma 1 adds some nuance to this belief by

showing that excessive trust between buyers and sellers can undermine revenue by promoting dis-

intermediation, supporting the empirical finding in Gu and Zhu (2021). Further, Proposition 3 and

Corollary 1 indicate that platforms can benefit from withholding information about buyers when

sellers set high prices on-platform (i.e., are high-quality), essentially by exploiting the off-platform

risks faced by sellers to set higher commission fees. Note this is true even when the platform features

offer “moderate” value to its sellers (Corollary 1). In general, our results highlight how for some

sellers (type-L), information about buyers helps them judiciously filter out costly buyers before

transacting on-platform, but for others (type-H), it only amplifies disintermediation. Therefore, in

designing the informational environment, platforms should consider the mix of sellers operating in

the marketplace, and the different impacts of buyer information on sellers’ pricing and transaction

decisions.
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5 Extensions

This section considers two extensions of our main model. In Section 5.1, we examine an alternative

to commission pricing where the platform charges sellers an access fee before matching them to a

buyer. Section 5.2 examines the punitive measure of banning sellers from the platform if they are

caught transacting off-platform.

5.1 Platform-Access Fees

Beyond adjusting commission rates and information quality, a platform may consider a variety of

interventions for building resilience to disintermediation. In this section, we examine an alternative

pricing strategy observed in practice: charging sellers an upfront access fee to join the platform,

instead of extracting commissions from on-platform transactions.

Intuitively, eliminating commissions in favor of access fees can mitigate revenue losses from dis-

intermediation by reducing sellers’ incentives to transact off-platform. What is less clear is their

efficiency: do access fees generate higher revenue than commissions, even when the threat of dis-

intermediation is weak? Proposition 4 below answers this question in the negative – while access

fees can dominate commissions when the platform is disintermediation-prone (i.e., switching costs

are low), they can fall short of the maximum possible commission revenue when sellers transact

exclusively online and sellers are sufficiently heterogeneous in quality.

Our model is a straightforward extension of the main model from Section 2. Under access fees,

each seller pays the platform a fixed fee of ψ > 0 to join the platform. The use of a common

fee ψ for all sellers aligns with practice, as platforms typically do not discriminate among sellers

based on attributes such as quality. Sellers set their online prices after joining, and the remainder

of the game proceeds as described in Section 2 (with γ = 0). Similar to Section 4, we assume the

platform jointly optimizes information quality α along with the access fee ψ. For consistency with

the commission-based model in Section 2, we assume that the access fee allows the seller to complete

at most one transaction on the platform. Additionally, we relax Assumption 2 in this section and

set the maximum commission rate to γm = 1
2 , which ensures that the platform’s revenue under

commissions is not artificially capped when comparing against access fees.

For i ∈ {L,H}, let Πi
0 be the profit of a type-i seller on the platform in the absence of any commission

or access fees. Because sellers’ outside options are normalized to 0, a type-i seller pays the access

fee ψ if and only if Πi
0 ≥ ψ. Further, ΠH

0 > ΠL
0 because qH > qL. Therefore, for any access fee

ψ ≤ ΠH
0 , either both seller types join the platform, or only the type-H sellers join. The platform’s
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revenue under an access fee of ψ is then

RA(α,ψ) :=


ψ, if ψ ∈ [0,ΠL

0 ],

µψ, if ψ ∈ (ΠL
0 ,Π

H
0 ],

0, if ψ > ΠH
0 .

It follows that the platform’s optimal access fee satisfies ψ∗ ∈ {ΠL
0 ,Π

H
0 }, and the corresponding

optimal revenue is R∗
A := max{ΠL

0 , µΠ
H
0 }. We now present our main result of this section:

Proposition 4. Let R∗
A and R∗

C be the platform’s revenue under the optimal pricing and information

policies for access and commission fees, respectively. Let Πi
0 be the on-platform profit of a type-i

seller under a commission rate of γ = 0. There exists ϕ̄ > 0 such that the following statements hold.

(i) Suppose the switching cost is low, ϕ ≤ ϕ̄. Then access fees generate higher revenue than

commission fees R∗
A ≥ R∗

C for all µ ∈ [0, 1].

(ii) Suppose the switching cost is high, ϕ > ϕ̄. Then there exists µ ∈
(
0,

ΠL
0

ΠH
0

)
and µ̄ ∈

(
ΠL

0

ΠH
0
, 1
)

such that access fees generate lower revenue than commission fees R∗
A < R∗

C if and only if the

share of type-H sellers is moderate µ ∈ [µ, µ̄].

All proofs for this section are in Appendix D. Naturally, the performance of both pricing strategies

depends on the extent to which they can extract sellers’ on-platform profit. For the intuition behind

Proposition 4(i), note that under the optimal information and commission policy (α∗, γ∗), either

both seller types transact online, or only type-H sellers do (which occurs when the type-L seller

either disintermediates or is unprofitable). If only type-H sellers transact online under (α∗, γ∗), the

result is straightforward – the platform can extract the entirety of type-H sellers’ on-platform profit

ΠH
0 by simply setting ψ to that amount, which commission fees cannot match. The result in part

(i) is less immediate when both seller types transact online; essentially, if both seller types transact

online under (α∗, γ∗), then the commission rate γ∗ must be small enough such that the type-L seller

is profitable and neither seller type disintermediates. This yields an upper bound on the optimal

commission revenue, which we show is exceeded by the revenue attained under the optimal access

fee.

Next, to understand Proposition 4(ii) (depicted in Figure 4), note that when the switching cost is

high (ϕ > ϕ̄), the threat of disintermediation is weak, and both seller types transact online even at

high commission rates. Then, it is helpful to consider the sellers’ “uncaptured profit”: the portion of

all sellers’ potential on-platform profit (under γ = 0) that is not extracted by the access fee. When

sellers are highly heterogeneous (i.e., the share of type-H sellers µ is moderate), the uncaptured
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Figure 4. Optimal revenue under platform-access fees and commissions (λ = 0.5, c = 1, qH = 2, qL = 0.5, ϕ = 1),
depicting Proposition 4(ii).

profit is large regardless of how the platform chooses ψ, making access fees inefficient. In other

words, platform revenue under access fees suffers when the aggregate profits of type-L and type-H

sellers are comparable. In contrast, because commissions resemble personalized pricing, they can

efficiently extract surplus from transactions occurring at different price points, regardless of the

composition of sellers. We note that while Proposition 4 assumes information quality α is controlled

by the platform in both pricing mechanisms, the same result can be shown to hold for exogenous α,

provided it is not too low.

Upfront pricing mechanisms have drawn significant attention in recent years, and pose a variety of

advantages over commission fees (Hu and Zhou 2020, Feldman et al. 2023, Cachon et al. 2025, Cui

and Hamilton 2022). Our result complements this line of work by showing that commission fees –

despite creating clear incentives for sellers to disintermediate – can nevertheless outperform access

fees when sellers are heterogeneous in quality and transacting offline is sufficiently costly. This

finding may help explain the prevalence of commission fees in practice, despite their vulnerability

to disintermediation. Moreover, Proposition 4 suggests that platforms that charge sellers for access

to buyers (e.g., Thumbtack and Care.com) may perceive disintermediation to be more of a threat

than those that continue to rely on commissions.

Our result may also help explain why the pricing strategy of a platform may vary across markets. For

example, Uber charges drivers commission fees in North America, but in 2022 unveiled access-based

pricing with 0% commission for drivers in South Asia (Uber 2023). This may be due to variability

in the perceived costs of disintermediation and the level of social trust across markets; indeed,

anecdotal evidence suggests platforms may witness higher levels of disintermediation in emerging

economies (Rampal 2023).
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Our model abstracts away from additional practical considerations that may influence a seller’s

willingness to pay upfront for platform access. In particular, we assume sellers engage in a single

transaction at most, know their own quality, and face no uncertainty about the demand state on

the platform. We conjecture that our main insight – that access fees may underperform commission

fees despite immunizing the platform from disintermediation – is likely to persist when accounting

for these additional characteristics of two-sided platforms.

5.2 Detecting Disintermediation: Should Platforms Ban Sellers?

We have mainly focused on two costs sellers face when transacting offline: non-payment from risky

buyers and the switching cost (ϕ). However, platforms may also have an (imperfect) ability to

detect when a buyer and seller matched on the platform transact offline – for example, by scan-

ning messages (Chintagunta et al. 2023) or encouraging platform users to report others’ attempts

at circumvention (Upwork 2023a). For several platforms, disintermediation violates user policy,

and can result in account suspension or outright bans from future use of the platform (Upwork

2023a, Taskrabbit 2024). In this regard, the risk of punishment for disintermediating introduces

an additional off-platform cost that can influence sellers’ willingness to disintermediate. Here we

consider the question of whether platforms should adopt a policy of banning sellers who are caught

disintermediating.

We consider a simple extension of our model to a two-period setting. Sellers are long-lived and

participate in both periods; buyers are short-lived and arrive independently in each period. Each

seller selects an online price pt for period t ∈ {1, 2}. In each period, price bargaining for offline

transactions proceeds as outlined in Section 2.2. We assume the platform selects a single commission

rate γ ∈ [0, γm] for the entire horizon. To isolate how the detection mechanism impacts platform

revenue, we assume information quality α ∈ [12 , 1] is exogenous, as in Section 3.

At the start of the horizon, the platform announces and commits to one of two policies (in addition to

the commission rate γ): a “banning” policy in which detected sellers are removed from the platform

prior to period 2, and a “blind eye” policy in which disintermediation goes unpunished. Under

the banning policy, the platform detects disintermediation by sellers in period 1 with probability

d ∈ [0, 1], where d is known to sellers. If the platform chooses to ban, all sellers who are detected in

period 1 earn zero profit in period 2. For simplicity, we focus on a setting with no switching costs

(ϕ = 0), where the threat of disintermediation is strongest.

When should platforms adopt a policy of banning sellers for disintermediating? The following result

sheds light on the answer in terms of the informational environment and strength of the detection
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mechanism.

Proposition 5. Let R0(γ∗) and Rd(γ∗) be the platform’s optimal revenue under the blind eye and

banning policies, respectively. Then, there exist thresholds α ∈ (12 , 1] and ᾱ ∈ [α, 1) such that the

following statements hold.

(i) Suppose information quality is low α ≤ α. Then for all detection probabilities d ∈ [0, 1], the

banning policy generates weakly higher revenue than the blind eye policy, R0(γ∗) ≤ Rd(γ∗).

(ii) Suppose information quality is high α ≥ ᾱ. Then there exists d̄ ∈ (0, 1) such that if the

detection probability is low d ∈ (0, d̄], the banning policy generates strictly lower revenue than

the blind eye policy, i.e., R0(γ∗) > Rd(γ∗).

The proof is in Appendix E. Notably, Proposition 5 shows that a policy of banning sellers who are

caught disintermediating can “backfire” and hurt platform revenue if the detection mechanism is

weak (d ≤ d̄). To see why, note that the banning policy raises sellers’ cost of transacting offline

in period 1 due to the risk of being detected and banned from period 2. This deterrence effect

strengthens the platform’s pricing power, allowing it to set a higher commission rate γ and increase

revenue (Proposition 5(i)). However, the banning policy can also hurt revenue, because it commits

the platform to forgo the commission fees that detected sellers would have otherwise paid in period 2.

Proposition 5(ii) shows that in a high-information environment (α ≥ ᾱ), a low detection probability

d makes the deterrence effect of the ban too weak to overcome the revenue losses from having fewer

sellers on the platform. Thus, a policy of banning sellers can be counterproductive precisely in cases

where the platform is most vulnerable to disintermediation.

Naturally, as the detection probability d approaches one, sellers never disintermediate due to the

nearly guaranteed loss of future profit. However, in practice, the algorithmic filters employed by

platforms to detect disintermediation have very low success probabilities - for example, Chintagunta

et al. (2023) state it is “technically challenging and resource-costly” to detect disintermediation.

Therefore, the regime where d is small is particularly relevant for platforms considering punitive

measures for disintermediation. Our result suggests that unless the detection mechanism is pow-

erful enough to create a strong deterrent, the platform may be better off turning a blind eye to

disintermediation entirely.

Our stylized model does not capture two other aspects of detection that may arise in practice: (1)

false positives, wherein the platform wrongly bans sellers who did not engage in disintermediation;

and (2) price signals, where the platform spots the intent to disintermediate from sellers’ prices.

Naturally, incorporating these features would yield a richer model in which banning sellers has more

25



nuanced impacts on platform revenue. For example, a detection mechanism with false positives

would lead to innocent (i.e., non-disintermediating) sellers being punished, and detection based

on sellers’ on-platform prices may result in lower prices, both of which may hurt the platform’s

commission revenue. Our model also does not capture buyers substituting among sellers, which

would alleviate the revenue losses associated with banning.

6 Discussion

Disintermediation poses a major challenge to commission-based platforms, with efforts to counter-

act it being met with limited success.8 Motivated by this, we offer guidelines on when commonly

prescribed strategies to combat disintermediation may either succeed or further hurt platform rev-

enue. Our findings suggest that how platforms respond to disintermediation is shaped by two key

characteristics: the ease of disintermediation for sellers (switching cost ϕ) and the accuracy of in-

formation sellers receive about buyers (information quality α). We summarize our main results and

their implications for platform operators in Table 1.

Table 1: Summary of Findings and Managerial Implications.

Dimension Main Finding Implication for Platforms

Commission
Rate (γ)

When information quality is high, the op-
timal commission rate can be higher in the
absence of switching costs than when such
costs are present.

When disintermediation is inevitable, plat-
forms should increase their commission
rates to extract more revenue per trans-
action.

Switching
Cost (ϕ)

When information quality is high, platform
revenue decreases in switching cost (due to
higher on-platform seller prices).

If sellers are going to disintermediate re-
gardless, making it harder by investing in
platform features may backfire.

Information
Quality (α)

Partial-information disclosure is optimal
when switching costs are moderate and the
share of high-quality sellers is large.

Platforms may benefit by deliberately
keeping reputation systems noisy to make
disintermediation riskier.

Access
Fees (ψ)

Commissions outperform access fees when
high- and low-quality sellers contribute
equally to revenue and switching costs are
high.

Despite eliminating sellers’ incentive to dis-
intermediate, an upfront fee may be worse
for the platform than charging commission
fees.

Banning
Sellers (d)

A policy of banning sellers hurts revenue
when the platform’s probability of detect-
ing disintermediation is low and informa-
tion quality is high.

Unless banning creates a sufficiently strong
deterrent, platforms may be better off tol-
erating disintermediation to retain more
sellers.

When faced with disintermediation, it is natural to expect platforms to lower their commission rates

8Upwork’s 2024 10-K filing states: “Our efforts to reduce circumvention may be costly or disruptive to implement,
have results that are difficult or impossible to measure, fail to have the intended effect or have an adverse effect on
our brand or user experience, reduce the attractiveness of our work marketplace, divert the attention of management,
or otherwise harm our business.” (Upwork 2024b).
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to maintain transaction volume. Our results challenge this conventional prescription by showing

that – in some scenarios – platforms may be better off setting higher commission rates to collect

more revenue from those transactions that remain on-platform. Moreover, increasing the switching

cost of sellers by investing in better platform features (higher ϕ) improves platform revenue only

when sellers are less informed about which buyers are risky.

In order to curb disintermediation, platforms may utilize information or pricing levers, or even

resort to banning sellers outright. First, withholding information about risky buyers can reduce

off-platform transactions, but one must balance this benefit against the risk of deterring seller

participation. Our results also suggest that platforms have strong incentives to control sellers’

perception of risk, e.g., by warning them about off-platform threats (Upwork 2023b) or exaggerating

the prevalence of fraudulent buyers. Alternatively, one could eliminate the need to disintermediate

by charging upfront access fees. However, access fees discourage marginal sellers from joining (Better

Business Bureau 2023) and can underperform commissions when switching costs are high. This helps

explain why commission models persist in practice despite creating incentives for circumvention.

Finally, a policy of banning sellers caught bypassing the platform can deter “bad actors” to an

extent, but ultimately hurt revenue when detection rates are low. Given users’ sophistication in

evading detection, this provides a rationale for why platforms have favored softer interventions over

de-platforming sellers.

Our results also provide theoretical grounding for recent empirical findings, most notably Gu and

Zhu (2021) by formalizing the mechanism by which enhanced trust increases disintermediation. The

behavior of our model also provides support for patterns documented in the empirical literature –

specifically, that (i) platforms can successfully curb disintermediation by limiting communication

between buyers and sellers (Astashkina et al. 2022, Lin et al. 2022), thereby reducing trust, (ii)

higher quality sellers exhibit greater propensity to transact off-platform (Gu 2024, Chintagunta

et al. 2023), and (iii) targeted commission reductions for experienced sellers can reduce disinterme-

diation (Astashkina et al. 2022).

Naturally, platforms could also utilize other – more sophisticated – design levers in the face of

disintermediation beyond those considered here. In particular, two-part tariffs, which combine

access fees with commissions, may be effective across a wide range of environments, as previously

shown in the literature (Cachon et al. 2025). However, the optimal implementation of these two-part

tariffs is non-trivial, since upfront pricing excludes low-demand sellers and commissions reduce seller

revenues, limiting the access fee the platform can charge. Further analysis is needed to determine

whether the revenue gains from these pricing mechanisms justify their added complexity. It may
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also be informative to understand when the optimal two-part tariff consists of only the access fee or

commission.

Beyond pricing strategies, platforms could curb disintermediation through strategic matching poli-

cies – for example, pairing safe buyers with low-quality sellers who are less likely to disintermediate.

While theoretically appealing, such centralized matching approaches could face practical hurdles,

since steering buyers away from high-quality sellers could harm both user satisfaction and long-term

platform viability. Lastly, while our analysis assumes random matching and no seller competition,

relaxing this assumption to allow buyers to choose among (price-competing) sellers would introduce

richer dynamics. For instance, promoting seller competition could lead to lower equilibrium prices

and thus a reduced incentive to disintermediate, although this could also erode commission revenue

and harm low-quality sellers. These extensions represent promising avenues for future work that

may further our understanding of how platforms can best respond to disintermediation.

References

Agrawal, Vipul, Sridhar Seshadri. 2000. Risk intermediation in supply chains. IIE Transactions 32(9) 819–

831.

Airbnb. 2023a. AirCover for Hosts. URL: https://www.airbnb.com/aircover-for-hosts.

Airbnb. 2023b. Paying outside Airbnb. URL: https://www.airbnb.com/help/article/199.

Anunrojwong, Jerry, Krishnamurthy Iyer, Vahideh Manshadi. 2023. Information design for congested social

services: Optimal need-based persuasion. Management Science 69(7) 3778–3796.

Astashkina, Ekaterina, Robert Bray, Ruslan Momot, Marat Salikhov. 2022. A disquieting lack of evidence

for disintermediation in a home-cleaning platform. Available at SSRN.

Belavina, Elena, Karan Girotra. 2012. The relational advantages of intermediation. Management Science

58(9) 1614–1631.

Belavina, Elena, Simone Marinesi, Gerry Tsoukalas. 2020. Rethinking crowdfunding platform design: mech-

anisms to deter misconduct and improve efficiency. Management Science 66(11) 4980–4997.

Benjaafar, Saif, Guangwen Kong, Xiang Li, Costas Courcoubetis. 2019. Peer-to-peer product sharing: Im-

plications for ownership, usage, and social welfare in the sharing economy. Management Science 65(2)

477–493.

Better Business Bureau. 2023. Customer Reviews: Thumbtack, Inc. URL: https://www.bbb.org/us/ca/san-

francisco/profile/internet-service/thumbtack-inc-1116-367066/customer-reviews.

Bimpikis, Kostas, Shayan Ehsani, Mohamed Mostagir. 2019. Designing dynamic contests. Operations Research

67(2) 339–356.

28



Bimpikis, Kostas, Giacomo Mantegazza. 2023. Strategic release of information in platforms: Entry, competi-

tion, and welfare. Operations Research 71(5) 1619–1635.

Bimpikis, Kostas, Yiangos Papanastasiou. 2019. Inducing exploration in service platforms. Sharing Economy:

Making Supply Meet Demand 193–216.

Bimpikis, Kostas, Yiangos Papanastasiou, Wenchang Zhang. 2024. Information provision in two-sided plat-

forms: Optimizing for supply. Management Science 70(7) 4533–4547.

Bimpikis, Kostas, Yiangos Papanastasiou, Wenchang Zhang. 2025. Information provision in platform com-

petition. Available at SSRN 5289417 .

Binmore, Ken, Ariel Rubinstein, Asher Wolinsky. 1986. The Nash bargaining solution in economic modelling.

The RAND Journal of Economics 176–188.

Birge, John, Ozan Candogan, Hongfan Chen, Daniela Saban. 2021. Optimal commissions and subscriptions

in networked markets. Manufacturing & Service Operations Management 23(3) 569–588.

Cachon, Gerard P, Tolga Dizdarer, Gerry Tsoukalas. 2025. Pricing control and regulation on online service

platforms. Management Science .

Cachon, Gérard P, Pnina Feldman. 2011. Pricing services subject to congestion: Charge per-use fees or sell

subscriptions? Manufacturing & Service Operations Management 13(2) 244–260.

Candogan, Ozan, Kimon Drakopoulos. 2020. Optimal signaling of content accuracy: Engagement vs. misin-

formation. Operations Research 68(2) 497–515.

Care.com. 2023. Basic membership vs. premium subscription. URL: https://help.care.com/caregivers/s/

article/What-is-the-difference-between-a-basic-and-premium-membership-caregiver.

Chintagunta, Pradeep K, Liqiang Huang, Wei Miao, Wanqing Zhang. 2023. Measuring seller response to

buyer-initiated disintermediation: Evidence from a field experiment on a service platform. Available at

SSRN 4423917 .

Cui, Titing, Michael Hamilton. 2022. Pricing strategies for online dating platforms. Available at SSRN.

Donaker, Geoff, Hyunjin Kim, Michael Luca, MWeber. 2019. Designing better online review systems. Harvard

Business Review 97(6) 122–129.

Drakopoulos, Kimon, Shobhit Jain, Ramandeep Randhawa. 2021. Persuading customers to buy early: The

value of personalized information provisioning. Management Science 67(2) 828–853.

eBay. 2023. Seller Protections. URL: https://pages.ebay.com/seller-center/get-started/seller-protection. html.

Edelman, Benjamin, Philip Hu. 2016. Disintermediation in two-sided marketplaces. Harvard Business School

Technical Note 917(4).

Farr, Christina. 2015. Why Homejoy Failed. URL: https://www.wired.com/2015/10/why-homejoy-failed/.

Federgruen, Awi, Ming Hu. 2016. Sequential multiproduct price competition in supply chain networks.

Operations Research 64(1) 135–149.

29



Feldman, Pnina, Andrew E Frazelle, Robert Swinney. 2023. Managing relationships between restaurants and

food delivery platforms: Conflict, contracts, and coordination. Management Science 69(2) 812–823.

Filippas, Apostolos, John J Horton, Joseph M Golden. 2022. Reputation inflation. Marketing Science 41(4)

733–745.

Fiverr. 2024. About - Fiverr Workspace. URL: https://workspace.fiverr.com/about/.

Fradkin, Andrey, Elena Grewal, David Holtz. 2021. Reciprocity and unveiling in two-sided reputation systems:

Evidence from an experiment on airbnb. Marketing Science 40(6) 1013–1029.

Garg, Nikhil, Ramesh Johari. 2021. Designing informative rating systems: Evidence from an online labor

market. Manufacturing & Service Operations Management 23(3) 589–605.

Gu, Grace, Feng Zhu. 2021. Trust and disintermediation: Evidence from an online freelance marketplace.

Management Science 67(2) 794–807.

Gu, Grace Y. 2024. Technology and disintermediation in online marketplaces. Management Science 70(11)

7868–7891.

Gur, Yonatan, Gregory Macnamara, Ilan Morgenstern, Daniela Saban. 2023. Information disclosure and

promotion policy design for platforms. Management Science 69(10) 5883–5903.

Gurley, Bill. 2013. A Rake Too Far: Optimal Platform Pricing Strategy. URL: https://abovethecrowd.com/

2013/04/18/a-rake-too-far-optimal-platformpricing-strategy/.

Hagiu, Andrei, Julian Wright. 2024. Marketplace leakage. Management Science 70(3) 1529–1553.

He, Eryn Juan, Sergei Savin, Joel Goh, Chung-Piaw Teo. 2023. Off-platform threats in on-demand services.

Manufacturing & Service Operations Management 25(2) 775–791.

He, Shu, Jing Peng, Jianbin Li, Liping Xu. 2020. Impact of platform owner’s entry on third-party stores.

Information Systems Research 31(4) 1467–1484.

Hu, Ming, Yun Zhou. 2020. Price, wage, and fixed commission in on-demand matching. Available at SSRN.

Jin, Chen, Kartik Hosanagar, Senthil K. Veeraraghavan. 2025. Welfare impact of bilateral rating display

systems on ride-sharing platforms. Manufacturing & Service Operations Management Forthcoming.

Johari, Ramesh, Bar Light, Gabriel Weintraub. 2019. Quality selection in two-sided markets: A constrained

price discrimination approach. arXiv preprint.

Kanoria, Yash, Daniela Saban. 2021. Facilitating the search for partners on matching platforms. Management

Science 67(10) 5990–6029.

Karacaoglu, Nil, Simin Li, Ioannis Stamatopoulos. 2022. Disintermediation evidence from a cleaning platform.

Available at SSRN.

Kazi, Urooj. 2020. Fiverr Knowledge - How to Spot & Successfully Manage a Difficult Freelance Client. URL:

https://workspace.fiverr.com/blog/dealing-with-difficult-clients/.

Lin, Jinan, Tingting Nian, Natasha Zhang Foutz. 2022. Disintermediation and its mitigation in online two-

30



sided platforms: Evidence from airbnb. ICIS .

Lingenbrink, David, Krishnamurthy Iyer. 2019. Optimal signaling mechanisms in unobservable queues. Op-

erations Research 67(5) 1397–1416.

Liu, Zekun, Dennis J Zhang, Fuqiang Zhang. 2021. Information sharing on retail platforms. Manufacturing

& Service Operations Management 23(3) 606–619.

Ma, Buqing, Guang Li, Guangwen Kong. 2024. To hinder or to facilitate: Retailers’ strategy of consumer

information sharing. Production and Operations Management 33(8) 1759–1774.

Mostagir, Mohamed, James Siderius. 2023. Strategic reviews. Management Science 69(2) 904–921.

Nash, John. 1953. Two-person cooperative games. Econometrica: Journal of the Econometric Society 128–

140.

Nosko, Chris, Steven Tadelis. 2015. The limits of reputation in platform markets: An empirical analysis and

field experiment. Tech. rep., National Bureau of Economic Research.

Papanastasiou, Yiangos, Kostas Bimpikis, Nicos Savva. 2018. Crowdsourcing exploration. Management

Science 64(4) 1727–1746.

Papanastasiou, Yiangos, S Alex Yang, Angela Huyue Zhang. 2023. Improving dispute resolution in two-sided

platforms: The case of review blackmail. Management Science 69(10) 6021–6037.

Rampal, Jeevant. 2023. Service platforms should aim to minimize disintermediation risk.

URL: https://www.livemint.com/opinion/columns/service-platforms-should-aim-to-minimize-

disintermediation-risk-11676827645498.html.

Randhawa, Ramandeep S, Sunil Kumar. 2008. Usage restriction and subscription services: Operational

benefits with rational users. Manufacturing & Service Operations Management 10(3) 429–447.

Resnick, Paul, Richard Zeckhauser. 2002. Trust among strangers in internet transactions: Empirical analysis

of ebay’s reputation system. The Economics of the Internet and E-commerce, vol. 11. Emerald Group

Publishing Limited, 127–157.

Ritchie, Bob, Clare Brindley. 2000. Disintermediation, disintegration and risk in the SME global supply chain.

Management Decision 38(8) 575–583.

Shevchuk, Andrey, Denis Strebkov. 2015. The rise of freelance contracting on the russian-language internet.

Small Enterprise Research 22(2-3) 146–158.

Shi, Zijun, Kannan Srinivasan, Kaifu Zhang. 2023. Design of platform reputation systems: Optimal informa-

tion disclosure. Marketing Science 42(3) 500–520.

Tadelis, Steven. 2016. Reputation and feedback systems in online platform markets. Annual Review of

Economics 8 321–340.

Taskrabbit. 2024. Taskrabbit Global Terms of Service. URL: https://support.taskrabbit.com/hc/en-

us/articles/360008913792-Taskrabbit-Global-Terms-of-Service.

31



Thumbtack. 2023. How much do I pay for leads and bookings? URL: https://help.thumbtack.com/article/

pay-for-leads.

Uber. 2023. Welcome to the 0% service fee with Uber’s Go Pass! URL: https://www.uber.com/en-PK/

blog/welcome-to-the-0-service-fee-with-ubers-go-pass/.

Upwork. 2023a. Circumvention, and why it’s against the rules. URL: https://support.upwork.com/hc/en-

us/articles/360052511133-Circumvention-and-why-it-s-against-the-rules.

Upwork. 2023b. Staying safe on UpWork. URL: https://support.upwork.com/hc/en-us/articles/ 211067668-

Staying-Safe-on-Upwork.

Upwork. 2023c. UpWork payment protection. URL: https://support.upwork.com/hc/en-us/articles/

211062568-Upwork-Payment-Protection.

Upwork. 2024a. Achieve hire intelligence. URL: https://www.upwork.com/updates/spring-2024.

Upwork. 2024b. UpWork Form 10-K. URL: https://investors.upwork.com/static-files/a413c452-40f0-4dd9-

9c88-1add6fd05366.

Xie, Jinhong, Steven M Shugan. 2001. Electronic tickets, smart cards, and online prepayments: When and

how to advance sell. Marketing Science 20(3) 219–243.

Zhu, Feng, Weiru Chen, Shirley Sun. 2018. ZBJ: Building a global outsourcing platform for knowledge workers

(A). Harvard Business School.

32



Appendix

The appendix is organized as follows: Appendix A presents preliminary results that are used throughout

the main proofs. Appendices B, C, D, and E contain the proofs for Sections 3, 4, 5.1 and 5.2 respectively.

In Appendix F, we study an extension of our main model where buyers and sellers may engage in multiple

transactions; the proofs from this section are present in Appendix F.4.

A Preliminary Results

Section A.1 characterizes relevant probabilities, offline prices, and possible cases for a seller’s profit and

optimal price; Section A.2 characterizes the sellers’ profit functions and optimal prices; and Section A.3

provides conditions under which disintermediation occurs and defines the platform’s revenue.

A.1 Key Definitions

The main result in this section is Lemma A.3, which describes possible cases for a seller’s profit and optimal

price, and is referred to extensively throughout the remainder of the appendix.

Lemma A.1 (Signal probabilities and sellers’ beliefs). The following statements hold for σ ∈ {r, s}.

(i) The share of all buyers assigned the signal σ is ησ, where ηr := (1 − α)λ + α(1 − λ) and ηs :=

αλ + (1 − α)(1 − λ). Further, ηr and ηs strictly decrease and strictly increase in α on α ∈ [ 12 , 1],

respectively.

(ii) A seller’s posterior belief that a buyer with signal σ is type-s is ωσ, where ωr := (1−α)λ
ηr

and ωs :=
αλ
ηs

.

Further, ωr and ωs strictly decrease and increase in α on α ∈ [ 12 , 1], respectively.

Proof. For statement (i) , note λ = Pr(j = s) and α = Pr(j = s|σ = s) = Pr(j = r|σ = r) by definition.

The expressions for ηr and ηs then follow by the total probability rule. Further, note ∂
∂αηr = 1− 2λ < 0 and

∂
∂αηs = 2λ− 1 > 0. For statement (ii), by Bayes’ rule we have

ωr = Pr(j = s|σ = r) =
(1− α)λ

(1− α)λ+ α(1− λ)
= (1− α)λ/ηr,

ωs = Pr(j = s|σ = s) =
αλ

αλ+ (1− α)(1− λ)
= αλ/ηs.

Further, note

∂ωr

∂α
= − (1− λ)λ

(α(1− λ) + (1− α)λ)2
< 0,

∂ωs

∂α
=

(1− λ)λ

((1− α)(1− λ) + αλ)2
> 0,

where the strict inequalities follow because λ ∈ [ 12 , 1]. □

Lemma A.2 (Offline price for fixed commission rate γ and online price p). Consider the transaction between

a seller with online price p and a buyer with signal σ at a fixed commission rate γ > 0. The price in the

offline channel is then given by

bσ(p) :=
1

2

(
p(1− γ + ωσ)

ωσ
+

ϕ

ωσ

)
. (1)

33



Proof. Under an offline price of b, the buyer and seller’s expected surpluses from transacting offline are p− b

and ωσb− (1−γ)p−ϕ, respectively. The Nash bargaining function is thus N(b) := (p−b)(ωσb− (1−γ)p−ϕ),
which can be verified to be strictly concave in b. Solving ∂

∂bN(b) = 0 yields the expression (1). □

Lemma A.3 (Sellers’ profit and price cases). Fix the commission rate γ and consider a unit mass of sellers

with quality q and online price p ≤ q. Let Π(p) be the sellers’ expected profit (over buyer signals), let p̃ be the

maximizer of Π(p), and let Π̃ be the sellers’ expected profit under price p̃.

(a) If the sellers transact online with both σ = r and σ = s buyers,

Π(p) = πa(p) := ((1− γ)p− (1− λ)c)

(
1− p

q

)
,

p̃ = pa :=
1

2

(
q +

(1− λ)c

1− γ

)
,

Π̃ = πa(pa) = (1− γ)q

(
1

2
− (1− λ)c

2q(1− γ)

)2

.

(b) If the sellers reject σ = r and transact online with σ = s,

Π(p) = πb(p) := ηs ((1− γ)p− (1− ωs)c)

(
1− p

q

)
,

p̃ = pb :=
1

2

(
q +

(1− ωs)c

1− γ

)
,

Π̃ = πb(pb) = ηs(1− γ)q

(
1

2
− (1− ωs)c

2q(1− γ)

)2

.

(c) If the sellers transact online with σ = r and offline with σ = s,

Π(p) = πc(p) :=

(
ηr(1− γ)p+ ηs(ωsbs(p)− ϕ)− (1− λ)c

)(
1− p

q

)
,

p̃ = pc :=
1

2

(
q +

2(1− λ)c+ ηsϕ

2ζ

)
,

Π̃ = πc(pc) = qζ

(
1

2
− 2c(1− λ) + ηsϕ

4qζ

)2

.

where ζ = ηr(1− γ) + 1
2ηs(1− γ + ωs).

(d) If the sellers reject σ = r and transact offline with σ = s,

Π(p) = πd(p) := ηs

(
1− p

q

)(
ωsbs(p)− ϕ− (1− ωs)c

)
,

p̃ = pd :=
1

2

(
q +

2c(1− ωs) + ϕ

1− γ + ωs

)
,

Π̃ = πd(pd) =
ηsq

2
(1− γ + ωs)

(
1

2
− 2c(1− ωs) + ϕ

2q(1− γ + ωs)

)2

.

(e) If the sellers accept σ = r and σ = s offline,

Π(p) = πe(p) := (ηsωsbs(p) + ηrωrbr(p)− ϕ− (1− λ)c)

(
1− p

q

)
,
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p̃ = pe :=
1

2

(
q +

2c(1− λ) + ϕ

1− γ + ηrωr + ηsωs

)
,

Π̃ = πe(pe) :=
qζ ′

2

(
1

2
− 2c(1− λ) + ϕ

2qζ ′

)2

,

where ζ ′ = 1− γ + ωrηr + ωsηs.

Proof. For each case x ∈ {a, b, c, d, e}, the profit expression πx(p) follows from the definitions of ησ, ωσ, and

ωσ given in Lemma A.1. The profit maximizing price px follow by substituting the expression for the offline

price bσ(p) (Lemma A.2) into πx(p), noting that πx(p) is then strictly concave in p, and solving the first order

condition ∂
∂pπ

x(p) = 0; the algebraic details are straightforward and omitted. □

A.2 Sellers’ Profit Functions and Optimal Prices

Lemma A.4 (Disintermediation under fixed online price p). Consider a transaction between a seller with

online price p and a buyer with signal σ. Both the buyer and seller prefer to transact offline if and only if

γ > γ̂σ(p), where

γ̂σ(p) := 1− ωσ +
ϕ

p
.

Further, suppose γ > 1− ωσ. Then γ > γ̂σ(p) holds if and only if p > p̂σ, where

p̂σ :=
ϕ

γ − (1− ωσ)
.

Proof. Under the offline price bσ(p) given in (1), the seller has positive surplus from disintermediating if and

only if ωσbσ(p)− (1− γ)p−ϕ > 0, or equivalently, 1
2 (−p(1− γ−ωσ)−ϕ) > 0. Re-arranging for γ, the seller’s

surplus is strictly positive at bσ(p) if and only if γ > 1 − ωσ + ϕ
p = γ̂σ(p). Similarly, the buyer’s surplus is

strictly positive if and only if p− bσ(p) > 0, or equivalently, 1
2ωσ

(−p(1− γ − ωσ)− ϕ) > 0. Re-arranging for

γ, the buyer’s surplus is also positive if and only if γ > γ̂σ(p). Lastly, in the case where γ > 1 − ωσ, the

definition of p̂σ follows by re-arranging the inequality γ > γ̄σ(p). □

Lemma A.5 (Sellers’ transaction decisions). Let Assumption 1 hold. Then the following statements hold for

all γ ∈ [0, γm] and α ∈ [ 12 , 1].

(i) At their optimal price, type-L sellers reject σ = r buyers.

(ii) At their optimal price, type-H sellers transact with both σ = r and σ = s buyers.

Proof. This proof uses the profit and price expressions from Lemma A.3. (i). We show that the type-L

seller’s profit if they accept the σ = r buyer is non-positive in both transaction channels for all p ≥ 0 and

γ ≥ 0. Note the type-L seller’s demand is (1 − p
qL

)+, which implies their profit is zero for all p ≥ qL. For

p < qL, the seller’s expected payment from a σ = r buyer is at most p in either channel. It follows that the

seller’s profit from transacting with the σ = r buyer is at most p − (1 − ωr)c. Next, note p − (1 − ωr)c ≤
qL − (1− ωr)c ≤ (1− λ)c− (1− ωr)c ≤ 0, where the third and fourth inequalities follow from Assumption 1

and because λ ≥ ωr for all α ∈ [ 12 , 1], respectively.

(ii). It is straightforward to verify that ωs ≥ ωr (Lemma A.1), which implies a seller accepts the σ = r

buyer only if they also accept the σ = s buyer. Therefore, to show statement (ii), it suffices to show the
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type-H seller accepts the σ = r buyer for all γ ∈ [0, γm] and α ∈ [ 12 , 1]. Note there are two cases to consider

depending on whether the σ = s buyer transacts online or offline; thus, following Lemma A.3, it suffices to

show πa(pa) ≥ πb(pb) > 0 and πc(pc) ≥ πd(pd) > 0 both hold. We show πa(pa) ≥ πb(pb) > 0 first. It is

straightforward to verify that πb(pb) > 0 using the fact that πb(pb) strictly decreases in qH and qH ≥ 4c.

Because pa is the maximizer of πa(p), it suffices to show πa(pb)− πb(pb) ≥ 0. Note

πa(pb)− πb(pb) =

(
1− pb

qH

)
(αc(1− λ) + (1− γ)pb(λ− α(2λ− 1)))

and that πb(pb) > 0 implies pb < qH . It remains to show pb ≥ cα(1−λ)
(1−γ)(λ−α(2λ−1)) , or equivalently,

1

2

(
qH +

c(1− ωs)

1− γ

)
≥ cα(1− λ)

(1− γ)(λ− α(2λ− 1))
. (2)

Note the left hand side of (2) decreases in α because ωs and ωs both increase in α (Lemma A.1), and the

right hand side of (2) increases in α. Plugging in α = 1, it follows that (2) holds if qH
2 ≥ c

1−γ holds. The

preceding inequality holds because qH ≥ 4c by Assumption 1 and γ ≤ 1
2 . We now show πc(pc) ≥ πd(pd) > 0

using a similar argument. It is straightforward to verify that πd(pd) > 0 using the fact that πd(pd) strictly

decreases in qH and qH ≥ 4c. Because pc is the maximizer of πc(p), it suffices to show πc(pd) − πd(pd) ≥ 0.

Note

πc(pd)− πd(pd) =

(
1− pd

qH

)
(αc(1− λ) + (1− γ)pd(α(2λ− 1)− λ)),

and that πd(pd) > 0 implies pd < qH . It remains to show pd ≥ cα(1−λ)
(1−γ)(λ−α(2λ−1)) . Because pd increases in ϕ,

letting ϕ = 0 yields the lower bound pd ≥ 1
2

(
qH + 2c(1−ωs)

1−γ+ωs

)
. Therefore, it remains to show

1

2

(
qH +

c(1− ωs)

1− γ + ωs

)
≥ cα(1− λ)

(1− γ)(λ− α(2λ− 1))
. (3)

Note the left hand side of (3) decreases in α because ωs and ωs both increase in α (Lemma A.1), and the

right hand side of (3) increases in α. The result follows by plugging in α = 1 and noting qH ≥ 4c and γ ≤ 1
2 . □

Lemma A.6 (Sellers’ profit functions). For i ∈ {L,H}, the profit function for the type-i seller is given by

Πi(p), defined as follows.

(i) If γ ≤ 1− ωs, then ΠL(p) := πb(p) and ΠH(p) := πa(p) for all p ≥ 0.

(ii) If γ > 1− ωs, then

ΠL(p) :=

πb(p), if p ≤ p̂s,

πd(p), if p̂s < p.

and

ΠH(p) :=


πa(p), if p ≤ p̂s,

πc(p), if p̂s < p < p̂r,

πe(p), if p̂r < p.

Proof. Note Lemma A.3 defines a seller’s profit based on the platform signal σ and the transaction channel,

Lemma A.4 provides conditions under which the transaction occurs offline, and Lemma A.5 defines which
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signals σ ∈ {r, s} are accepted by the type-L and type-H sellers. Combining Lemmas A.3, A.4, and A.5 yields

the profit expressions ΠL(p) and ΠH(p). □

Lemma A.7 (No disintermediation with σ = r buyers). Let Assumption 2 hold. Then neither seller type

transacts offline with the σ = r buyer for all γ ≤ γm.

Proof. Note by Lemma A.5, the type-L seller never transacts with the σ = r buyer, so it remains to prove the

result for the type-H seller. First, if for some online price p the type-H seller transacts offline with the σ = r

buyer, then by Lemma A.4 we must have p > p̂r, and by Lemma A.6 the seller’s profit is given by πe(p).

Further, because πe(p) is maximized at pe, it follows that pe ≤ p̂r is a sufficient condition for the transaction

with the σ = r buyer to be online. By definition of p̂r, the condition pe ≤ p̂r can be written equivalently as

γ ≤ γH
r
, where γH

r
is defined as the solution to

γ = 1− ωr +
ϕ

pe(γ)
.

It remains to show γH
r
> γm holds for all α ∈ [ 12 , 1]. Note that for any ϕ, we have the following lower bound

on γH
r
:

γH
r

= 1− ωr +
ϕ

pe(γH
r
)
≥ 1− ωr. (4)

Next, note

ωr =
(1− α)λ

α(1− λ) + (1− α)λ
. (5)

It is straightforward to show that the right hand side of (5) strictly decreases in α. Plugging α = 1
2 into

the right hand side of (5) and combining with (4) then yields γH
r

≥ 1 − λ for all α ∈ [ 12 , 1]. It follows that

limλ→ 1
2
γH
r

≥ 1
2 > γm for all α ∈ [ 12 , 1]. □

Lemma A.8 (Sellers’ optimal prices). Suppose for some fixed γ ∈ (0, γm], neither seller type transacts offline

with the σ = r buyer at their optimal price. Then the following statements hold.

(i) The type-H seller’s optimal price satisfies p∗ ∈ {pa, pc}, where p∗ = pa if and only if the type-H seller

transacts online with the σ = s buyer.

(ii) The type-L seller’s optimal price satisfies p∗ ∈ {pb, pd}, where p∗ = pb if and only if the type-L seller

transacts online with the σ = s buyer.

Proof. We focus on proving statement (i); the proof of (ii) follows by a similar argument and is briefly

addressed afterward.

(i). We proceed in two steps. First, we show p∗ ∈ {pa, pc}. Second, we show p∗ = pa if and only if the

type-H seller transacts online with the σ = s buyer.

Step 1. Note the type-H seller’s profit function ΠH(p) is given in Lemma A.6. It is straightforward to verify

that πa(p), πc(p), and πe(p) are each strictly concave. Therefore, ΠH(p) has five possible local maxima

that are candidates for the optimal price p∗: pa, pc, and pe, and the breakpoints p̂s and p̂r. Note p∗ ̸= pe

because no seller transacts offline with the σ = r buyer by Lemma A.7. Thus, we p∗ ∈ {pa, pc} by showing

p∗ /∈ {p̂r, p̂s}. Consider p̂s first. Note that if γ < 1 − ωs, then p̂s < 0, and the result holds trivially. Next,
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suppose γ > 1− ωs and assume by way of contradiction that p∗ = p̂s. Then we must have

lim
p→p̂−

s

∂ΠH

∂p
≥ lim

p→p̂+
s

∂ΠH

∂p
, (6)

i.e., p̂s must be a local maximum of ΠH(p). Note that the piecewise profit function ΠH(p) switches from

πa(p) to πc(p) at p̂s. The inequality (6) is therefore equivalent to

∂πa

∂p

∣∣∣∣
p=p̂s

≥ ∂πc

∂p

∣∣∣∣
p=p̂s

.

Using the profit expressions from Lemma A.3, it is straightforward to show(
∂πa

∂p
− ∂πc

∂p

) ∣∣∣∣
p=p̂s

=
ηs(ϕ− qH(γ − (1− ωs)))

2qH
. (7)

Because γ > 1− ωs, the expression in (7) is non-negative if and only if

qH ≤ ϕ

γ − (1− ωs)
. (8)

Note that the right hand side (8) is precisely p̂s (Lemma A.4). Therefore, p∗ = p̂s implies p̂s ≥ qH . However,

the type-H seller generates zero demand for all prices p ≥ qH , which contradicts p∗ = p̂s. We conclude

p∗ ̸= p̂s. By a parallel argument, p∗ = p̂r implies γ > 1− ωr and(
∂πc

∂p
− ∂πe

∂p

) ∣∣∣∣
p=p̂s

=
(1− ηs)(ϕ− qH(γ − (1− ωr)))

2qH
≥ 0,

which implies

qH ≤ ϕ

γ − (1− ωr)
= p̂r.

We again obtain a contradiction to p∗ = p̂r because the seller generates zero demand for all p ≥ qH . Therefore,

p∗ ∈ {pa, pc}.

Step 2. We now show p∗ = pa if and only if the seller transacts online with the σ = s buyer. Consider two

cases: γ ≤ 1− ωs and γ > 1− ωs. Note if γ ≤ 1− ωs, by Lemma A.4 the transaction is never offline because

γ ≤ γ̂s(p) for all p ≥ 0. In this case, the profit function is simply ΠH(p) = πa(p), and the result follows. Now

suppose γ > 1 − ωs, which implies p̂s > 0. From Step 1, we know p̂s cannot be a local maximum, and thus

by concavity of πa(p) and πc(p), pc < p̂s < pa cannot hold. It follows that if γ > 1 − ωs, one of three cases

must hold: p̂s ≤ min{pa, pc}, p̂s ≥ max{pa, pc}, or pa < p̂s < pc. In the first case, p̂s ≤ pa implies ΠH(p) has

a single local maximum at pc, which implies p∗ = pc > p̂s. Because the transaction is online at p if p ≤ p̂s

(Lemma A.4), we conclude p̂s ≤ pa implies both p∗ = pc and that the transaction is offline. In the second

case, pc ≤ p̂s implies ΠH(p) has a single local maximum at pa, which implies p∗ = pa < p̂s, which implies the

transaction is online. Lastly, if pa < p̂s < pc, ΠH(p) has two local maxima at pa and pc. In this case, either

p∗ = pa < p̂s or p
∗ = pc > p̂s must hold. Thus, in all three cases, p∗ = pa if and only if the transaction is online.

(ii). By Lemma A.6, if γ ≤ 1 − ωs the type-L seller’s profit function is simply ΠL(p) = πb(p) for all p ≥ 0.
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If γ > 1− ωs, the qL seller’s profit function is then

ΠL(p) =

πb(p), if p ≤ p̂s,

πd(p), if p̂s < p.

The result follows by parallel argument to the proof of statement (i), with ΠL(p), pb and pd in place of ΠH(p),

pa and pc, respectively. □

A.3 Commission Thresholds for Disintermediation and Platform Revenue

The main results in this section are Lemma A.10, which defines thresholds on the commission rate γ that

trigger disintermediation, and Lemma A.11, which defines the platform’s revenue function. Lemmas A.12 and

A.13 provide useful properties of the platform revenue function that are used in later proofs.

Lemma A.9 (Sufficient and necessary conditions for disintermediation). Suppose a type-i seller transacts

with a σ = s buyer, where i ∈ {L,H}.

(i) For the type-H seller, γ ≤ γ̂s(p
a) and γ < γ̂s(p

c) are necessary and sufficient for the transaction to

occur online, respectively.

(ii) For the type-L seller, γ ≤ γ̂s(p
b) and γ < γ̂s(p

d) are necessary and sufficient for the transaction to

occur online, respectively.

Proof. The results largely follow from Lemma A.4, which provides the definitions of γ̂s(p) and p̂s. We briefly

address statement (i); the proof of (ii) follows by parallel argument and is omitted. First, suppose the trans-

action is online, and consider two cases: γ ≤ 1 − ωs and γ > 1 − ωs. If γ ≤ 1 − ωs, then γ ≤ γ̂s(p
a) must

hold by definition of γ̂s. Now suppose γ > 1− ωs. Because the transaction is online, by Lemma A.8 we have

p∗ = pa < p̂s. By Lemma A.4, pa < p̂s implies γ < γ̂s(p
a), as desired. Now suppose γ < γ̂s(p

c), and consider

two cases: γ ≤ 1−ωs and γ > 1−ωs. If γ ≤ 1−ωs, then γ ≤ γ̂(p) for all p ≥ 0, which implies the transaction

is online by Lemma A.4. If γ > 1 − ωs, then γ < γ̂s(p
c) implies pc < p̂s by Lemma A.4. Because pc is the

maximizer of πc(p) and πc(p) is strictly concave, pc < p̂s implies the seller’s profit function ΠH(p) strictly

decreases in p on [p̂s, p̂r]. Further, p∗ ≤ pr by Lemma A.7, which implies p∗ ≤ p̂s. It follows from Lemma

A.4 that the transaction occurs online. □

Lemma A.10 (Commission thresholds for disintermediation). Let γH
s
, γ̄Hs , γL

s
, and γ̄Ls be the solutions to

(9a), (9b), (9c), and (9d) respectively:

γ = 1− ωs +
ϕ

pc(γ)
, (9a)

γ = 1− ωs +
ϕ

pa(γ)
, (9b)

γ = 1− ωs +
ϕ

pd(γ)
, (9c)

γ = 1− ωs +
ϕ

pb(γ)
. (9d)

Suppose both type-L and type-H sellers accept the σ = s buyer for some γ ∈ (0, γm]. Then for each i ∈ {L,H},
there exists a unique threshold γis ∈ [γi

s
, γ̄is] such that the type-i seller transacts offline with the σ = s buyer
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under their optimal price if and only if γ > γis. Further, γHs ≤ γLs holds for all ϕ ≥ 0, and γis = γi
s
= γ̄is =

1− ωs for i ∈ {L,H} if ϕ = 0.

Proof. The proof proceeds in four steps. First, we show the type-H seller’s transaction is online if γ ≤ γH
s

and offline if γ > γ̄Hs , which also establishes that γH
s
< γ̄Hs . Second, we show the existence of the threshold

γHs ∈ [γH
s
, γ̄Hs ]. Third, we show the analogous result for the type-L seller. Fourth, we show the final sentence

of the lemma statement.

Step 1. By definition of γH
s
, we have

γH
s

= 1− ωs +
ϕ

pc(γH
s
)
.

By inspecting the expression for pc(γ) (Lemma A.3), it is straightforward to verify that pc(γ) strictly increases

in γ. Therefore, γ ≤ γH
s

implies

γ ≤ 1− ωs +
ϕ

pc(γ)
.

By Lemma A.9, the inequality above is a sufficient condition for the transaction to be online. Similarly, if

γ > γ̄Hs , then by definition of γ̄Hs and because pa(γ) increases in γ, we must have

γ > 1− ωs +
ϕ

pa(γ)
.

By Lemma A.9, the inequality above is a sufficient condition for the transaction to be offline. This completes

the first step.

Step 2. We now show the existence of the threshold γHs ∈ [γH
s
, γ̄Hs ]. To avoid the trivial case where transactions

occur online for all γ ∈ [0, γm], we assume γHs < γm. Note that the first step of the proof and the definition

of the seller’s profit function ΠH(p) (Lemma A.6) implies πa(pa) < πc(pc) for γ > γ̄Hs and πa(pa) > πc(pc)

for γ < γ̄Hs . Therefore, because πa(pa) and πc(pc) are both continuous in γ, to prove statement (i) it suffices

to show πa(pa)− πc(pc) strictly decreases in γ on [γH
s
, γ̄Hs ]. Differentiating the seller profit functions, for any

γ on [γH
s
, γ̄Hs ] we have

d

dγ
(πa(pa)− πc(pc)) =

(
∂πa

∂p
· dp

a

dγ
+
∂πa

∂γ

) ∣∣∣∣
p=pa

−
(
∂πc

∂p
· dp

c

dγ
+
∂πc

∂γ

) ∣∣∣∣
p=pc

=
∂πa

∂γ

∣∣∣∣
p=pa

− ∂πc

∂γ

∣∣∣∣
p=pc

= −pa
(
1− pa

qH

)
+
(
1− ηs

2

)
pc
(
1− pc

qH

)
≤
((

1− ηs
2

)
pc − pa

)(
1− pa

qH

)
.

In the relations above, the second line follows from the envelope theorem, the third from evaluating the

derivative algebraically, and the fourth because pc ≥ pa when γ ∈ [γH
s
, γ̄Hs ], which follows from the definitions

of γH
s

and γ̄Hs . Because
(
1− pa

qH

)
> 0 and ηs ∈ (0, 1), to show d

dγ (π
a(pa) − πc(pc)) < 0 it suffices to show

that 2pa − pc > 0. Note we must have pc < qH because the type-H seller earns zero profit for all prices above

qH . Therefore, it remains to show 2pa > qH . This follows immediately from inspecting the expression for

pa (Lemma A.3), which shows pa > qH/2. Therefore, πa(pa) − πc(pc) strictly decreases on γ ∈ [γH
s
, γ̄Hs ], as

desired. Lastly, the result that γHs = γH
s

= γ̄Hs = 1 − ωs when ϕ = 0 follows from the definition of γH
s

and

γ̄Hs .
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Step 3. The proof follows similarly to the result for the type-H seller. Using the definitions of γL
s
and γ̄Ls

and the fact that pb and pd are both strictly increasing in γ, it is straightforward to show the transaction is

online if γ < γL
s
and offline if γ > γ̄Ls . It remains to show πb(pb)− πd(pd) strictly decreases in γ on [γL

s
, γ̄Ls ].

Differentiating in γ, we have

d

dγ
(πb(pb)− πd(pd)) =

(
∂πb

∂p
· dp

b

dγ
+
∂πb

∂γ

) ∣∣∣∣
p=pb

−
(
∂πd

∂p
· dp

d

dγ
+
∂πd

∂γ

) ∣∣∣∣
p=pd

=
∂πb

∂γ

∣∣∣∣
p=pb

− ∂πd

∂γ

∣∣∣∣
p=pd

= −ηspb
(
1− pb

qL

)
+
ηs
2
pd
(
1− pd

qL

)
≤
(
−ηspb +

ηs
2
pd
)(

1− pd

qL

)
,

where the final inequality follows because pd ≥ pb when γ ∈ [γL
s
, γ̄Ls ], which follows from the definitions of

γL
s
and γ̄Ls . It remains to show −ηspb + ηs

2 p
d > 0, or equivalently, 2pb > pd. Note we must have pd < qL

because the type-L seller has zero demand for all prices above qL, and further 2pb > qL by inspection of the

expression for pb. It follows that 2pb > qL > pd, as desired.

Step 4. We now show γHs ≤ γLs for all ϕ ≥ 0. By Lemma A.10, we have γHs ≤ γ̄Hs and γL
s
≤ γLs . Therefore, it

suffices to show γ̄Hs ≤ γL
s
. Using the expressions in Lemma A.10, γ̄Hs ≤ γL

s
holds if and only if pa(γ̄Hs )

∣∣
q=qH

≥
pd(γL

s
)
∣∣
q=qL

. Next, note

pa(γ̄Hs )
∣∣
q=qH

≥ qH
2

≥ 2c ≥ 2(1− λ)c ≥ 2qL ≥ pd(γL
s
)
∣∣
q=qL

.

The first inequality follows by inspecting the expression for pa (Lemma A.3), the second from Assumption 1,

the third because λ ≥ 0, and the fourth inequality follows from Assumption 1. To see that the final inequality

holds, note the type-L seller has zero demand for all prices above qL, which implies pd(γ) ≤ qL for all γ ≥ 0.

It follows that γHs ≤ γLs . Lastly, the result that γis = γi
s
= γ̄is = 1− ωs for i ∈ {L,H} when ϕ = 0 follows by

definition of γi
s
and γ̄is. □

Lemma A.11 (Platform’s revenue function). Let pa, pb, and pc be as defined in Lemma A.3, and define

ra(γ) := γpa
(
1− pa

qH

)
,

rb(γ) := γηsp
b

(
1− pb

qL

)
,

rc(γ) := γηrp
c

(
1− pc

qH

)
.

Then the platform’s commission revenue is given by R(γ), where

R(γ) :=


µra(γ) + (1− µ)rb(γ)+ if γ ∈ [0, γHs ],

µrc(γ) + (1− µ)rb(γ)+ if γ ∈ (γHs , γ
L
s ],

µrc(γ) if γ ∈ (γLs , γ
m],

and x+ = max{0, x}.
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Proof. To see that the piecewise function R(γ) is the platform’s commission revenue, note µ and 1 − µ are

the shares of type-H and type-L sellers, respectively. By Lemma A.5, the type-H seller accepts both σ = s

and σ = r buyers and the type-L seller rejects the σ = r buyer. Then combining Lemmas A.3 and A.10, the

type-H sellers’ contribution to platform revenue is µra(γ)+ if γ ≤ γHs and µrc(γ)+ if γ > γHs ; similarly, the

type-L sellers’ contribution is (1−µ)rb(γ)+ if γ ≤ γLs and 0 if γ > γLs . Further, it is straightforward to verify

algebraically that ra(γ) ≥ 0 and rc(γ) ≥ 0 for all α ∈ [ 12 , 1] and γ ≥ 0; the superscript (·)+ is suppressed

accordingly. The function R(γ) follows. □

Lemma A.12 (Revenue function properties). Let ra(γ), rb(γ), and rc(γ) be as defined in Lemma A.11. The

following statements hold for all γ ∈ [0, 12 ] and α ∈ [ 12 , 1].

(i) ra(γ) is strictly concave and increasing in γ, and is independent of α and ϕ.

(ii) rb(γ) is strictly concave in γ, increases in α wherever rb(γ) > 0, and is independent of ϕ.

(iii) rc(γ) is strictly concave in γ for all ϕ and is strictly increasing in γ for ϕ = 0.

Proof. (i). Using the expressions for ra(γ) and pa,

ra(γ) = γpa
(
1− pa

qH

)
=
γ

4

(
qH − c2(1− λ)2

qH(1− γ)2

)
.

Differentiating in γ, we have

∂ra

∂γ
=

1

4

(
qH − c2(1− λ)2

qH(1− γ)2

)
− γ

4

(
2c2(1− λ)2

qH(1− γ)3

)
. (10)

By inspection, the first term on the right hand side of (10) strictly decreases in γ and the second term strictly

increases in γ. Therefore, d
dγ r

a strictly decreases in γ, which implies ra(γ) is strictly concave in γ. Further,

using the fact that qH ≥ 4c (Assumption 1) it can be shown that limγ→ 1
2

d
dγ r

a > 0. It follows that ra(γ)

strictly increases in γ for γ ∈ [0, 12 ].

(ii). Using the expressions for pb and rb(γ) (Lemmas A.3 and A.11), we have

rb(γ) = ηsγp
b

(
1− pb

qL

)
=
ηsγ

4

(
qL − c2(1− ωs)

2

qL(1− γ)2

)
.

Note for any γ ∈ [0, γm], using the expressions for ηs and ωs (Lemma A.1) we have

∂rb

∂α
=
∂rb

∂ηs

∂ηs
∂α

+
∂rb

∂ωs

∂ωs

∂α

=
γ

4

(
qL − c2(1− ωs)

2

qL(1− γ)2

)
∂ηs
∂α

+

(
2c2(1− ωs)

qL(1− γ)2

)
∂ωs

∂α

=
γ

4

(
rb

ηs

)
(2λ− 1) +

(
2c2(1− ωs)

qL(1− γ)2

)
(1− λ)λ

η2s

> 0,

where the strict inequality follows from λ ∈ [ 12 , 1]. Thus rb(γ) strictly increases in α if rb(γ) > 0. Next,
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differentiating rb(γ) in γ yields

∂rb

∂γ
=
ηs
4

(
qL − c2(1− ωs)

2

qL(1− γ)2

)
− ηsγ

4

(
2c2(1− ωs)

2

qL(1− γ)3

)
=
ηs
4

(
qL −

(
1 +

2γ

1− γ

)
c2(1− ωs)

2

qL(1− γ)2︸ ︷︷ ︸
g(γ)

)
, (11)

where for convenience g(γ) is defined as shown in (11). Note by inspection that g(γ) strictly increases in γ,

which implies d
dγ r

b strictly decreases in γ. Hence rb(γ) is strictly concave in γ.

(iii). Using the expressions for rc(γ) and pc, for q = qH we have

rc(γ) = ηrγp
c

(
1− pc

qH

)
= ηrγqH

(
1

4
−
(
2(1− λ)c+ ηsϕ

4qHζ

)2
)
,

where ζ = ηr(1−γ)+ 1
2ηs(1−γ+ωs). Differentiating in γ and using the fact that d

dγ ζ = −ηr− 1
2ηs =

1
2ηs−1,

we have

∂rc

∂γ
= ηrqH

(
1

4
−
(
(1− λ)c

2qHζ
+

ηsϕ

4qHζ

)2
)

− 2ηrqH
ζ3

γ

(
(1− λ)c

2qH
+
ηsϕ

4qH

)2 (
1− ηs

2

)
= ηrqH

(
1

4
− h2

q2H

(
1

ζ2
+

2γ

ζ3

(
1− ηs

2

)))
, (12)

where h = 1
4 (2c(1− λ) + ηsϕ). Next, note (12) strictly decreases in γ because ∂

∂γ ζ = 1
2ηs − 1 < 0 and

∂

∂γ

(
γ

ζ3

)
=

8(2 + 4γ − ηs(1 + 2γ − ωs))

(2(1− γ)− ηs(1− γ − ωs))4
> 0,

where the strict inequality follows because γ ∈ [0, 12 ], ηs ∈ [0, 1] and ωs ∈ [0, 1]. It follows that rc(γ) is strictly

concave. Finally, consider the case when ϕ = 0:

∂rc

∂γ
=
ηrqH
4

(
1− c2(1− λ)2

q2H

(
1

ζ2
+

2γ

ζ3

(
1− ηs

2

)))
.

Since γ ≤ 1
2 , we have ζ ≥ 1− γ ≥ 1

2 . Also note ωs ≥ ωs ≥ 1
2 . Utilizing this bound on ζ along with qH ≥ 4c,

λ ≥ 1
2 , and ηs ≥

1
2 , we can write

∂rc

∂γ
≥ ηrqH

4

(
1− c2(1− λ)2

16c2

(
1

( 12 )
2
+

2( 12 )

( 12 )
3

(
1− 1

4

)))
> 0.

We conclude that rc(γ) strictly increases in [0, γm] when ϕ = 0. □

Lemma A.13. The inequality 8
15r

a(γ) > rc(γ) holds for all γ ∈ [0, γm] and ϕ ≥ 0.

Proof. We first show the following two inequalities hold:

ζ ≤ 1− γ +
λγ

2
(13a)

1−

(
(1− λ)c

qH(1− γ + λγ
2 )

)2

≤ 16

15

(
1−

(
(1− λ)c

qH(1− γ)

)2
)

(13b)
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To see that (13a) holds, note

ζ = ηr(1− γ) +
ηs
2
(1− γ + ωs) ≤ ηr(1− γ) +

ηs
2
(1− γ + 1) = 1− γ +

ηsγ

2
≤ 1− γ +

λγ

2
,

which follows because ωs ≤ 1, ηr ≤ 1, and ηs ≤ λ. Next, for (13b) we have

1−
(

(1−λ)c

qH(1−γ+λγ
2 )

)2
1−

(
(1−λ)c
qH(1−γ)

)2 ≤
1−

(
1−λ
2+λ

)2
1−

(
1−λ
2

)2 ≤ 16

15
.

The first inequality above follows by noting the ratio in the left hand side is decreasing in qH and increasing

in γ, and because qH ≥ 4c and γ ≤ 1
2 by Assumptions 1 and 2. The second inequality follows because

the intermediate expression decreases in λ and because λ ≥ 1
2 . We can now prove the lemma statement.

Note

rc(γ) = ηrγqH

(
1

4
−
(
(1− λ)c

2qHζ
+

ηsϕ

4qHζ

)2
)

≤ ηrγqH

(
1

4
−
(
(1− λ)c

2qHζ

)2
)

≤ ηrγ
qH
4

1−

(
(1− λ)c

qH(1− γ + λγ
2 )

)2


≤ 16

15
ηrγ

qH
4

(
1−

(
(1− λ)c

qH(1− γ)

)2
)

=
16

15
ηrr

a(γ)

<
8

15
ra(γ).

The first line follows by definition of rc(γ), the second line follows because rc(γ) strictly decreases in ϕ, the

third line follows using the upper bound on ζ from (13a), the fourth line follows using the inequality (13b),

the fifth line follows from the definition of ra(γ), and the final line follows because ηr ≤ 1
2 since λ ≥ 1

2 . □

B Proofs for Section 3: Optimal Commission and Platform Rev-

enue

B.1 Proof of Proposition 1

We first present two useful lemmas used in the proof of Proposition 1 and elsewhere: Lemma B.1 presents

comparative statics with respect to ϕ for different candidate solutions for the optimal commission rate γ∗,

and Lemma B.2 provides a characterization of the optimal commission rate γ∗. For use in the remainder of

the appendix, define γx := argmaxγ∈[0,1] r
x(γ) and γxy := argmaxγ∈[0,γm] {µrx(γ) + (1 − µ)ry(γ)}, where

x, y ∈ {a, b, c} and the rx(γ) functions are as defined in Lemma A.11. For convenience, we describe these

quantities informally below:

• ra(γ) is the platform’s revenue from a type-H seller when the seller transacts only online, and γa is its
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unconstrained maximizer,

• rb(γ) is the platform’s revenue from a type-L seller when they transact online with the σ = s buyer

(and reject σ = r buyers), and γb is its unconstrained maximizer,

• rc(γ) is the platform’s revenue from a type-H seller when the seller transacts online and offline with

σ = r and σ = s buyers, respectively, and γc is its unconstrained maximizer,

• γab – which is the only quantity of the form γxy used in the following proof – is the optimal commission

rate when both type-H and type-L sellers transact online.

Lemma B.1. The following statements hold. (i) γa and γb are both independent of ϕ, (ii) γc strictly decreases

in ϕ, and (iii) γHs and γLs strictly increase in ϕ.

Recall that γHs and γLs denote the smallest commission rates at which the type-H and type-L sellers transact

offline with σ = s buyers, respectively (Lemma A.10). Intuitively, an increase in the switching cost leads to

an increase in the commission rates at which sellers disintermediate, which is captured by statement (iii) in

the lemma above.

Proof. (i). The result follows by noting that ra(γ) and rb(γ) are independent of ϕ (Lemma A.12), and thus

so are their maximizers γa and γb. This is because for fixed γ, the switching cost does not affect revenue

when all transactions occur online.

(ii). Applying the implicit function theorem, we have

dγc

dϕ
= −

(
∂2rc

∂γ∂ϕ

)(
∂2rc

∂γ2

)−1 ∣∣∣∣
γ=γc

.

Note ∂2

∂γ2 r
c < 0 at γ = γc because γc is the maximizer of rc. Therefore, d

dϕγ
c has the same sign as ∂2

∂γ∂ϕr
c.

Using the expressions for pc and rc(γ) from Lemmas A.3 and A.11, we have

rc(γ) = ηrγp
c

(
1− pc

qH

)
= ηrγqH

(
1

4
−
(
2(1− λ)c+ ηsϕ

4qHζ

)2
)
,

where ζ = ηr(1 − γ) + 1
2ηs(1 − γ + ωs). Differentiating in γ and using the fact that d

dγ ζ = 1
2ηs − 1, we

have

∂rc

∂γ
= ηrqH

(
1

4
−
(
(1− λ)c

2qHζ
+

ηsϕ

4qHζ

)2
)

− 2ηrqH
ζ3

γ

(
(1− λ)c

2qH
+
ηsϕ

4qH

)2 (
1− ηs

2

)
= ηrqH

(
1

4
− h2

q2H

(
1

ζ2
+

2γ

ζ3

(
1− ηs

2

)))
,

where h = 1
4 (2c(1− λ) + ηsϕ). Because h increases in ϕ, we conclude ∂2

∂γ∂ϕr
c < 0 and thus d

dϕγ
c < 0.

(iii). We first show d
dϕγ

H
s > 0, followed by showing d

dϕγ
L
s > 0. Note by the proof of Lemma A.10, γHs is the

unique solution to πa(pa)− πc(pc) = 0. Note πa(pa) depends on γ and πc(pc) depends on both γ and ϕ. For

convenience, we define the function π−(γ, ϕ) := πa(pa) − πc(pc). It follows that π−(γHs , ϕ) = 0. Taking the

total derivative of this equation with respect to ϕ, we have

dπ−

ds

∣∣∣∣
γ=γH

s

=

(
∂π−

∂γ

dγHs
dϕ

+
∂π−

∂ϕ

) ∣∣∣∣
γ=γH

s

= 0.
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Because γHs is the unique solution to π−(γ, ϕ) = 0 by Lemma A.10, we must have ∂
∂γπ

− ̸= 0 at γ = γHs . We

can therefore re-arrange for d
dϕγ

H
s to obtain

dγHs
dϕ

= −
(
∂π−

∂ϕ

)(
∂π−

∂γ

)−1 ∣∣∣∣
γ=γH

s

.

Next, we show d
dϕγ

H
s > 0 by showing ∂

∂γπ
− < 0 and ∂

∂ϕπ
− > 0 at γ = γHs . First, the proof of Lemma A.10

shows that π−(γ, ϕ) strictly decreases in γ on the interval [γH
s
, γ̄Hs ], and that γHs ∈ [γH

s
, γ̄Hs ]. It follows that

∂
∂γπ

−(γ, ϕ) < 0 at γ = γHs . Next, for all γ ∈ [0, γm] we have

∂π−

∂ϕ
= − ∂

∂ϕ
πc(pc)

= − ∂

∂ϕ

{
1

2

(
1− pc

qH

)
(pc(2(1− γ)− ηs(1− γ − ωs))− 2c(1− λ)− ηsϕ)

}
=
ηs
2

(
1− pc

qH

)
> 0.

The first line follows by definition of π−(γ, ϕ) and because ∂
∂ϕπ

a(pa) = 0, the second by plugging in the

expression for πc(pc), and the third from noting pc is the maximizer of πc(p) and thus applying the envelope

theorem to compute the partial derivative. The strict inequality follows because pc maximizes πc(p) and the

seller earns zero profit for all prices above qH , which implies pc < qH . Because ∂
∂γπ

− < 0 and ∂
∂ϕπ

− > 0

at γ = γHs , we conclude d
dϕγ

H
s > 0, as desired. Next, we show d

dϕγ
L
s > 0 using a similar argument to that

above for d
dϕγ

H
s > 0. Note by the proof of Lemma A.10, γLs is the unique solution to πb(pb) − πd(pd). Let

π̄(γ, ϕ) = πb(pb)−πd(pd), and note π̄(γLs , ϕ) = 0 by definition of γLs . Taking the total derivative with respect

to ϕ yields
dπ̄

ds

∣∣∣∣
γ=γL

s

=

(
∂π̄

∂γ

dγLs
dϕ

+
∂π̄

∂ϕ

) ∣∣∣∣
γ=γL

s

= 0.

Because γLs is the unique solution to π̄(γ, ϕ) = 0 by Lemma A.10, we must have ∂
∂γ π̄ ̸= 0 at γ = γLs . We can

therefore re-arrange for d
dϕγ

L
s to obtain

dγLs
dϕ

= −
(
∂π̄

∂ϕ

)(
∂π̄

∂γ

)−1 ∣∣∣∣
γ=γL

s

.

Next, we show d
dϕγ

L
s > 0 by showing ∂

∂γ π̄ < 0 and ∂
∂ϕ π̄ > 0 at γ = γLs . First, the proof of Lemma A.10

shows that π̄(γ, ϕ) strictly decreases in γ on the interval [γL
s
, γ̄Ls ], and that γLs ∈ [γL

s
, γ̄Ls ]. It follows that

∂
∂γ π̄(γ, ϕ) < 0 at γ = γHs . Next, by parallel argument to the proof for d

dϕγ
H
s above, we have

∂π̄

∂ϕ
= − d

dϕ
πd(pd)

= − d

dϕ

{
1

2
ηs

(
1− pd

qL

)
(pd(1− γ + ωs)− 2c(1− ωs)− ϕ)

}
=
ηs
2

(
1− pd

qL

)
> 0.

Because ∂
∂γ π̄ < 0 and ∂

∂ϕ π̄ > 0 at γ = γLs , we conclude d
dϕγ

L
s > 0. □
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Lemma B.2 (Optimal commission rate). The following statements hold.

(i) There exists α ∈ ( 12 , 1] such that γ∗ = min{γHs , γm} if α ≤ α and ϕ ≥ 0.

(ii) There exists ᾱ ∈ [α, 1) such that γ∗ = min{γc, γm} if α ∈ [ᾱ, 1] and ϕ = 0.

Unpacking the above lemma, part (i) states that when information quality α is low, the platform chooses a

commission rate no greater than γHs , and so all transactions occur on-platform. At high values of α under no

switching cost (part (ii)) , the only transactions that occur on-platform are between the type-H seller and

σ = r buyer.

Proof. (i). Note for any γ > 0 and α = 1
2 , the type-L seller’s profit is

πb(pb) = (1− γ)qL

(
1

2
− (1− ωs)c

2qL(1− γ)

)2

≤ (1− γ)qL

(
1

2
− (1− ωs)c

2qL

)2

= (1− γ)qL

(
1

2
− (1− λ)c

2qL

)2

≤ 0,

which follows because at γ > 0, ωs = λ at α = 1
2 , and qL ≤ (1−λ)c by Assumption 1. Since πb(pb) ≤ 0 implies

that the type-L seller rejects all buyers, we conclude the type-L seller’s contribution to platform revenue at

α = 1
2 is rb(γ)+ = 0. It follows by continuity of πb(pb) in α that there exists α̃ such that rb(γ)+ = 0 for all

α ≤ α̃. Thus, for α ≤ α̃, the platform’s revenue is given by (Lemma A.11)

R(γ) =

µra(γ) if γ ∈ [0, γHs ],

µrc(γ) if γ ∈ (γHs , γ
m].

Next, using the expressions for ωs and ωr (Lemma A.1), we have ωs = ωr = λ for α = 1
2 , which implies

ωs = ωr, and thus γHs = γHr . It follows from Lemma A.7, that γHs = γHr > γm at α = 1
2 . Further, because

ra(γ) strictly increases in γ (Lemma A.12), we conclude γ∗ = min{γHs , γm} at α = 1
2 . Finally, the existence of

the threshold α ≤ α̃ follows because γHs is continuous in α and ra(γ) > rc(γ) for γ > 0 by Lemma A.13.

(ii). By Lemma A.11, the platform’s revenue function is

R(γ) =


µra(γ) + (1− µ)rb(γ)+ if γ ∈ [0, γHs ],

µrc(γ) + (1− µ)rb(γ)+ if γ ∈ (γHs , γ
L
s ],

µrc(γ) if γ ∈ (γLs , γ
m].

Note rc(γ) is strictly concave in γ by Lemma A.12. Therefore, to show γ∗ = min{γc, γm} it suffices to show

that the following three inequalities hold:

min{γc, γm} > γLs ,

µrc(γm) > max
γ∈[0,γH

s ]
µra(γ) + (1− µ)rb(γ)+, (14a)

µrc(γm) > max
γ∈(γH

s ,γL
s ]
µrc(γ) + (1− µ)rb(γ)+. (14b)

We show γ∗ = min{γc, γm} holds at α = 1. Note ϕ = 0 and α = 1 implies ωs = 1 and thus γHs = γLs = 0 by

Lemma A.10. Therefore, in this setting the right hand sides of (14a) and (14b) are both zero. It remains to

show rc(γm) > 0. Note

ζ = ηr(1− γm) +
ηs
2
(1− γm + ωs) ≥

1

2
(ηr + ηs)(1− γm) =

1− γm

2
≥ 1

4
.
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Because ζ ≥ 1
4 and qH ≥ 4c by Assumption 1, we have qHζ ≥ c. Using this inequality, we can write

rc(γm) = ηrγ
mqH

(
1

4
−
(
(1− λ)c

2qHζ

)2
)

≥ ηrγ
mqH

(
1

4
−
(
(1− λ)

2

)2
)
> 0,

where the final inequality follows because λ < 1. Therefore, γ∗ = min{γc, γm} if ϕ = 0 and α = 1. Finally,

the existence of the threshold ᾱ < 1 follows because γHs and γLs and the functions ra(γ), rb(γ) and rc(γ) are

all continuous in α. □

Proposition 1. Let γ∗(ϕ) be the platform’s optimal commission rate under switching cost ϕ. There exist

thresholds α ∈ ( 12 , 1] and ᾱ ∈ [α, 1) such that the following statements hold.

(i) Suppose information quality is low, i.e., α ≤ α. Then the optimal commission rate γ∗(ϕ) weakly

increases in the switching cost ϕ for all ϕ ≥ 0.

(ii) Suppose information quality is high, i.e., α > ᾱ. Then there exists ϕ̄ > 0 such that for each ϕ ≥ ϕ̄, the

optimal commission rate is higher in the absence of switching costs, γ∗(0) ≥ γ∗(ϕ), where the inequality

is strict if γ∗(ϕ) < γm. Further, there exists ϕ ∈ (0, ϕ̄] such that γ∗(ϕ) strictly decreases in ϕ on

ϕ ∈ [0, ϕ] wherever γ∗(ϕ) < γm.

Proof. This proof makes use of Lemmas B.1 and B.2. (i). By Lemma B.2 there exists α ∈ [ 12 , 1] such that

if α ≤ α, then γ∗ = min{γa, γHs } for all ϕ ≥ 0. That is, the optimal commission rate γ∗ ensures that all

transactions occur on-platform, e.g., see role of γHs in Figure 1. By Lemma B.1, γa is independent of ϕ

and γHs strictly increases in ϕ. It follows that γ∗ = min{γa, γHs } weakly increases in ϕ for all ϕ ≥ 0. In

summary, when the information quality is low, all transactions occur on-platform. Further, any increase in

the switching cost only strengthens the platform’s pricing power, as sellers are less inclined to go off-platform,

even at higher commission rates.

(ii). The proof proceeds in two steps. First we show γ∗(0) ≥ γ∗(ϕ) holds for sufficiently large ϕ and α.

Second, we address the comparative statics result.

Step 1. Note by Lemma A.11, the platform’s revenue function is

R(γ) =


µra(γ) + (1− µ)rb(γ)+ if γ ∈ [0, γHs ],

µrc(γ) + (1− µ)rb(γ)+ if γ ∈ (γHs , γ
L
s ],

µrc(γ) if γ ∈ (γLs , γ
m].

Because ωs = 1 at α = 1 (Lemma A.1) and γHs = γLs = 1−ωs at ϕ = 0 (Lemma A.10), we have γHs = γLs = 0

at ϕ = 0 and α = 1. When α = 1, transactions with the σ = s buyer will always occur offline, as the

commission thresholds for disintermediation are zero. By continuity of γHs and γLs in α, it follows that there

exists α̃ ∈ [ 12 , 1) such that γ∗ = min{γc, γm} if ϕ = 0 and α ≥ α̃. Note that γ∗ = min{γc, γm} implies that

the only transactions that occur online are between the type-H seller and σ = r buyer. Similarly, because

γHs strictly increases in ϕ (Lemma B.1), when the switching cost is sufficiently high, the platform can set

its commission rate to guarantee that all transactions occur online. Formally, there exists ϕ̄ > 0 such that

γ∗ = min{γab, γm} if ϕ ≥ ϕ̄. Because γab does not depend on ϕ, it remains to show there exists ᾱ ∈ [α̃, 1)

such that γab < γc if α ≥ ᾱ and ϕ = 0. In other words, the platform’s commission rate at ϕ = 0 (γc) is larger

than its commission rate when switching costs are large (γab).
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To show this, we first define an auxiliary function ℓx(γ) for each x ∈ {a, b, c}. To define ℓa(γ), we differentiate

ra(γ) in γ to obtain

∂ra

∂γ
=

∂

∂γ

{
γpa

(
1− pa

qH

)}
=

∂

∂γ

{
γ

4

(
qH − (ρc(1− λ))2

qH(1− γ)2

)}
=

1

4qH

(
q2H − c2(1 + γ)(1− λ)2

(1− γ)3

)
︸ ︷︷ ︸

ℓa(γ)

.

Similarly, for ℓb(γ) we have

∂rb

∂γ
=

∂

∂γ

{
γηsp

b

(
1− pb

qH

)}
=

∂

∂γ

{
γηs
4

(
qL − (ρc(1− ωs))

2

qL(1− γ)2

)}
=
ηs
4

(
qL −

(
1 +

2γ

1− γ

)
c2(1− ωs)

2

qL(1− γ)2

)
︸ ︷︷ ︸

ℓb(γ)

.

For ℓc(γ),

∂rc

∂γ
=

∂

∂γ

{
γηrp

c

(
1− pc

qH

)}
=

∂

∂γ

{
γηrqH

(
1

4
−
(
(1− λ)c

2qHζ

)2
)}

= γqH

(
∂ηr
∂α

γqH

(
1

4
−
(
(1− λ)c

2qHζ

)2
)

+
2ηr
ζ

(
(1− λ)c

2qHζ

)2
∂ζ

∂α

)
︸ ︷︷ ︸

ℓc(γ)

,

Note because rx(γ) is strictly concave in γ for each x ∈ {a, b, c} (Lemma A.12), ℓx(γ) strictly decreases in

γ and ℓx(γx) = 0 for each x ∈ {a, b, c} by definition. Using these properties, it is straightforward to verify

that γb ≤ γa for all α ∈ [ 12 , 1]. Further, because r
a(γ) and rb(γ) are both strictly concave in γ, we must have

γb ≤ γab ≤ γa for all α ∈ [ 12 , 1]. It is then sufficient to show there exists ᾱ ∈ [α̃, 1) such that γa < γc for

α ≥ ᾱ. Using ∂
∂αηr = 1− 2λ and ∂

∂αζ = 1
2 ((1− λ)− γ(2λ− 1)), it can be shown algebraically that

lim
α→1

{ℓc(γ)− ℓa(γ)} = 4c2(1− λ)2(2− γ(2− λ)) + q2H((2− γ(2− λ))3 − 1) +
c2(1 + γ)(1− λ)2

(1− γ)3
> 0,

where the strict inequality follows because γ ∈ (0, 12 ] and λ ∈ [ 12 , 1]. By continuity of ℓc(γ) and ℓa(γ) in α,

it follows that there exists ᾱ ∈ [α̃, 1) such that ℓa(γ) < ℓc(γ) for all γ ∈ [0, γm] if α ≥ ᾱ. Therefore, for all

α ≥ ᾱ we have ℓa(γa) = 0 < ℓc(γa), which implies γa < γc. Because γab ≤ γa, we conclude γab < γc if α ≥ ᾱ

and ϕ = 0. Because γ∗ = min{γab, γm} for all ϕ ≥ ϕ̄ and γ∗ = min{γc, γm} for ϕ = 0 as established at the

beginning of the proof, we conclude γ∗(0) ≥ γ∗(ϕ) for all ϕ ≥ ϕ̄ and α ≥ ᾱ. Finally, to see that the inequality

is strict wherever γ∗(ϕ) < γm, note γ∗(ϕ) < γm implies γ∗(ϕ) = γab < min{γc, γm} = γ∗(0).

Step 2. From part (ii), we have γ∗ = min{γc, γm} for ϕ = 0 and α ≥ ᾱ. Further, since the thresholds γHs

and γLs and the revenue functions ra(γ), rb(γ), and rc(γ) are each continuous in ϕ, it follows that there exists

ϕ > 0 such that γ∗ = min{γc, γm} for all ϕ ≤ ϕ and α ≥ ᾱ. The result follows because γc strictly decreases

in ϕ (Lemma B.1). □
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B.2 Proof of Proposition 2

Proposition 2. Let R(γ∗) be the platform’s revenue under the optimal commission rate γ∗. There exist

thresholds α ∈ ( 12 , 1] and ᾱ ∈ [α, 1) such that the following statements hold.

(i) Suppose information quality is low, α ≤ α. Then the platform’s optimal revenue R(γ∗) weakly increases

in the switching cost ϕ on ϕ ∈ [0,∞).

(ii) Suppose information quality is high, α ≥ ᾱ. Then there exists ϕ such that the platform’s optimal

revenue R(γ∗) strictly decreases in the switching cost ϕ on ϕ ∈ [0, ϕ].

Proof. (i). By Lemma B.2, there exists α such that if α ≤ α, then γ∗ = min{γa, γHs , γm} for all ϕ ≥ 0

and rb(γ∗)+ = 0. That is, the low information quality ensures that type-L sellers do not transact at all and

it is optimal for the platform to choose a commission rate where type-H sellers fully transact online as the

disintermediation threshold γHs is sufficiently large (e.g., see Figure 1). Pick α ≤ α. It is straightforward to

show that because γa, γHs , ra(γ) and rc(γ) are all continuous in ϕ, so is R(γ∗). It remains to show R(γ∗)

weakly increases in ϕ in three separate cases: γ∗ = γa, γ∗ = γHs and γ∗ = γm.

Case I: γ∗ = γa. Following the proof of Lemma B.2, we have rb(γ)+ = 0 for all γ ≥ 0 if α ≤ α, which implies

R(γ) = µra(γ). Then

dR

dϕ

∣∣∣∣
γ=γa

= µ

(
∂ra

∂γ

dγ∗

dϕ
+
∂ra

∂ϕ

) ∣∣∣∣
γ=γa

= µ
∂ra

∂ϕ

∣∣∣∣
γ=γa

= 0. (15)

The first equality follows from taking the total derivative with respect to ϕ, the second equality follows from

the envelope theorem because γa is the unconstrained maximizer of ra, and the third equality follows because

ra is independent of ϕ (Lemma A.12). Hence R(γ∗) is independent of ϕ when γ∗ = γa.

Case II: γ∗ = γm. In this case, we again obtain (15), except the second equality holds because d
dϕγ

∗ = 0 for

γ∗ = γm instead of by the envelope theorem. Hence R(γ∗) is independent of ϕ when γ∗ = γm.

Case III: γ∗ = γHs . Because ∂
∂ϕr

a = 0 (Lemma A.12), we have

dR

dϕ

∣∣∣∣
γ=γH

s

= µ

(
∂ra

∂γ

dγ∗

dϕ
+
∂ra

∂ϕ

) ∣∣∣∣
γ=γH

s

= µ
∂ra

∂γ

dγ∗

dϕ

∣∣∣∣
γ=γH

s

> 0.

To see why the strict inequality holds, note γHs strictly increases in ϕ (Lemma B.1) and γ∗ = γHs implies we

must have ∂
∂γ r

a > 0 at γ = γHs . We conclude that R(γ∗) strictly increases in ϕ if γ∗ = γHs . Statement (i)

thus follows.

(ii). By Lemma B.2 and the continuity of the thresholds γHs and γLs in ϕ, there exists ϕ > 0 such that

γ∗ = min{γc, γm} for α ≥ ᾱ and ϕ ≤ ϕ. Pick α ≥ ᾱ. We show R(γ∗) strictly decreases in ϕ at each ϕ ∈ [0, ϕ]

by considering γ∗ = γc and γ = γm as separate cases.

Case I: γ∗ = γc. In this case, we have

dR

dϕ

∣∣∣∣
γ=γc

= µ

(
∂rc

∂γ

dγ∗

dϕ
+
∂rc

∂ϕ

) ∣∣∣∣
γ=γc

= µ
∂rc

∂ϕ

∣∣∣∣
γ=γc

,

where the first equality follows because R(γ∗) = µrc(γ∗) for γ∗ = γc, and the second equality follows by the

envelope theorem because γc is the maximizer of rc(γ). Next, using the expressions for rc(γ) and pc from
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Lemma A.3, we have

∂rc

∂ϕ
=

∂

∂ϕ

{
ηrγp

c

(
1− pc

qH

)}
=

∂

∂ϕ

{
ηrγqH

(
1

4
−
(
2(1− λ)c+ ηsϕ

4qHζ

)2
)}

= −ηsηrγ(2(1− λ)c+ ηsϕ)

8qHζ2

< 0. (16)

It follows that R(γ∗) strictly decreases in ϕ if γ∗ = γc.

Case II: γ∗ = γm. Similar to Case I, we have

dR

dϕ

∣∣∣∣
γ=γ∗

= µ

(
∂rc

∂γ

dγm

dϕ
+
∂rc

∂ϕ

) ∣∣∣∣
γ=γm

= µ
∂rc

∂ϕ

∣∣∣∣
γ=γm

< 0,

where the second equality follows because d
dϕγ

m = 0 and the strict inequality follows from (16). Therefore,

R(γ∗) strictly decreases in ϕ if γ∗ = γm. □

C Proofs for Section 4: Optimal Information Quality

C.1 Proof of Lemma 1

Lemma 1. There exist thresholds ϕ > 0 and ϕ̄ ≥ ϕ such that the following statements hold.

(i) Suppose the switching cost is high, ϕ > ϕ̄. Then the platform’s optimal revenue R(γ∗) weakly increases

in information quality α on α ∈ [ 12 , 1].

(ii) Suppose the switching cost is low, ϕ ≤ ϕ. Then there exists α ∈ ( 12 , 1], ᾱ ∈ [α, 1) and λ̄ ∈ [ 12 , 1) such

that the platform’s optimal revenue R(γ∗) weakly increases in α on α ∈ [ 12 , α] for all λ ∈ [ 12 , 1] and

strictly decreases in α on α ∈ [ᾱ, 1] if λ ≥ λ̄.

Proof. (i). By Lemma B.1, γHs and γLs are both strictly increasing in ϕ for each α ∈ [ 12 , 1]. It follows that

there exists ϕ̄ such that γHs ≥ γm and γLs ≥ γm for all α ∈ [ 12 , 1]. Therefore, by Lemma A.11, for each ϕ ≥ ϕ̄

the platform’s revenue is given by R(γ) = µra(γ) + (1− µ)rb(γ)+ for all α ∈ [ 12 , 1] and γ ∈ [0, γm]. Let γ∗ be

the maximizer of R(γ) on γ ∈ [0, γm]. Because rb(γ) increases in α for each γ ∈ [0, γm] such that rb(γ) > 0

(Lemma A.12), there exists α̃ ∈ [ 12 , 1] such that rb(γ∗) > 0 if and only if α > α̃. Note ra(γ) is independent of

α. Therefore, for each α ≤ α̃, R(γ∗) is also independent of α. Next, for each α > α̃, we consider two further

cases: γ∗ < γm and γ∗ = γm. If γ∗ < γm, then

dR

dα

∣∣∣∣
γ=γ∗

=

(
∂R

∂γ

dγ

dα
+
∂R

∂α

) ∣∣∣∣
γ=γ∗

=
∂R

∂α

∣∣∣∣
γ=γ∗

= (1− µ)
∂rb

∂α

∣∣∣∣
γ=γ∗

> 0

where the second equality follows from the envelope theorem, the third equality follows because ∂
∂αr

a = 0,

and the strictly inequality follows because ∂
∂αr

b > 0, as established above. If γ∗ = γm, then ∂
∂αγ = 0 at

γ = γm, and we again obtain d
dαR > 0 at γ = γ∗.
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(ii). The proof proceeds in three steps. First, we show that for γ ∈ [0, γm] and ϕ = 0, rc strictly decreases

in α for all λ ≥ λ̄ = 0.52. Second, we address the upper threshold ᾱ. Third, we address the lower threshold

α.

Step 1. Using γ ≤ 1
2 , we have the following lower bound on ζ:

ζ = (1− ηs)(1− γ) +
ηs
2
(1− γ + ωs) ≥

1− ηs
2

+
ηs
2

(
1

2
+ ωs

)
=

1

4
(1 + α+ λ) ≥ 3 + 2λ

8
. (17)

Suppose ϕ = 0. Then

∂rc

∂α
=

∂

∂α

{
ηrγqH

(
1

4
−
(
(1− λ)c

2qHζ

)2
)}

=
∂ηr
∂α

γqH

(
1

4
−
(
(1− λ)c

2qHζ

)2
)

+
2ηrγqH

ζ

(
(1− λ)c

2qHζ

)2
∂ζ

∂α

≤ 4cγ

(
(1− 2λ)

(
1

4
−
(
1− λ

8ζ

)2
)

+
2ηr
ζ

(
1− λ

8ζ

)2
1− λ

2

)

≤ 4cγ

(
(1− 2λ)

(
1

4
−
(

1− λ

3 + 2λ

)2
)

+
4

3 + 2λ

(
1− λ

3 + 2λ

)2

(1− λ)

)
. (18)

The third line follows because ∂
∂αηr = 1− 2λ, ∂

∂αζ = 1
2 ((1− λ)− γ(2λ− 1)) ≤ 1

2 (1− λ) and qH ≥ 4c, and the

fourth line follows from the lower bound on ζ from (17). Next, let λ̄ = 0.52. Plugging in λ = 0.52, we obtain

the bound

4cγ

(
(1− 2λ)

(
1

4
−
(

1− λ

3 + 2λ

)2
)

+
4

3 + 2λ

(
1− λ

3 + 2λ

)2

(1− λ)

)
≤ − cγ

100
< 0.

Next, note that the upper bound on ∂
∂αr

c in (18) strictly decreases in λ on λ ∈ [ 12 , 1], and is strictly negative for

λ = 0.52. It follows that for any γ ∈ [0, γm] and ϕ = 0, rc(γ) strictly decreases in α for all λ ≥ λ̄ = 0.52.

Step 2. It follows from Lemma B.2 and the continuity of γHs and γLs that there exists ϕ > 0 and ᾱ < 1 such

that for each ϕ ≤ ϕ, γ∗ = min{γc, γm} for all α ∈ [ᾱ, 1]. Further, following the proof of Lemma B.2, we also

have γc > γLs for ϕ ≤ ϕ and α ∈ [ᾱ, 1]. Now let λ ≥ λ̄ and consider two cases: γ∗ < γm and γ∗ = γm. If

γ∗ < γm, then γ∗ = γc, and we have

dR

dα

∣∣∣∣
γ=γc

= µ
drc

dα

∣∣∣∣
γ=γc

= µ
∂rc

∂α

∣∣∣∣
γ=γc

< 0. (19)

The first equality follows because γc > γLs implies R(γc) = µrc(γc) (Lemma A.11), the second equality follows

from the envelope theorem because γc is a maximizer of rc(γ), and the strict inequality follows from Step

1. It follows that if ϕ ≤ ϕ and λ ≥ λ̄, then R(γ∗) strictly decreases in α on α ∈ [ᾱ, 1]. In the case where

γ∗ = γm, we have d
dαγ

∗ = 0, from which (19) again follows.

Step 3. For the lower threshold α, first suppose ϕ = 0 and α = 1
2 . Note that α = 1

2 implies ωs = ωr,

and thus γHs = γHr . By Lemma A.10 we have γHr = 1 − ωr > γm, which implies γHs > γm. Further,

because γHs strictly increases in ϕ by Lemma B.1 and is continuous in α, there exists α ∈ [ 12 , ᾱ] such that

γHs > γm holds for all ϕ ≤ ϕ and α ≤ ᾱ. It follows from Lemma A.11 that the platform’s revenue is given

by R(γ) = µra(γ) + (1 − µ)rb(γ)+. Let γ∗ be the maximizer of R(γ). Note ra(γ) is independent of α and

rb(γ) strictly increases in α (Lemma A.12). The result that R(γ∗) weakly increases in α then follows by an
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identical argument to the proof of statement (i). □

C.2 Proof of Proposition 3

We first present two supporting results that are used to prove Proposition 3: Lemma C.1 presents comparative

statics with respect to α for different candidate solutions for the optimal commission rate γ∗, and Lemma C.2

proves a useful property that holds at the optimal information quality and commission rate (α∗, γ∗).

Lemma C.1. The following statements hold. (i) γa is independent of α for all ϕ, (ii) γb strictly increases

in α for all ϕ, (iii) γc strictly increases in α if ϕ < ϕ̄ for some ϕ̄ > 0, (iv) γHs strictly decreases in α, and

(v) γLs strictly decreases in α if ϕ < ϕ̄ for some ϕ̄ > 0.

Proof. (i). Note ra(γ) is independent of α (Lemma A.12), which implies the maximizer γa is also independent

of α.

(ii). Note rb(γ) does not depend on ϕ, which implies d
dαγ

b has the same sign for all ϕ. By the implicit

function theorem, we have

dγb

dα
= −

(
∂2rb

∂γ∂α

)(
∂2rb

∂γ2

)−1 ∣∣∣∣
γ=γb

.

By Lemma A.12, rb(γ) is strictly concave in γ, which implies ∂2

∂γ2 r
b < 0 at γ = γb. It follows that d

dαγ
b has

the same sign as ∂2

∂γ∂αr
b at γ = γb. Next, using the expressions in Lemmas A.3 and A.11 and plugging pb

into rb, we have

∂rb

∂γ
=

∂

∂γ

{
ηsγ

4

(
qL − c2(1− ωs)

2

qL(1− γ)2

)}
=
ηs
4

(
qL − c2(1− ωs)

2

qL(1− γ)2

)
− ηsγ

4

(
2c2(1− ωs)

2

qL(1− γ)3

)
=
ηs
4

(
qL −

(
1 +

2γ

1− γ

)
c2(1− ωs)

2

qL(1− γ)2

)
. (20)

Note ηs and ωs both strictly increase in α by Lemma A.1. Thus, by inspecting (20) it can be verified that
∂
∂γ r

b also strictly increases in α. It follows that ∂2

∂γ∂αr
b > 0, and thus γb strictly increases in α.

(iii). By the implicit function theorem, we have

dγc

dα
= −

(
∂2rc

∂γ∂α

)(
∂2rc

∂γ2

)−1 ∣∣∣∣
γ=γc

. (21)

By Lemma A.12, rc is strictly concave in γ, which implies ∂2

∂γ2 r
c < 0 at γ = γc. It follows that d

dαγ
c has the

same sign as ∂2

∂γ∂αr
c at γ = γc. Next, note

rc = ηrγqH

(
1

4
−
(
(1− λ)c

2qHζ
+

ηsϕ

4qHζ

)2
)
, (22)

where ζ = ηr(1− γ) + ηs
1−γ+ωs

2 . Differentiating in γ, we have

∂rc

∂γ
= ηrqH

(
1

4
−
(
(1− λ)c

2qHζ
+

ηsϕ

4qHζ

)2
)

− 2ηrqHγ

ζ3

(
(1− λ)c

2qH
+
ηsϕ

4qH

)2 (
1− ηs

2

)
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= ηr qH

(
1

4
− h2

q2H

(
1

ζ2
+ 2

γ

ζ3

(
1− ηs

2

)))
︸ ︷︷ ︸

g(α,γ)

where h = 1
4 (2c(1− λ) + ηsϕ) and g(α, γ) is defined as above for convenience. Differentiating again in α and

evaluating at γ = γc yields

∂2rc

∂γ∂α

∣∣∣∣
γ=γc

=

(
ηr
∂g

∂α
+
∂ηr
∂α

g

) ∣∣∣∣
γ=γc

=

(
ηr
∂g

∂α

) ∣∣∣∣
γ=γc

.

The second equality above follows because γc is the maximizer of rc(γ), which implies ∂
∂γ r

c = 0 at γ = γc.

By (22), this implies g(α, γc) = 0. It remains to show ∂
∂αg(α, γ

c) > 0. Note by inspection that g(α, γ) is

increasing in ζ and ηs for each γ; therefore, it suffices to show ∂
∂αζ > 0 and ∂

∂αηs > 0. Using the expressions

for ηs and ωs (Lemma A.1), it can be shown algebraically that

∂ζ

∂α
=

∂

∂α

{
(1− γ)(1− ηs) +

ηs(1− γ + ωs)

2

}
=

1

2
(γ(2λ− 1) + (1− λ)) ≥ 0,

where the final inequality follows because λ ≥ 1
2 . By Lemma A.1, we also have ∂

∂αηs = 2λ − 1 > 0 when

λ ≥ 1
2 . Because

∂
∂αζ > 0 and ∂

∂αηs > 0 for ϕ = 0 and λ ≥ 1
2 , we conclude g(α, γ

c) strictly increases in α. This

establishes that d
dαγ

c < 0 for ϕ = 0. The existence of the threshold ϕ̄ > 0 follows because rc(γ) is continuous

in ϕ, which by (21) implies d
dαγ

c is continuous in ϕ.

(iv). By Lemma A.10, γHs is the unique solution to πa(pa)−πc(pc) = 0. For convenience, define the function

π−(α, γ) := πa(pa) − πc(pc). By definition, for each α ∈ [ 12 , 1] we have π−(α, γHs ) = 0. It is straightforward

to verify that πa(pa) and πc(pc) are both differentiable in α and γ. Therefore, we can differentiate π−(α, γ)

with respect to α to obtain

dπ−

dα

∣∣∣∣
γ=γH

s

=

(
∂π−

∂γ

dγHs
dα

+
∂π−

∂α

) ∣∣∣∣
γ=γH

s

= 0.

Because π−(α, γ) = 0 strictly decreases in γ on the interval [γH
s
, γ̄Hs ] by the proof of Lemma A.10, we have

∂
∂γπ

− < 0 at γ = γHs . We can therefore re-arrange for d
dαγ

H
s to obtain

d

dα
γHs = −

(
∂π−

∂α

)(
∂π−

∂γ

)−1 ∣∣∣∣
γ=γH

s

.

Because ∂
∂γπ

− < 0, d
dαγ

H
s < 0 holds if ∂

∂απ
− < 0; we show the latter inequality holds. Note

∂π−

∂α
=
dπa(pa)

dα
− dπc(pc)

dα
= −dπ

c(pc)

dα
,

where the second equality follows because πa and pa are both independent of α, and the right hand side is

the total derivative of πc(pc) with respect to α. Further, we have

dπc

dα

∣∣∣∣
(γ,p)=(γH

s ,pc)

=

(
∂πc

∂p

∂pc

∂α
+
∂πc

∂α

) ∣∣∣∣
(γ,p)=(γH

s ,pc)

=
∂πc

∂α

∣∣∣∣
(γ,p)=(γH

s ,pc)

,

because ∂
∂pπ

c = 0 at p = pc by the envelope theorem. Therefore, it remains to show ∂
∂απ

c > 0 at (γ, p) =
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(γHs , p
c). Writing out this partial derivative using the expression for πc(p), we have

∂πc

∂α
=

∂

∂α

{
ηs (ωsbs(p)− ϕ− (1− γ)p)

(
1− p

qH

)}
=
∂ηs
∂α

(ωsbs(p)− ϕ− (1− γ)p)

(
1− p

qH

)
+ ηs

∂ωsbs(p)

∂α

(
1− p

qH

)
. (23)

Next, we show the expression in (23) is strictly positive at (γ, p) = (γHs , p
c). Note we must have

(
1− pc

qH

)
> 0

because the type-H seller has positive demand at p = pc. Note also that γHs is the commission rate at which

the seller is indifferent between transacting online and offline; using this fact it is straightforward to show

that (ωsbs(p)− ϕ− (1− γ)p) ≥ 0 and bs(p) ≥ 0 at (γ, p) = (γHs , p
c). Because ∂

∂αηs = 2λ−1 > 0, we conclude

the first term in (23) is positive. For the second term, note

∂ωsbs(p)

∂α
=

1

2

∂ωs

∂α
=

(1− λ)λ

2(1− λ+ (α(2λ− 1))2)
> 0,

where the first equality follows using the expression for bs(p) (Lemma A.2) and the strict inequality follows

because λ ∈ [ 12 , 1]. Therefore,
∂
∂απ

c(p) > 0 at (γ, p) = (γHs , p
c), as desired. We conclude γHs strictly decreases

in α.

(v). Let ϕ = 0. It follows from Lemma A.10 that

γLs = 1− ωs =
(1− α)(1− λ)

α(1− λ) + (1− α)λ
.

Differentiating in α,
dγLs
dα

= − (1− λ)λ

(α(1− λ) + (1− α)λ)2
< 0.

Therefore, γLs strictly decreases in α on α ∈ [ 12 , 1] when ϕ = 0. Finally, to see that there exists a threshold

ϕ̄ > 0 such that d
dαγ

L
s < 0 for ϕ ≤ ϕ̄, note that d

dαγ
L
s can be shown to be continuous in ϕ using the fact that

γLs is the solution to πb(pb)− πd(pd) = 0, where πb(pb) does not depend on ϕ and πd(pd) is continuous in ϕ.

□

Lemma C.2 (Optimal information quality and commission rate). Suppose γ∗ < γm holds at the optimal

information quality and commission rate (α∗, γ∗). Then γ∗ ∈ [γHs , γ
L
s ].

Proof. We show neither γ∗ < γHs nor γ∗ > γLs can hold if γ∗ < γm. By way of contradiction, suppose

γ∗ < γHs holds at (α∗, γ∗). Because γHs = 0 at α = 1, γ∗ < γHs implies α∗ < 1. Further, because ra(γ) strictly

increases in γ on γ ∈ [0, γm] (Lemma A.12), we must have rb(γ∗) > 0; otherwise, we obtain a contradiction

to γ∗ < γHs . Because γHs is continuous and strictly decreasing in α (Lemma C.1), there exists α̃ > α∗ such

that γHs = γ∗ at α = α̃. To make dependence on α explicit, we slightly abuse notation and write R(α, γ) to

denote the platform’s revenue. Then we can write

R(α∗, γ∗) = µra(α∗, γ∗) + (1− µ)rb(α∗, γ∗)+ < µra(α̃, γ∗) + (1− µ)rb(α̃, γ∗)+ = R(α̃, γ∗), (24)

where the strict inequality follows because ra(γ) and rb(γ) are independent of and increasing in α, respectively

(Lemma A.12), and the two equalities follow by noting γ∗ ≤ γHs at both α∗ and α̃, and applying the definition

of R(γ) from Lemma A.11. Note (24) contradicts the optimality of α∗, which implies γ∗ < γHs cannot hold.
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Next, suppose γ∗ > γLs . Then

R(α∗, γ∗) = µrc(α∗, γ∗) < µra(α∗, γ∗) = µra
(
1
2 , γ

∗) = R
(
1
2 , γ

∗) . (25)

The first equality follows because γ∗ > γLs , the strictly inequality follows by Lemma A.13, the second equality

follows because ra(γ) is independent of α, and the final equality follows because γHs ≥ γm for α = 1
2 . Note

(25) contradicts the optimality of α∗, and so γ∗ > γLs cannot hold. The result follows. □

Proposition 3. Let α∗ be the platform’s revenue-maximizing information quality when jointly optimized with

the commission rate. There exist thresholds µ̄ ∈ [0, 1], ϕ̄ > 0, α ∈ ( 12 , 1) and ᾱ ∈ (α, 1) such that the following

statements hold.

(i) A no-information policy is optimal α∗ = 1
2 if the share of type-H sellers is large µ > µ̄ and there is no

switching cost ϕ = 0.

(ii) A partial-information policy is optimal α∗ ∈ [α, ᾱ] if the share of type-H sellers is small µ ≤ µ̄ and

there is no switching cost ϕ = 0. Further, α∗ strictly decreases in µ for all µ ∈ [0, µ̄].

(iii) A full-information policy is optimal α∗ = 1 for all µ ∈ [0, 1] if the switching cost is high ϕ ≥ ϕ̄.

Proof. The proof proceeds in five steps. First, we define two thresholds, αb and α̃, which are used in the

remainder of the proof. Second, we show that if ϕ = 0, then there exists µ̄ ∈ [0, 1] such that the optimal

information quality satisfies α∗ ≤ min{αb, α̃} if µ ≥ µ̄ and α∗ ≥ max{αb, α̃} if µ ≤ µ̄, which is used to prove

statement (i). Third, we define the thresholds α and ᾱ and show α∗ ∈ [α, ᾱ] if µ ≤ µ̄ and ϕ = 0. Fourth, we

show α∗ is decreasing in µ when α∗ ∈ [α, ᾱ], which combined with the third step proves statement (ii). Fifth,

we prove statement (iii). Note that by Lemma C.2, the platform’s optimal policy (α∗, γ∗) satisfies α∗ ∈ [ 12 , 1]

and γ∗ ∈ [γHs , γ
L
s ] ∪ γm; therefore, we restrict attention to those sets throughout the proof.

Step 1. Note α = 1
2 implies ωs = ωr and thus γHr = γHs . Because γHr > γm by Lemma A.7, and γHs strictly

decreases in α (Lemma C.1), it follows there exists a unique threshold α̃ ∈ ( 12 , 1) such that γHs ≥ γm if and

only if α ≤ α̃. Next, let γ∗(α) be the optimal commission rate for fixed α. We show there exists a unique

threshold αb ∈ ( 12 , 1) such that rb(γ∗) ≥ 0 if and only if α ≥ αb. To see this, note

rb(γ) =
ηsγ

4

(
qL − c2(1− ωs)

2

qL(1− γ)2

)
︸ ︷︷ ︸

h(γ)

,

where for convenience we define h(γ) to be the expression inside the parentheses. Next, differentiating h in α

yields

dh

dα

∣∣∣∣
γ=γ∗

=

(
∂h

∂γ

dγ∗

dα
+
∂h

∂α

) ∣∣∣∣
γ=γ∗

.

By inspection of h, we have ∂
∂γh < 0 and ∂

∂αh > 0 for any γ ∈ [0, γm] and α ∈ [ 12 , 1]. Further, because ϕ = 0,

we have γHs = γLs , which combined with Lemma C.2 implies γ∗ = min{γHs , γm}. Because γHs decreases in α,

we must have d
dαγ

∗ ≤ 0. It follows that d
dαh > 0 at γ = γ∗(α) for all α ∈ [ 12 , 1]. Because rb(γ) ≥ 0 if and

only if h(γ) ≥ 0, we conclude there exists a unique threshold αb ∈ [ 12 , 1] such that rb(γ∗(α)) ≥ 0 if and only

if α ≥ αb. Lastly, it can be verified algebraically that rb(γ) < 0 at α = 1
2 and rb(γ) > 0 at α = 1 for any

γ ∈ [0, γm], which implies αb ∈ ( 12 , 1).
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Step 2. We now show there exists µ̄ ∈ [0, 1] such that α∗ ≤ min{αb, α̃} if µ > µ̄ and α∗ ≥ max{αb, α̃} if

µ ≤ µ̄. There are two cases to consider: αb ≥ α̃ and αb < α̃.

Case I: αb ≥ α̃. In this case, the platform’s revenue as a function of α can be written as

R(γ∗) =


µra(γm), for α ∈ [ 12 , α̃),

µra(γHs ), for α ∈ [α̃, αb),

µra(γHs ) + (1− µ)rb(γHs )+, for α ∈ [αb, 1].

Note ra(γ) is independent of α and strictly increasing in γ on γ ∈ [0, γm] (Lemma A.12) and γHs is strictly

decreasing in α (Lemma C.1). Combining these with the revenue expression above imply either α∗ ≤ α̃ or

α∗ ≥ αb must hold for all µ ∈ [0, 1]. Because ra(γm) does not depend on α, it follows that α∗ ≤ α̃ if and only

if the following inequality holds

max
α≥αb

{
µ(ra(γHs )− ra(γm)) + (1− µ)rb(γHs )+

}
≤ 0. (26)

It remains to show (26) holds if and only if µ > µ̄ for some µ ∈ (0, 1). Note if µ = 0, then (26) cannot hold

because maxα≥αb rb(γHs ) > 0. If µ = 1, then (26) holds strictly because γHs < γm on α ≥ αb and ra is strictly

increasing in γ. Lastly, note the argument in (26) is strictly decreasing in µ for every value of α because

ra(γHs ) ≤ ra(γm) by Lemma A.12, which implies the left hand side of (26) is also strictly decreasing in µ.

Because (26) does not hold at µ = 0, holds strictly at µ = 1, and the left hand side is strictly decreasing in

µ, we conclude there exists a unique µ̄ ∈ (0, 1) such that (26) holds if and only if µ > µ̄. The result follows

because α̃ = min{αb, α̃} and αb = max{αb, α̃} in this case.

Case II: αb < α̃. In this case, the platform’s revenue is

R(γ∗) =


µra(γm), for α ∈ [ 12 , α

b),

µra(γm) + (1− µ)rb(γm)+, for α ∈ [αb, α̃),

µra(γHs ) + (1− µ)rb(γHs )+, for α ∈ [α̃, 1].

Note that because rb strictly increases in α (Lemma A.12) , either α∗ ≤ αb or α∗ ≥ α̃ must hold for all

µ ∈ [0, 1]. Similar to Case I, because ra(γm) does not depend on α, it follows that α∗ ≤ αb holds if and only

if

max
α≥α′

{
µ(ra(γHs )− ra(γm)) + (1− µ)rb(γHs )+

}
≤ 0. (27)

Because ra(γ) strictly increases in γ on γ ∈ [0, γm] and does not depend on α (Lemma A.12), and because

γHs ≤ γm if α ≥ α̃, it is straightforward to verify that (27) holds only if µ = 1. The result follows by setting

µ̄ = 1 and noting αb = min{αb, α̃} and α̃ = max{αb, α̃}.

Step 3. We now show there exists α ∈ [ 12 , 1) and ᾱ ∈ (α, 1) such that α∗ ∈ [α, ᾱ] if µ ≤ µ̄. Define

α = max{αb, α̃}. Note the result that α∗ ≥ α if µ ≤ µ̄ follows immediately from Step 2. It remains to show

the existence of ᾱ < 1 such that α∗ ≤ ᾱ for µ ≤ µ̄. We do so by showing α∗ = 1 cannot hold for any µ ∈ [0, 1].

Note that if µ = 0 and α = 1, then trivially we have γLs = 0 and thus R(α, γ) = 0 for all γ ∈ [0, γm], which

implies α∗ < 1. Now let µ > 0. Suppose by way of contradiction that α∗ = 1 and let γ∗ be the corresponding

optimal commission rate. Further, define α′ = 1
2 and let γ′ be the optimal commission rate under α′. Then
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we have

R(α′, γ′) ≥ µra(α′, γ′) = max
γ≤γm

µra(α′, γ) = max
γ≤γm

µra(α∗, γ) > max
γ≤γm

µrc(α∗, γ) = R(α∗, γ∗).

The relations above follow because γHs ≥ γm at α = 1
2 , which implies R(γ) ≥ µra(γ) for all γ ∈ [0, γm], by

definition of γ′, because ra(γ) is independent of α, because ra(γ) > rc(γ) for all γ ≤ γm (Lemma A.13),

and because α = 1 and ϕ = 0 imply γHs = γLs = 0. Note R(α′, γ′) > R(α∗, γ∗) contradicts the optimality of

(α∗, γ∗). Therefore, α∗ = 1 cannot hold at ϕ = 0 for any µ > 0. It follows that there exists ᾱ ∈ [α, 1) such

that α∗ ≤ ᾱ for all µ ≤ µ̄.

Step 4. We now show that α∗ strictly decreases in µ if α∗ ∈ [α, ᾱ]. From the revenue expressions in Step 2

and the definition of α = max{αb, α̃}, α∗ ∈ [α, ᾱ] implies the platform’s optimal revenue is

R(γHs ) = µra(γHs ) + (1− µ)rb(γHs )+.

It can be shown that R(γHs ) is continuous and differentiable in α using the definitions of ra(γ) and rb(γ)

(Lemma A.11) and γHs (see proof of Lemma C.1(iv)). Because α∗ is a local maximizer ofR(γHs ), we have

dR

dα

∣∣∣∣
(α,γ)=(α∗,γH

s )

=

(
µ
dra

dα
+ (1− µ)

drb

dα

) ∣∣∣∣
(α,γ)=(α∗,γH

s )

= 0. (28)

Then by the implicit function theorem,

dα∗

dµ
= −

(
d2R

dαdµ

)(
d2R

dα2

)−1 ∣∣∣∣
(α,γ)=(α∗,γH

s )

.

Because α∗ maximizes R(γHs ) and α∗ ∈ ( 12 , 1), we have d2

dα2R < 0 at (α, γ) = (α∗, γHs ). Therefore, d
dµα

∗ has

the same sign as d2

dαdµR. Further, because r
a(γ), rb(γ), and γHs do not depend on µ, we have

d2R

dαdµ
=
dra

dα
− drb

dα
.

It remains to show d
dαr

a − d
dαr

b < 0 at (α∗, γHs ). First, because ∂
∂αr

a = 0 (Lemma A.12), we have

dra

dα

∣∣∣∣
γ=γH

s

=

(
∂ra

∂γ

dγHs
dα

) ∣∣∣∣
γ=γH

s

< 0,

where the strict inequality follows because d
dαγ

H
s < 0 (Lemma C.1) and ∂

∂γ r
a > 0 for all γ ∈ [0, γm]

(Lemma A.12). Because d
dαr

a < 0, it follows from (28) that d
dαr

b > 0 at (α∗, γHs ). Finally, re-arranging

(28) yields (
µ

(
dra

dα
− drb

dα

)
+
drb

dα

) ∣∣∣∣
(α,γ)=(α∗,γH

s )

= 0.

Because d
dαr

b > 0, it follows that µ
(

d
dαr

a − d
dαr

b
)
< 0, and thus d

dαr
a− d

dαr
b < 0 at (α∗, γHs ), as desired. We

conclude α∗ strictly decreases in µ if α∗ ∈ [α, ᾱ].

Step 5. We now show statement (iii). Note γHs strictly increases in ϕ for all α ∈ [ 12 , 1] (Lemma B.1), strictly

decreases in α (Lemma C.1), and γLs ≥ γHs (Lemma A.11). It follows that there exists ϕ̄ > 0 such that

γHs ≥ γm for all α ∈ [ 12 , 1] if ϕ ≥ ϕ̄. Thus, for any ϕ ≥ ϕ̄, the platform’s optimal revenue for fixed α ∈ [ 12 , 1]
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is given by

R(γ∗) = max
γ≤γm

{
µra(γ) + (1− µ)rb(γ)+

}
.

Because rb(γ) strictly increases in α and ra(γ) is independent of α (Lemma A.12), it follows that R(γ∗) is

strictly increasing in α for ϕ ≥ ϕ̄. The result follows. □

C.3 Proof of Corollary 1

Lemma C.3. If µ > 2
9 , then the inequality µra(γ) > µrc(γ)+(1−µ)rb(γ)+ holds for all α ∈ [ 12 , 1], γ ∈ (0, γm]

and ϕ ≥ 0.

Proof. Before proving the lemma, we show the following bound holds for any γ ∈ (0, γm]:

rb(γ)

ra(γ)
≤ 2

15
. (29)

To see that (29) holds, note

rb(γ) =
qLηsγ

4

(
1− c2(1− ωs)

2

q2L(1− γ)2

)
≤ qLηsγ

4

≤ 16

15

qLηsγ

4

(
1− c2(1− λ)2

q2H(1− γ)2

)
≤ 16

15
· 1
8

qHηsγ

4

(
1− c2(1− λ)2

q2H(1− γ)2

)
≤ 2

15
ra(γ).

The third line above follows because
(
1− c2(1−λ)2

q2H(1−γ)2

)
is minimized at λ = 1

2 , qH = 4c, and γ = 1
2 , which

corresponds to a minimal value of 15
16 . The fourth line follows because 8qL ≤ qH by Assumption 1. We can

now write

µrc(γ) + (1− µ)rb(γ)+ ≤ 8

15
µra(γ) + (1− µ)

2

15
ra(γ) <

8

15
µra(γ) +

7

2
µ · 2

15
ra(γ) = µra(γ),

where the first inequality follows by combining Lemma A.13 and (29), and the second inequality follows

because µ > 2
9 implies (1− µ) ≤ 7µ

2 . □

Corollary 1. There exist thresholds µ̄ ∈ [0, 1), ϕ ≥ 0, and ϕ̄ > ϕ such that partial-information is optimal

α∗ ∈ ( 12 , 1) if the switching cost is moderate ϕ ∈ [ϕ, ϕ̄] and the share of type-H sellers is large µ > µ̄.

Proof. The proof proceeds in two steps. First, we show that under the optimal policy (α∗, γ∗), γ∗ =

min{γHs , γm} holds for all ϕ ≥ 0 if µ > 2
9 . Second, we prove the main result. With a slight abuse of notation,

we write the platform’s revenue as R(α, γ) to make dependence on α explicit.

Step 1. We focus on the most general case where γm > γLs holds at α = α∗; the cases where γm ≤ γHs and

γm ∈ (γHs , γ
L
s ) follow by parallel argument and are omitted. First, note γ∗ /∈ (0, γHs ) follows directly from
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Lemma C.2. It remains to show γ∗ /∈ (γHs , γ
L
s ] and γ

∗ /∈ (γLs , γ
m]. Note any γ ∈ (γHs , γ

L
s ] and µ >

2
9 ,

R(α∗, γ) = µrc(α∗, γ) + (1− µ)µrb(α∗, γ) < µra(α∗, γ) ≤ µra
(
1
2 , γ

m
)
= R

(
1
2 , γ

m
)
,

where the first inequality follows from Lemma C.3 and the second follows because ra(γ) is independent of α

and increases in γ (Lemma A.12). Hence, γ∗ /∈ (γHs , γ
L
s ] for µ >

2
9 . Similarly, by again using Lemma C.3, for

any γ > γLs and µ > 2
9 we have

R(α∗, γ) = µrc(α∗, γ) < µra(α∗, γ) ≤ R( 12 , γ
m),

which implies γ∗ ≤ γLs . We have thus shown γ∗ = γHs if µ > 2
9 and γLs < γm. Because γHs ≤ γLs (Lemma

A.11), we conclude γ∗ = min{γHs , γm} if µ > 2
9 .

Step 2. To begin, define α0 to be the solution to 1 − ωs = qLλ
c , and note α0 < 1 since ωs strictly increases

in α and ωs = 1 at α = 1 (Lemma A.1). Further, define α̂ = α0 + ϵ < 1 for any ϵ ∈ (0, 1 − α0) and

define ϕ̂ ≥ 0 to be the smallest switching cost such that γHs ≥ γm for all ϕ ≥ ϕ̂ at α = α̂. Note ϕ̂ exists

because γHs strictly increases in ϕ for all α ∈ [ 12 , 1] (Lemma B.1); let ϕ = ϕ̂ be fixed in the remainder. To

prove the corollary statement, it suffices to show there exists µ̄ < 1 such that R(α̂, γ∗(α̂)) > R( 12 , γ
∗( 12 )) and

R(α̂, γ∗(α̂)) > R(1, γ∗(1)) both hold for all µ ≥ µ̄ at ϕ = ϕ̂, i.e., the platform’s revenue at α = α̂ is strictly

higher than the revenue at both α = 1
2 and α = 1, under the corresponding optimal commission rate γ∗ in

each instance.

Case I: Comparison with α = 1
2 . First, at α = α0 we have

rb(α0, γ
m) =

qLηsγ

4

(
1−

(
(1− ωs)c

qL(1− γm)

)2
)

=
qLηsγ

4

(
1−

(
λ

1− γm

)2
)

≥ 0,

where the second equality follows by construction of α0 and the inequality follows because γm ≤ 1 − λ by

Assumption 2. For all µ > 2
9 we can now write

R(α̂, γ∗(α̂)) ≥ R(α̂, γm) = µra(α̂, γm) + (1− µ)rb(α̂, γm)+ > µra(α̂, γm) = R
(
1
2 , γ

m
)
= R

(
1
2 , γ

∗( 12 )
)
.(30)

To see that the strict inequality in (30) holds, note that rb(α0, γm) ≥ 0 as established above, α̂ > α0, and

rb(α, γm) increases in α because ωs and ωs both increase in α (Lemma A.1). The second equality in (30)

holds because ra(γ) is independent of α, and the final equality follows because γHs ≥ γm at α = 1
2 and

γ∗ = min{γHs , γm} by Step 1. We conclude R(α̂, γ∗(α̂)) > R( 12 , γ
∗( 12 )) for µ >

2
9 .

Case II: Comparison with α = 1. First, note γHs < γm at (α, ϕ) = (1, ϕ̂). To see this, note γHs (α̂) = γm at

(α, ϕ) = (α̂, ϕ̂) by definition of ϕ̂, γHs is strictly decreasing in α (Lemma C.1), and α̂ < 1. Next, let µ = 1.

We can now write

R(1, γ∗(1)) = µra(1, γHs ) + (1− µ)rb(1, γHs )+ < µra(α̂, γm) ≤ R(α̂, γm) ≤ R(α̂, γ∗(α̂)). (31)

The first equality in (31) follows because γHs < γm implies γ∗ = γHs by Step 1. To see that the strict inequal-

ity holds at µ = 1, note ra(γ) is strictly increasing in γ and independent of α (Lemmas A.12 and C.1), and

γHs < γm as established above. We have thus shown R(1, γ∗(1)) < R(α̂, γ∗(α̂)) holds for µ = 1. It follows

by continuity of R(α, γ) in µ that there exists µ̄ ∈ [ 29 , 1) such that R(1, γ∗(1)) < R(α̂, γ∗(α̂)) for all µ ≥ µ̄.

Because µ ≥ 2
9 , it follows that R(α̂, γ∗(α̂)) > R( 12 , γ

∗( 12 )) and R(α̂, γ∗(α̂)) > R(1, γ∗(1)) for all µ ≥ µ̄ for

ϕ = ϕ̂, as desired. Finally, the thresholds ϕ and ϕ̄ can be shown to exist using the continuity of R(α, γ) in ϕ. □
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D Proofs for Section 5.1: Platform-Access Fees

In section D.1, we first present several supporting results (Lemmas D.1–D.5) that are needed for the proof

of Proposition 4. Throughout this section, we use RC(α, γ) and RA(α,ψ) to denote the platform’s revenue

under the commission and access fee mechanisms, respectively. For conciseness, define R∗
C := RC(α

∗, γ∗) and

R∗
A := RA(α

∗, ψ∗), where (α∗, γ∗) and (α∗, ψ∗) are the optimal policies under commission and access fees,

respectively.

D.1 Preliminary Results for Proposition 4

Lemma D.1 (Characterization of access fees). Let Πi
0 be a type-i seller’s on-platform profit under a com-

mission rate of γ = 0.

(i) For each α ∈ [ 12 , 1],

ΠH
0 :=

qH
4

(
1− (1− λ)c

qH

)2

,

ΠL
0 :=

ηsqL
4

(
1− (1− ωs)c

qL

)2

.

(ii) ΠH
0 is independent of α, ΠL

0 strictly increases in α, and 0 < ΠL
0 < ΠH

0 for all α ∈ [ 12 , 1].

(iii) For each ψ > 0, the platform’s revenue under access fees RA(ψ) is weakly increasing in α on α ∈ [ 12 , 1].

(iv) The platform’s optimal access fee satisfies ψ∗ ∈ {ΠH
0 ,Π

L
0 }, with corresponding optimal revenue R∗

A =

max{µΠH
0 ,Π

L
0 }.

Proof. (i). By Lemma A.3, the profit for the type-H and type-L sellers are given by πa(pa) and πb(pb),

respectively. Thus, the on-platform earnings under access fees are given by setting γ = 0 in πa(pa) and

πb(pb), which yields the expressions in statement (i).

(ii). By inspection, ΠH
0 is independent of α. Because ∂

∂αηs > 0 and ∂
∂αωs > 0 (Lemma A.1), we have

d
dαΠ

L
0 > 0. Finally, 0 < ΠL

0 < ΠH
0 follows from the expressions in part (i) and because qH ≥ 8qL by

Assumption 1.

(iii). Define Π̄L
0 := limα→1 Π

L
0 , and note Π̄L

0 < ΠH
0 by part (ii). We consider three cases: ψ ≤ Π̄L

0 ,

ψ ∈ (Π̄L
0 ,Π

H
0 ], and ψ > ΠH

0 . First, if ψ ≤ Π̄L
0 , because ΠL

0 strictly increases in α, for each ψ ≤ Π̄L
0 there

exists αL ∈ [ 12 , 1] such the type-L seller joins the platform if and only if α ≥ αL. Further, the type-H seller

joins for all α ∈ [ 12 , 1]. Therefore, if ψ ≤ Π̄L
0 , the platform’s revenue under access fees is

RA(ψ) =

µψ, if α < αL,

ψ, if α ≥ αL.

Because µ ≤ 1, RA(ψ) weakly increases in α. Next, if ψ ∈ (ΠL
0 ,Π

H
0 ], then the type-L seller does not join for

any α ∈ [ 12 , 1], which implies RA(ψ) = µψ for all α ∈ [ 12 , 1], and thus RA(ψ) is independent of α. Finally,

if ψ > ΠH
0 , then neither seller type joins, which implies RA(ψ) = 0 for all α ∈ [ 12 , 1]. Therefore, in all three

cases the platform’s revenue is weakly increasing in α.
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(iv). By part (i), if ψ ≤ ΠL
0 then both seller types join, which generates a revenue of ψ. If ψ ∈ [ΠL

0 ,Π
H
0 ],

then only the type-H seller joins the platform, which generates revenue µψ. It follows that ψ∗ ∈ {ΠH
0 ,Π

L
0 }

and thus R∗
A = max{µΠH

0 ,Π
L
0 }. □

Lemma D.2. If ϕ ≥ 0, then the following inequalities hold for all α ∈ [ 12 , 1]:

ra(γ)

ΠH
0

≤ 9γ

7
γ ∈ [0, γm], (33a)

rb(γ)

ΠL
0

≤ 1

2− γ
γ ∈ [0, γm]. (33b)

Further, if ϕ = 0 and γ ≤ 1− ωs, then the following inequality holds for all α ∈ [ 12 , 1]:

rb(γ)

ΠL
0

≤

 1
2−γ γ ∈ [0, 2−

√
3],

γ (1+γ)(1−3γ)
(1−γ)2(1−2γ)2 γ ∈ [2−

√
3, γm].

(34)

Proof. We first show that (33a) holds. Note

1−
(

(1−λ)c
qH(1−γ)

)2
(
1− (1−λ)c

qH

)2 ≤
1−

(
(1−λ)c

qH

)2
(
1− (1−λ)c

qH

)2 ≤ 9

7
, (35)

where the second inequality above follows because λ ≥ 1
2 and qH ≥ 4c. Then we can write

ra(γ) =
qHγ

4

(
1−

(
(1− λ)c

qH(1− γ)

)2
)

≤ qHγ

4
· 9
7

(
1− (1− λ)c

qH

)2

=
9γ

7
ΠH

0 ,

where the first and second equalities follow by definition of ra(γ) and ΠH
0 , and the inequality follows from

(35). Next, we show (33b) and (34). In the case where rb(γ) ≤ 0, (33b) and (34) follow trivially; we assume

rb(γ) > 0 for the remainder of the proof. Let z = (1−ωs)c
qL

. We first show z ≤ 1− γ for all ϕ ≥ 0 and z ≥ 2γ

if ϕ = 0. To see z ≤ 1 − γ for ϕ ≥ 0, note rb(γ) > 0 implies qL(1 − γ) > (1 − ωs)c (Lemma A.3), which by

definition of z implies z ≤ 1− γ. To see that z ≥ 2γ when ϕ = 0, note

z =
(1− ωs)c

qL
≥ (1− ωs)c

(1− λ)c
≥ 2(1− ωs) ≥ 2γ,

which follows because qL ≤ (1 − λ)c, λ ≥ 1
2 , and γ ≤ γLs = 1 − ωs ≤ 1 − ωs at ϕ = 0. Thus, z ≤ 1 − γ for

ϕ ≥ 0 and z ≥ 2γ for ϕ = 0. We now show (34) assuming ϕ = 0; (33b) follows by a similar argument. First,

using the defintion of z, we have

rb(γ)

ΠL
0

=
γq2L

(qL − (1− ωs)c)
2

(
1−

(
(1− ωs)c

qL(1− γ)

)2
)

=
γ

(1− z)2

(
1− z2

(1− γ)2

)
. (36)

Differentiating in z yields

∂

∂z

(
rb(γ)

ΠL
0

)
=

γ

(1− z)4

(
(1− z)2

(
−2

z

(1− γ)2

)
+ 2

(
1− z2

(1− γ)2

)
(1− z)

)
=

2γ

(1− z)3

(
1− z

(1− γ)2

)
,

which implies the ratio (36) strictly increases in z on z ∈ [0, (1 − γ)2] and has a single maximizer at
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z = (1 − γ)2 < 1 − γ. Because z ∈ [2γ, 1 − γ] when ϕ = 0, we have two cases to consider: If 2γ < (1 − γ)2,

the maximizer of the ratio (36) on the interval z ∈ [2γ, 1− γ] is z = (1− γ)2; if 2γ ≥ (1− γ)2, the maximizer

is z = 2γ. Note 2γ ≥ (1 − γ)2 if and only if γ ≥ 2 −
√
3. Plugging z = 2γ and z = (1 − γ)2 into (36) yields

(34), as desired. Lastly, in the case where ϕ ≥ 0, (33b) follows by a similar argument where only z ≤ 1− γ is

assumed to hold. □

Lemma D.3. The platform’s optimal commission revenue is strictly smaller than the optimal access fee

revenue, R∗
C < R∗

A, if at least one the following conditions holds at the optimal commission rate γ∗:

(i) The type-H seller transacts offline with the σ = s buyer, γ∗ > γHs .

(ii) The type-L seller does not transact with any buyer, rb(γ∗) ≤ 0.

Proof. (i). Note γLs ≥ γHs by Lemma A.10. We therefore consider two cases: γ∗ > γLs and γ∗ ≤ γLs . If

γ∗ > γLs , then the platform’s revenue under commission fees is given by RC(γ
∗) = µrc(γ∗) (Lemma A.11).

Then

R∗
C = µrc(γ∗) < µra(γ∗) < µΠH

0 ≤ R∗
A,

where the equality follows by Lemma A.11 because γ > γLs , and the next three inequalities follow from

Lemmas A.13, D.2, and D.1, in order. Now suppose γ∗ ∈ (γHs , γ
L
s ]. Then there are two further cases to

consider: γ∗ ≤ γHr and γ∗ > γHr .

Case I: γ∗ ≤ γHr . Note by Lemma A.11 the platform’s optimal commission revenue in this case is given by

R∗
C = µrc(γ∗) + (1− µ)rb(γ∗)+. We show R∗

C ≤ R∗
A by first establishing upper bounds on rb(γ∗) and rc(γ∗).

First, for rb(γ∗) we have

rb(γ∗) =
qLηsγ

∗

4

(
1− c2(1− ωs)

2

q2L(1− γ)2

)
≤ qLηsγ

∗

4
≤ qLηsγ

m

4
=
qLηs
8

.

For rc(γ∗),

rc(γ∗) = ηrγ
∗qH

(
1

4
−
(
(1− λ)c

2qHζ
+

ηsϕ

4qHζ

)2
)

≤ ηrγ
∗qH
4

(
1− c2(1− λ)2

q2Hζ
2

)
≤ ηrγ

∗qH
4

(
1− (1− λ)c

qHζ

)2

· 9
7

≤ 9

7
· qH
16

(
1− (1− λ)c

qHζ

)2

,

where the second line follows by setting ϕ = 0, the third line from (35), and the final line follows because

γ∗ ≤ γm = 1
2 and ηr ≤ 1

2 . Combining the bounds above, we can then write

µrc(γ∗) + (1− µ)rb(γ∗)+ ≤ µ · 9
7
· qH
16

(
1− (1− λ)c

qHζ

)2

+ (1− µ)
qLηs
8

≤ 2max

{
µ · 9

7
· qH
16

(
1− (1− λ)c

qHζ

)2

, (1− µ)
qLηs
8

}

≤ max

{
µ · 9

7
· qH
8

(
1− (1− λ)c

qHζ

)2

, (1− µ)
qLηs
4

}
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≤ max

{
µ · qH

5

(
1− (1− λ)c

qHζ

)2

, (1− µ)
qLηs
4

}
< max

{
µΠH

0 ,Π
L
0

}
= R∗

A.

In the first inequality, we used the fact that x+y ≤ 2max{x, y} for any non-negative x and y. This completes

the proof for the case γ∗ ≤ γHr .

Case II: γ∗ > γHr . In this case, the platform’s revenue is given by R∗
C = (1−µ)rb(γ∗)+. Then we have

R∗
C = (1− µ)rb(γ∗) < (1− µ)ΠL

0 ≤ ΠL
0 ≤ R∗

A,

where the first and third inequalities follow from Lemmas D.2 and D.1, respectively.

(ii). Because rb(γ∗) ≤ 0, only the type-H seller transacts online. Note that if rb(γ∗) ≤ 0 implies γ∗ ≤ γHr ,

otherwise the platform’s commission revenue is zero. Then there are two cases to consider: γ∗ ≤ γHs and

γ∗ > γHs . If γ∗ ≤ γHs , then by Lemma A.11 the platform’s commission revenue is Rc(γ
∗) = µra(γ∗). Then

we have

R∗
C = µra(γ∗) ≤ µΠH

0 ≤ R∗
A,

where the first and second inequalities follow from Lemma D.2 and D.1, respectively. If γ∗ > γHs , then

RC(γ
∗) = µrc(γ∗), and

R∗
C = µrc(γ∗) ≤ µra(γ∗) ≤ µΠH

0 ≤ R∗
A,

where the first, second, and third inequalities follow from Lemmas A.13, D.2, and D.1, respectively. □

Lemma D.4. Define µ̂ = ΠL
0 /Π

H
0 . If the inequality R∗

A < R∗
C holds for some µ ̸= µ̂, then it also holds for

µ = µ̂.

Proof. To make dependence on µ explicit, we write R∗
C(µ), R

∗
A(µ) and γ∗(µ) to denote the platform’s

optimal revenue under commission fees, optimal revenue under access fees, and optimal commission rate,

respectively. We also let RC(γ, µ) be the platform’s commission revenue for fixed γ and optimal α, where

R∗
C(µ) = RC(γ

∗(µ), µ).First, suppose R∗
A(µ) < R∗

C(µ) for some µ ̸= µ̂. We show R∗
A(µ̂) < R∗

C(µ̂) must also

hold. We consider two cases: µ > µ̂ and µ < µ̂.

Case I: µ > µ̂. Note

R∗
C(µ̂) = R∗

C(µ) +R∗
C(µ̂)−R∗

C(µ)

≥ R∗
C(µ) +RC(γ

∗(µ), µ̂)−R∗
C(µ)

= R∗
C(µ) + µ̂ra(γ∗(µ)) + (1− µ)rb(γ∗(µ))+ −R∗

C(µ)

= R∗
C(µ) + (µ̂− µ)ra(γ∗(µ)) + (µ− µ̂)rb(γ∗(µ))+

> RC(µ) + (µ̂− µ)ΠH
0

= RC(µ) +R∗
A(µ̂)−R∗

A(µ)

> R∗
A(µ̂).

The second line follows by optimality of γ∗(µ̂) under µ = µ̂, the third because R∗
C(µ) > R∗

A(µ) implies
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γ∗(µ) ≤ γHs by Lemma D.3 and thus RC(γ
∗(µ), µ′) = µ′ra(γ∗(µ)) + (1 − µ′)rb(γ∗(µ))+ for any µ′ ∈ [0, 1],

the fourth by expanding R∗
C(µ), the fifth because ra(γ) < ΠH

0 for any γ ≤ γm by Lemma D.2, and because

(µ− µ̂)rb(γ∗(µ))+ ≥ 0, the sixth because R∗
A(µ) = ΠH

0 for all µ ≥ µ̂ by Lemma D.1, and the seventh because

R∗
A(µ) < R∗

C(µ) by assumption. Therefore, R∗
A(µ) < R∗

C(µ) for µ > µ̂ implies R∗
A(µ̂) < R∗

C(µ̂).

Case II: µ < µ̂. Following a similar argument to Case I, we have

R∗
C(µ̂) = R∗

C(µ) +R∗
C(µ̂)−R∗

C(µ)

≥ R∗
C(µ) +RC(γ

∗(µ), µ̂)−R∗
C(µ)

= R∗
C(µ) + (µ̂− µ)ra(γ∗(µ)) + (µ− µ̂)rb(γ∗(µ))+

> R∗
C(µ)

≥ R∗
A(µ)

= R∗
A(µ̂),

where the fourth line follows because ra(γ) > rb(γ) for all γ ∈ [0, γm]. □

Lemma D.5. Let µ̂ = ΠL
0 /Π

H
0 . There exists ϕ̄ > 0 such that for each ϕ ≥ ϕ̄, R∗

C > R∗
A if and only if

µ ∈ [µ, µ̄], where µ ∈ (0, µ̂) and µ̄ ∈ (µ̂, 1).

Proof. The proof proceeds in three steps. First, we show that the following two inequalities hold at α =

1:

2rb(γm) ≥ ΠL
0 , (37a)

2ra(γm)−ΠH
0 > ΠL

0 . (37b)

Second, we show that there exists ϕ̄ > 0 such that R∗
C > R∗

A for all ϕ ≥ ϕ̄ at µ = µ̂. Third, we show the

existence of the thresholds µ ∈ (0, µ̂) and µ̄ ∈ (µ̂, 1) for each ϕ ≥ ϕ̄.

Step 1. First, consider the expressions for ΠL
0 and rb(γ):

ΠL
0 = ηsqL

(
1

2
− (1− ωs)c

2qL

)2

,

rb(γ) =
ηsγ

4

(
qL − c2(1− ωs)

2

qL(1− γ)2

)
.

Using limα→1 ηs = λ and limα→1 ωs = 1, we have:

lim
α→1

{
2rb(γm)−ΠL

0

}
=
λγmqL

2
− λqL

4
= 0.

It follows that (37a) holds if α = 1. Next, to see that (37b) holds, note

2ra(γm)−ΠH
0 =

(
qH − 4c2(1− λ)2

qH

)
−

(
qH
4

(
1− (1− λ)c

qH

)2
)

= qH

(
1− 4c2(1− λ)2

q2H

)
−

(
qH
4

(
1− (1− λ)c

qH

)2
)
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=
qH
4

((
1− 4(1− λ)2c2

q2H

)
−
(
1− (1− λ)c

qH

)2
)

=
qH
4

(
2(1− λ)c

qH
− 5(1− λ)2c2

q2H

)
=

(1− λ)c

2

(
1− 5(1− λ)c

2qH

)
≥ qL

2

(
1− 5(1− λ)c

2qH

)
(38a)

>
qLλ

4
(38b)

≥ qLηs
4

(
1− (1− ωs)c

qL

)2

= ΠL
0 .

The first five lines follow by algebra and using γm = 1
2 and qH ≥ 4c. The inequality (38a) follows because

qL ≤ (1 − λ)c by Assumption 1 and (38b) follows algebraically using qH ≥ 4c. The final inequality follows

because ηs ≤ λ and because rb(γm) > 0 by (37a) for α = 1, which implies qL ≥ (1 − ωs)c and thus(
1− (1−ωs)c

qL

)2
≤ 1.

Step 2. We now show that (37a) and (37b) imply there exists ϕ̄ > 0 and µ̂ such that R∗
C > R∗

A at µ̂ for all

ϕ ≥ ϕ̄. By Lemmas A.10 and A.11, there exists ϕ̄ > 0 such that for all ϕ ≥ ϕ̄ the platform’s commission

revenue is given by RC(γ) = µra(γ)+(1−µ)rb(γ)+. Further, by Lemma D.1, under the access fee mechanism

it is optimal to set α = 1, with corresponding optimal revenue given by R∗
A = max

{
µΠH

0 ,Π
L
0

}
. Therefore,

to show R∗
C > R∗

A, it suffices to find γ ∈ [0, γm] such that at α = 1,

µ̂ra(γ) + (1− µ̂)rb(γ)+ > max
{
µ̂ΠH

0 ,Π
L
0

}
.

We show the inequality above holds for γ = γm. Note

µ̂ra(γm) + (1− µ̂)rb(γm)+ >
µ̂

2
ΠH

0 (1 + µ̂) +
(1− µ̂)

2
ΠL

0

=
µ̂

2
ΠH

0 +
µ̂

2
ΠL

0 +
(1− µ̂)

2
ΠL

0

=
ΠL

0

2
+

ΠL
0

2

≥ R∗
A.

The first line follows from (37a) and (37b), and the second and third lines follow by definition of µ̂. Therefore,

R∗
C > R∗

A at µ̂.

Step 3. We now show the existence of the thresholds µ ∈ (0, µ̂) and µ̄ ∈ (µ̂, 1). Fix ϕ ≥ ϕ̄ and α = 1. Because

R∗
C > R∗

A at µ̂ and R∗
C − R∗

A is continuous in µ, it suffices to show R∗
C − R∗

A = 0 has exactly one solution

in µ on each of the intervals [0, µ̂) and (µ̂, 1]. First consider the interval [0, µ̂). Note R∗
A = max{µΠH

0 ,Π
L
0 }

by Lemma D.1 and µ̂ = ΠL
0 /Π

H
0 by definition. It follows that R∗

A = ΠL
0 for all µ ∈ [0, µ̂). Next, because

R∗
C = µra(γ∗) + (1− µ)rb(γ∗)+, we must also have γ∗ ≤ γHs by Lemma A.11. We can then write

d

dµ
{R∗

C −R∗
A} =

∂

∂γ
{R∗

C −R∗
A}

dγ∗

dµ
+

∂

∂µ
{R∗

C −R∗
A}
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=
∂

∂γ

{
µra(γ) + (1− µ)rb(γ)+

} dγ∗
dµ

+ ra(γ∗)− rb(γ∗)

= ra(γ∗)− rb(γ∗)

> 0,

where the first line follows from taking the total derivative and the second line follows because d
dµΠ

L
0 =

0. To see why the third line holds, consider the two cases γ∗ < γHs and γ∗ = γHs . If γ∗ < γHs , then
∂
∂γ

{
µra(γ) + (1− µ)rb(γ)+

}
= 0 at γ∗ by the envelope theorem; if γ∗ = γHs , then d

dµγ
∗ = d

dµγ
H
s = 0 because

γHs does not depend on µ (Lemma A.10). The final line follows because ra(γ) > rb(γ) for all γ ∈ [0, γm]. It

follows that R∗
C − R∗

A strictly increases in µ on [0, µ̂) wherever R∗
C − R∗

A > 0. Hence R∗
C − R∗

A = 0 has at

most one solution on the interval [0, µ̂). Further, note R∗
C < R∗

A for µ = 0 as a consequence of Lemma D.3

and R∗
C > R∗

A at µ̂ by Step 2. It follows that R∗
C −R∗

A = 0 has exactly one solution µ ∈ (0, µ̂) on the interval

[0, µ̂). Next, we address the interval (µ̂, 1]. Because R∗
A = max{µΠH

0 ,Π
L
0 } by Lemma D.1 and µ̂ = ΠL

0 /Π
H
0

by definition, we have R∗
A = µΠH

0 for all µ ∈ (µ̂, 1]. Similar to the µ ∈ [0, µ̂) case above, it follows that

R∗
C −R∗

A = µ(ra(γ∗)−ΠH
0 ) + (1− µ)rb(γ∗)+ and γ∗ ≤ γHs . Differentiating in µ yields

d

dµ
{R∗

C −R∗
A} =

∂

∂γ
{R∗

C −R∗
A}

dγ∗

dµ
+

∂

∂µ
{R∗

C −R∗
A}

=
∂

∂γ

{
µra(γ) + (1− µ)rb(γ)+

} dγ∗
dµ

+ ra(γ∗)− rb(γ∗)+

= ra(γ∗)−ΠH
0 − rb(γ∗)+

< 0,

where the second line follows because d
dµΠ

H
0 = 0, the third line follows by a parallel argument to the µ ∈ [0, µ̂)

case above, and the final line follows because ra(γ) < ΠH
0 for all γ ∈ [0, γm] by Lemma D.2. It follows that

R∗
C −R∗

A strictly decreases in µ on (µ̂, 1]. Hence R∗
C −R∗

A = 0 has at most one solution on the interval (µ̂, 1].

Further, note R∗
C < R∗

A at µ = 1 by Lemma D.3 and R∗
C > R∗

A at µ̂ by Step 2. It follows that R∗
C −R∗

A = 0

has exactly one solution µ̄ ∈ (µ̂, 1] on the interval (µ̂, 1]. Because R∗
C − R∗

A = 0 has one solution µ on the

interval [0, µ̂), one solution µ̄ on the interval (µ̂, 1], and R∗
C > R∗

A at µ̂, we conclude R∗
C > R∗

A if and only if

µ ∈ [µ, µ̄]. □

D.2 Proof of Proposition 4

Proposition 4. Let R∗
A and R∗

C be the platform’s revenue under the optimal pricing and information policies

for access and commission fees, respectively. Let Πi
0 be the on-platform profit of a type-i seller under a

commission rate of γ = 0. There exists ϕ̄ > 0 such that the following statements hold.

(i) Suppose the switching cost is low, ϕ ≤ ϕ̄. Then access fees generate higher revenue than commission

fees R∗
A ≥ R∗

C for all µ ∈ [0, 1].

(ii) Suppose the switching cost is high, ϕ > ϕ̄. Then there exists µ ∈
(
0,

ΠL
0

ΠH
0

)
and µ̄ ∈

(
ΠL

0

ΠH
0
, 1
)
such that

access fees generate lower revenue than commission fees R∗
A < R∗

C if and only if the share of type-H

sellers is moderate µ ∈ [µ, µ̄].

Proof. The proof of part (i) uses Lemmas D.2–D.4. The proof of part (ii) follows almost immediately from

Lemma D.5; our focus here is to show the threshold ϕ̄ from Lemma D.5 and part (i) of the proposition

statement are the same.
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(i). Fix ϕ = 0. By Lemma D.3, R∗
A ≥ R∗

C if either rb(γ∗) ≤ 0 or γ∗ > γHs , from which the result immediately

follows. It remains to address the case where rb(γ∗) > 0 and γ∗ ≤ γHs . By Lemma D.4, if R∗
A > R∗

C holds

under µ = µ̂, then R∗
A > R∗

C also holds for any µ ∈ [0, 1], where µ̂ = ΠL
0 /Π

H
0 . Therefore, it suffices to show

R∗
A > R∗

C at µ = µ̂ and ϕ = 0. We consider two cases defined by the piecewise upper bound on rb(γ)

ΠL
0

given in

Lemma D.2. First, suppose γ∗ ≤ 2 −
√
3. Because rb(γ∗) > 0 and γ∗ ≤ γHs , by Lemma A.11 the platform’s

optimal commission revenue is given by R∗
C = µra(γ∗) + (1− µ)rb(γ∗)+. We can then write

R∗
C = µ̂ra(γ∗) + (1− µ̂)rb(γ∗)+

≤ γ∗
9

7
µ̂ΠH

0 +
1

2− γ∗
(1− µ̂)ΠL

0

< γ∗
9

7
µ̂ΠH

0 +
1

2− γ∗
ΠL

0

= µ̂ΠH
0

(
γ∗

9

7
+

1

2− γ∗

)
≤ µ̂ΠH

0

(
(2−

√
3)

9

7
+

1√
3

)
< µ̂ΠH

0

= R∗
A.

The relations above uses the bounds Lemma D.2, the definition of µ̂, and the observation that
(
γ 9
7 + 1

2−γ

)
strictly increases in γ on γ ∈ [0, 2−

√
3]. Next, suppose γ∗ ∈ [2−

√
3, γm]. Again applying the bounds from

Lemma D.2, we have

R∗
C = µ̂ra(γ∗) + (1− µ̂)rb(γ∗)+

≤ γ∗
9

7
µ̂ΠH

0 + γ
(1 + γ∗)(1− 3γ∗)

(1− γ∗)2(1− 2γ∗)2
ΠL

0

= µ̂ΠH
0

(
γ∗

9

7
+ γ∗

(1 + γ∗)(1− 3γ∗)

(1− γ∗)2(1− 2γ∗)2

)
︸ ︷︷ ︸

g(γ∗)

< µ̂ΠH
0

= R∗
A.

The fourth line follows because g(γ∗) ≤ 1 in the interval γ ∈ [2 −
√
3, γm], and the final line follows from

Lemma D.1. It follows that R∗
A > R∗

C for all µ ∈ [0, 1] at ϕ = 0. Next, it is straightforward to verify that

R∗
A does not depend on ϕ and R∗

C is continuous in ϕ. It follows that there exists ϕ̄ > 0 such that for ϕ ≤ ϕ̄,

R∗
A ≥ R∗

C for all µ ∈ [0, 1]. Statement (i) follows. In the remainder of the proof, let ϕ̄ be the largest threshold

such that R∗
A ≥ R∗

C holds for all µ ∈ [0, 1] and ϕ ≤ ϕ̄.

(ii). Let µ̂ =
ΠL

0

ΠH
0
. By Lemma D.5, there exists ϕ > 0 and µ ∈ (0, µ̂) and µ̄ ∈ (µ̂, 1) such that if ϕ > ϕ then

R∗
A < R∗

C if and only if µ ∈ [µ, µ̄]. Pick ϕ to be the smallest such threshold. It remains to show ϕ = ϕ̄.

Suppose by way of contradiction that ϕ > ϕ̄. Then there exists ϕ̂ ∈ (ϕ̄, ϕ) such that R∗
A < R∗

C holds at ϕ = ϕ̂

for µ ∈ [µ, µ̄]. Further, note that R∗
A < R∗

C implies γ∗ ≤ γHs by Lemma D.3. Thus, using the expression for

platform commission revenue (Lemma A.11), R∗
A < R∗

C holds if

R∗
A < max

α∈[ 12 ,1], γ≤γH
s

µra(γ) + (1− µ)rb(γ)+. (39)
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Next, note that because γHs increases in ϕ (Lemma B.1), so does the right hand side of (39). It follows that

(39) and thus R∗
A < R∗

C hold for all ϕ ≥ ϕ̂. However, this yields a contradiction to the selection of ϕ as the

smallest such threshold. We conclude ϕ = ϕ̄. □

E Proofs for Section 5.2: Should Platforms Ban Sellers?

E.1 Proof of Proposition 5

Before proving the main result, we first characterize the commission thresholds for disintermediation in each

period, analogous to Lemma A.10.

Lemma E.1 (Commission thresholds for disintermediation). For each i ∈ {L,H}, σ ∈ {r, s}, and t ∈ {1, 2},
there exists a unique threshold γitσ such that a type-i seller disintermediates with a signal-σ buyer in period t

if and only if γ > γitσ . Further,

(i) γi2σ := 1− ωσ for σ ∈ {r, s}, and

(ii) γi1s weakly increases in d on d ∈ [0, 1], where γi1s ≥ γi2s for all d ∈ [0, 1] and γi1s = γi2s for d = 0.

Proof. We focus on proving the main lemma statement for the type-H seller, and note the results for the

type-L seller follow by similar arguments. For (i), we assume without loss of generality that the seller is

undetected in period 1; otherwise, no transaction occurs in period 2.

(i). The result follows closely from Lemmas A.2 and A.4. Let p and b be an arbitrary online and offline

price in period 2, respectively. Because the game ends after period 2, the buyer’s and seller’s surplus from

transacting offline are simply p− b and ωσb− (1− γ)p, respectively, which yields a Nash bargaining solution

of bσ(p) =
p(1−γ+ωσ)

2ωσ
. Because ϕ = 0, it follows by parallel argument to Lemma A.4 that both p− bσ(p) > 0

and ωσbσ(p)− (1− γ)p > 0 hold if and only if γ > 1− ωs.

(ii). The result follows by parallel argument to the proof of Lemma A.10; we verify the main steps here.

Analogous to Lemma A.7, it can be shown that Assumption 2 implies γi2r > γm, meaning the type-i seller

never transacts offline with the σ = r buyer. Therefore, we focus on the threshold γi2s , beginning with i = H.

In particular, we proceed in two steps: First, we show there exists γ and γ̄ > γ such that the type-H seller

transacts online with the σ = s buyer if γ < γ and offline if γ > γ̄. Second, we show there exists a unique

γHs ∈ [γ, γ̄] such that the transaction is offline if and only if γ > γHs .

Step 1. Let πx2 denote the type-H seller’s expected optimal profit in period 2 conditional on non-detection

in period 1, where x ∈ {a, c} as per Lemma A.3. For online price p, offline price b, and detection probability

d, the seller’s surplus from transacting offline in period 1 is ωσb − dπx2 − (1 − γ)p, and the buyer’s surplus

is again p − b. Solving for the Nash bargaining price yields bxσ(p) =
p(1−γ+ωσ)+dπx2

2ωσ
. Analogous to Lemma

A.4, it follows that the buyer and seller both have strictly positive surplus from transacting offline if and only

if

γ > 1− ωσ +
dπx2

p
. (40)

Note 40 implies γi1σ = γi2σ for i ∈ {L,H} and σ = {r, s} follows. Further, analogous to Lemma A.9, note

the inequalities γ ≤ 1 − ωσ + dπx2

pa and γ > 1 − ωσ + dπx2

pc are a necessary and sufficient condition for the

transaction to be online, respectively. Next, if the type-H seller transacts online with a σ = s buyer in period
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1, their expected profit over both periods is

πa(p) := ((1− γ)p− (1− λ)c)

(
1− p

qH

)
+ πx2.

If the seller transacts offline with the σ = s buyer in period 1, their expected profit over both periods is

πc(p) :=

(
1− p

qH

)(
((1− γ)p− (1− λ)c) + ηs(ωsbs(p)− dπx2 − (1− γ)p)

)
+ πx2.

The unconstrained maximizers of πa(p) and πc(p) are then given by pa and pc, where

pa :=
1

2

(
qH +

(1− λ)c

1− γ

)
,

pc :=
1

2

(
qH +

(1− λ)c

ζ
+
ηsdπ

x2

2ζ

)
,

and where ζ = ηr(1 − γ) + ηs
1−γ+ωs

2 . It remains to show there exists a unique threshold γH1
s such that

πa(pa) < πc(pc) if and only if γ > γH1
s . First, define γ̄ to be the largest solution to γ = 1−ωs+

dπx2

pa . Because

pa increases in γ and πx2 decreases in γ, it follows that γ > γ̄ implies (40) holds at p = pa, and thus the

type-H seller transacts offline with the σ = s buyer. Similarly, define γ to be the smallest solution to

γ = 1− ωs +
dπx2(γ)

pc
= 1− ωs +

d

1
2

(
qH
πx2 + (1−λ)c

πx2ζ + ηsd
2ζ

) . (41)

Note ζ and πx2 both decrease in γ, which implies the right hand side of (41) decreases in γ. As a result, for

any γ < γ, (40) cannot hold at p = pc, which implies the transaction with the σ = s buyer occurs online. We

have thus shown the transaction between the type-H seller and σ = s buyer occurs offline if γ > γ̄ and online

if γ < γ. This completes Step 1.

Step 2. First, note pc ≥ pa for all γ ∈ [γ, γ̄]. To see why, suppose by contradiction that pc < pa for some

γ′ ∈ [γ, γ̄], and define

f(p, γ) := γ −
(
1− ωs +

dπx2

p

)
.

By definition of γ and γ̄, we have f(γ′, pa) < 0 and f(γ′, pc) ≥ 0. However, f(p, γ) increases in p for each

γ ∈ (0, γm], which yields a contradiction. We conclude pc ≥ pa for all γ ∈ [γ, γ̄]. Analogous to the proof of

Lemma A.10, we show that πa(pa)− πc(pc) strictly decreases in γ on γ ∈ [γ, γ̄], from which the existence of

the unique threshold γH1
s follows. Differentiating πa(pa)− πc(pc) in γ, we have

d

dγ
(πa(pa)− πc(pc)) =

(
∂πa

∂p
· dp

a

dγ
+
∂πa

∂γ

) ∣∣∣∣
p=pa

−
(
∂πc

∂p
· dp

c

dγ
+
∂πc

∂γ

) ∣∣∣∣
p=pc

=
∂πa

∂γ

∣∣∣∣
p=pa

− ∂πc

∂γ

∣∣∣∣
p=pc

= −pa
(
1− pa

qH

)
+
(
1− ηs

2

)
pc
(
1− pc

qH

)
+ d

(
1− pc

qH

)
ηs
∂πx2

∂γ

≤
((

1− ηs
2

)
pc − pa

)(
1− pa

qH

)
.

The second line above follows from the envelope theorem and the third line follows from evaluating the

derivative algebraically. To see that the inequality in the fourth line holds, note πx2 decreases in γ and pc ≥ pa
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for γ ∈ [γ, γ̄], as established above. Since
(
1− pa

q

)
> 0 and ηs ∈ (0, 1), to show d

dγ (π
a(pa) − πc(pc)) < 0 it

suffices to show that 2pa − pc > 0. The preceding inequality follows immediately from the observations that

pc ≤ q and 2pa > q. This establishes the existence of the unique threshold γH1
s . Finally, to see that γH1

s

increases in d, note that πa(pa) is independent of d, and πc(pc) can be written as

πc(pc) = qHζ

(
1

2
− (1− λ)c

2qHζ
− ηsdπ

x2

4qHζ

)2

.

Clearly, πc(pc) decreases in d wherever πc(pc) > 0. Because γH1
s is the solution to πa(pa) = πc(pc) and

πa(pa)− πc(pc) decreases in γ on γ ∈ [γ, γ̄], γH1
s also decreases in d. The proof for the threshold γL1

s follows

by parallel argument and is omitted. □

Proposition 5. Let R0(γ∗) and Rd(γ∗) be the platform’s optimal revenue under the blind eye and banning

policies, respectively. Then, there exist thresholds α ∈ ( 12 , 1] and ᾱ ∈ [α, 1) such that the following statements

hold.

(i) Suppose information quality is low α ≤ α. Then for all detection probabilities d ∈ [0, 1], the banning

policy generates weakly higher revenue than the blind eye policy, R0(γ∗) ≤ Rd(γ∗).

(ii) Suppose information quality is high α ≥ ᾱ. Then there exists d̄ ∈ (0, 1) such that if the detection

probability is low d ∈ (0, d̄], the banning policy generates strictly lower revenue than the blind eye

policy, i.e., R0(γ∗) > Rd(γ∗).

Proof. (i). First suppose α = 1
2 and d = 0. Then by Lemma E.1 and Assumption 2, we have γm ≤ γits

for i ∈ {L,H} and t ∈ {1, 2}. Further, because γi1s and γi2s are weakly increasing in and independent of d,

respectively, it follows by continuity of γi1s and γi2s in α that there exists α ∈ (0, 1] such that if α ≤ α, then

γ∗ ≤ γits for i ∈ {L,H}, t ∈ {1, 2} and all d ∈ [0, 1] , i.e., all transactions occur online. Then by Lemma E.1,

the platform’s revenue is given by

R(γ∗) = 2(µra(γ∗) + (1− µ)rb(γ∗))+,

where ra(γ) and rb(γ) are as defined in Lemma A.11. It follows that for α ≤ α and d ∈ [0, 1], we have

dR

dd

∣∣∣∣
γ=γ∗

=

(
∂R

∂γ

dγ∗

dd
+
∂R

∂d

) ∣∣∣∣
γ=γ∗

=

(
∂R

∂γ

dγ∗

dd

) ∣∣∣∣
γ=γ∗

≥ 0. (42)

The second equality above follows because ra(γ) and rb(γ) are both independent of d, which implies ∂
∂dR = 0.

To see that the inequality holds, note γi1s ≥ γi2s holds for all d ∈ [0, 1] by Lemma E.1. Thus, there are two cases

to consider: γ∗ < min{γL2
s , γH2

s } and γ∗ = min{γL2
s , γH2

s }. If γ∗ < min{γL2
s , γH2

s }, then ∂
∂γR = 0 holds at

γ = γ∗ by the envelope theorem, and the weak inequality in (42) holds as an equality. If γ∗ = min{γL2
s , γH2

s },
then ∂

∂γR ≥ 0 must hold at γ = γ∗ because γ∗ is the optimal commission rate. Further, by Lemma E.1 both

γL2
s and γH2

s weakly increase in d, which implies d
ddγ

∗ ≥ 0. The inequality in (42) again follows.

(ii). First suppose α = 1 and d = 0. Then by Lemma E.1 we have γ∗ > γits = 0 for i ∈ {L,H} and t ∈ {1, 2},
i.e., all transactions with σ = s buyers occur offline. It follows by continuity of γits in α and d that there exists

ᾱ ∈ [α, 1) and d̄ > 0 such that γ∗ > γits for i ∈ {L,H} and t ∈ {1, 2} if α ≥ ᾱ and d ≤ d̄. Note that γ∗ > γits

for i ∈ {L,H} and t ∈ {1, 2} implies the platform only extracts commissions from type-H sellers. Further,
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type-H sellers are banned after period 1 with probability d only if they transact with a σ = s buyer in period

1, and thus the probability a type-H seller is undetected following period 1 is ηr + ηs(1− d). It follows from

Lemma E.1 that the platform’s revenue for α ≥ ᾱ and d ≤ d̄ is

R(γ∗) = µrc(γ∗) + µ(ηr + ηs(1− d))rc(γ∗),

where

rc(γ) = γηrp
c

(
1− pc

qH

)
= γηrqH

(
1

4
−
(
(1− λ)c

2qHζ
+
ηsdπ

x2

4qHζ

)2
)
. (43)

It follows that for α ≥ ᾱ and d ≤ d̄,

dR

dd

∣∣∣∣
γ=γ∗

=

(
∂R

∂γ

dγ∗

dd
+
∂R

∂d

) ∣∣∣∣
γ=γ∗

=
∂R

∂d

∣∣∣∣
γ=γ∗

=

(
−µηsrc(γ) + µ(1 + ηr + ηs(1− d))

∂rc

∂γ

) ∣∣∣∣
γ=γ∗

< 0.

To see the second equality above, note that if γ∗ = γm, then d
ddγ

∗ = 0, and if γ∗ < γm then ∂
∂γR = 0 holds

at γ = γ∗ by the envelope theorem. The strict inequality follows because ∂
∂dr

c < 0 by inspection of the

expression for rc(γ) in (43). Because R(γ∗) strictly decreases in d on d ∈ [0, d̄], statement (ii) follows. □

F Repeat Interactions with Returning Buyers

Our main model examines disintermediation in a single-shot setting where sellers transact with a given buyer

at most once. In practice, sellers may interact with the same buyer repeatedly, allowing them to learn the

buyer’s type from earlier transactions. In this section, we consider a dynamic variant of our main model, in

which sellers form beliefs about buyers’ types through an initial transaction, instead of through the platform

signal. The purpose of this section is to establish that our main insights hold when information about buyers

is transmitted in this alternative manner.

F.1 Model Setup

Formally, we consider a two-period model where each seller is matched to the same buyer in both periods,

and a share 1 − λ of buyers are type-r (i.e., risky). As before, type-s buyers impose the transaction cost

cs = 0 on sellers. However, in contrast to our main model, the transaction cost imposed by type-r buyers is

stochastic in each period, where cr = c > 0 with probability ρ ∈ [0, 1] and cr = 0 with probability 1− ρ. As

a consequence of this cost structure, when the realized transaction cost is c, the seller immediately learns the

buyer is type-r; when the realized transaction cost is 0, the seller’s posterior belief that the buyer is type-r is
(1−λ)(1−ρ)

(1−λ)(1−ρ)+λ (see Lemma F.1). The parameter ρ thus captures sellers’ ability to learn - as ρ increases, sellers

form stronger posterior beliefs and can distinguish buyer types more accurately. To isolate the effect of the

learning parameter ρ, we assume the platform’s signal is uninformative (α = 1
2 ).

At the beginning of the horizon, the platform sets the commission rate γ. Each seller then commits to an

online price p for both periods, and is randomly matched to one buyer. In each period, a seller’s choices are

to transact online, offline, or not at all. If the seller rejects the buyer in period 1, they earn zero profit and are

not matched to a new buyer. This setup assumes that a seller’s decision to complete a follow-up transaction

with a buyer is independent of potential matches with new buyers (for example, in freelance marketplaces,

sellers typically juggle multiple projects simultaneously, so the possibility of future contracts does not impact
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transactions with current buyers). We adopt notation from the main model and re-define σ to denote the

signal generated by the period 1 transaction, where the seller observes σ = r if the realized transaction cost

from period 1 is c > 0 and observes σ = s if the realized cost is 0.

To facilitate our analysis, we make two assumptions that are analogous to Assumptions 1 and 2 from the

main model. First, we again assume that the two seller types are well-separated with respect to their quality

level:

Assumption 3. The seller qualities satisfy qH ≥ 4c and qL ∈
[
2(1−λ)(2−ρ)ρ

2−(1−λ)ρ c, ρc
]
.

The above assumption implies that the type-H seller transacts with all buyers, whereas the type-L seller

always rejects the σ = r buyer. In addition, we impose the requirement the quality level of the type-L seller is

high enough to guarantee that this seller transacts on the platform in period 1 for every value of γ ∈ [0, γm];

this assumption precludes the less interesting case where only the type-H seller participates. We also impose

an assumption that allows us to focus on the case where sellers do not disintermediate prior to forming a

belief about the buyer’s type (i.e., in period 1).

Assumption 4. The maximum commission rate γm, share of type-H sellers λ, switching cost ϕ, and type-H

seller quality qH satisfy the inequality γm ≤ 1− λ+ ϕ
qH

.

Assumption 4 is similar to Assumption 2 from the main model, and similarly implies that sellers do not

disintermediate with σ = r buyers.

Although we assume the learning parameter ρ to be exogenous, in practice it may be impacted by platform

design decisions. For example, in the context of freelance marketplaces like Upwork, a low value of ρ may

be the result of features that smooth out differences in how buyers interact with sellers, including customer

support, a common structure on job postings, or AI-assisted communication (Upwork 2024a). Similarly, a

high value of ρ may correspond to a less regulated environment in which sellers can more accurately screen

buyers, as a consequence of risky buyers being more likely to “reveal” themselves. Note that ρ plays a similar

role to α from our main model, since it captures the accuracy with which sellers can learn buyers’ types.

F.2 Seller Learning and Platform Revenue

With repeated interactions, it is natural to expect the threat of disintermediation to depend on the accuracy

with which sellers can infer buyers’ types from an initial transaction. To the extent that platforms can

influence seller learning (e.g., through features or policies that change how buyers and sellers interact), it is

valuable to understand the impact of the sellers’ learning parameter ρ on platform revenue.

Proposition 6. Suppose the switching cost is ϕ = 0. Then there exists µ̄ ∈ [0, 1) and ρ̄ ∈ [0, 1) such that

if the share of type-H sellers is large µ ≥ µ̄, the platform’s optimal revenue R(γ∗) strictly decreases in the

learning parameter ρ on ρ ∈ [0, ρ̄) and strictly increases in ρ on ρ ∈ (ρ̄, 1].

All proofs for this section are in Appendix F.4. Similar to our prior results, the non-monotonic behavior in

Proposition 6 can be understood by considering the effects induced by a change in the learning parameter ρ,

which we briefly outline. When ρ is small (ρ < ρ̄), sellers cannot easily identify safe (type-s) buyers, leading

all transactions to occur online in equilibrium in both periods. In this case, an increase in ρ increases the

threat of disintermediation, which degrades the platform’s pricing power and lowers revenue. However, when

ρ is large (ρ > ρ̄), sellers disintermediate in period 2 with the zero-cost buyers (which consists of both type-r
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and type-s buyers), but transact on-platform with the costly buyers (consisting only of type-r buyers). In

this setting, further increases in ρ allow sellers to identify type-r buyers with increased accuracy and avoid

transacting off-platform with them, which increases on-platform transaction volume and boosts revenue. In

summary, although the ability to screen buyers is necessary for disintermediation, Proposition 6 suggests that

in settings where sellers already transact off-platform (large ρ), further improvements to seller learning can

help revenue by stemming the flow of any additional disintermediation.

F.3 Optimal Commission Rate

We conclude this section by showing that a variation of our main result from Proposition 1 holds when sellers

learn through an initial transaction instead of via the platform signal.

Proposition 7. Let γ∗(ϕ) be the optimal commission rate under switching cost ϕ. There exists ϕ̄ > 0 and

ρ̄ ∈ [0, 1) such that for any ρ ≥ ρ̄ and ϕ ≥ ϕ̄, the optimal commission rate is higher in the absence of switching

costs, γ∗(0) ≥ γ∗(ϕ), where the inequality is strict if γ∗(ϕ) < γm.

Proposition 7 mirrors Proposition 1(ii) by showing that in a disintermediation-prone environment (i.e., no

switching cost and high ρ), it is optimal for the platform to “double down” on the on-platform transactions

- that is, choose a commission rate higher than the corresponding rate when there is no disintermediation.

The intuition follows similarly to our discussion in Section 3.1.

F.4 Proofs

This section contains the proofs for Propositions 6 and 7. We first provide some supporting lemmas that are

analogous to those presented in Appendix A for the main model.

F.4.1 Preliminary Results

First, Lemmas F.1 – F.5 below characterize the relevant probabilities, commission thresholds for disinter-

mediation, the sellers’ profit functions, and the platform’s revenue function. These results are analogous to

those presented in Appendix A for the main model; the proofs follow similarly and are omitted to avoid

repetition.

Lemma F.1 (Signal probabilities and sellers’ beliefs). The following statements hold for σ ∈ {r, s}.

(i) The probability a seller receives the signal σ following the period 1 transaction is ησ, where ηs :=

λ+ (1− λ)(1− ρ) and ηr := (1− λ)ρ.

(ii) The seller’s posterior belief that a buyer with signal σ has true type j = s is ωσ, where ωs := λ/ηs and

ωr := 0.

(iii) The probability a buyer with signal σ pays the seller if transacting offline is ωσ.

Lemma F.2 (Disintermediation thresholds fixed p). Let Assumption 4 hold. In period 1, all transactions

occur online for all γ ∈ [0, γm]. In period 2, given an online price p > 0, both seller types transact offline

with the σ = s buyer if and only if γ ≥ γ̂s(p), where

γ̂s(p) := 1− ωs +
ϕ

p

and the offline price is given by

bs(p) :=
p(1− γ + ωs) + ϕ

2ωs
.
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Further, neither seller transacts offline with the σ = r buyer in period 2 for all γ ∈ [0, γm] and p > 0.

Lemma F.3 (Sellers’ profit and price cases). Fix the commission rate γ and consider a unit mass of sellers

with quality q and online price p ≤ q. Let Π(p) be the sellers’ profit and let p̃ be the maximizer of Π(p).

(i) If the sellers transacts online in period 2 with both σ = r and σ = s buyers,

Π(p) = πa(p) := 2((1− γ)p− (1− λ)ρc)

(
1− p

q

)
p̃ = pa :=

1

2

(
q +

ρc(1− λ)

1− γ

)
.

(ii) If the sellers reject σ = r and transact online with σ = s,

Π(p) = πb(p) := ((1− γ)p− (1− λ)ρc+ ηs((1− γ)p− (1− ωs)ρc))

(
1− p

q

)
p̃ = pb :=

1

2

(
q +

ρc(1− λ)(2− ρ)

(1− γ)(2− (1− λ)ρ)

)
.

(iii) If the seller transact online with σ = r and offline with σ = s,

Π(p) = πc(p) := ((1− γ)p− (1− λ)ρc+ ηs(ωsb− (1− ωs)ρc− ϕ) + ηr((1− γ)p− ρc))

(
1− p

q

)
p̃ = pc :=

1

2

(
q +

4ρc(1− λ) + ϕ(1− (1− λ)ρ)

(1− γ)(3 + (1− λ)ρ) + λ

)
.

(iv) If the sellers reject σ = r and transact offline with σ = s,

Π(p) = πd(p) := ((1− γ)p− (1− λ)ρc+ ηs(ωsb− (1− ωs)ρc− ϕ))

(
1− p

q

)
p̃ = pd :=

1

2

(
q +

2ρc(1− λ)(2− ρ) + ϕ(1− (1− λ)ρ)

(1− γ)(3− (1− λ)ρ) + λ

)
.

Lemma F.4 (Disintermediation threshold and platform revenue). For each seller type i ∈ {L,H}, there

exists a unique threshold γis such that the type-i seller transacts offline with the σ = s buyer if and only if

γ > γis. Further, γHs ≤ γLs for all ϕ ≥ 0, and γHs = γLs = 1− ωs if ϕ = 0.

Lemma F.5 (Platform’s revenue function). Let px for x ∈ {a, b, c, d} be as defined in Lemma F.3, and define

ra(γ) := 2γpa
(
1− pa

qH

)
,

rb(γ) := γ(1 + λ+ (1− λ)(1− ρ))pb
(
1− pb

qL

)
,

rc(γ) := γ(1 + (1− λ)ρ)pc
(
1− pc

qH

)
,

rd(γ) := γpd
(
1− pd

qL

)
.
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Then the platform’s commission revenue is given by R(γ), where

R(γ) :=


µra(γ) + (1− µ)rb(γ)+ if γ ∈ [0, γHs ],

µrc(γ) + (1− µ)rb(γ)+ if γ ∈ (γHs , γ
L
s ],

µrc(γ) + (1− µ)rd(γ)+ if γ ∈ (γLs , γ
m],

and x+ = max{0, x}.

F.4.2 Proof of Proposition 6

Before presenting the proof of Proposition 6, we first present Lemmas F.6 and F.7 which describe useful

properties of the platform’s revenue function and the optimal commission rate, respectively. For the remainder

of Appendix F.4, define γx := argmaxγ∈[0,1] r
x(γ) and γxy := argmaxγ∈[0,γm] {µrx(γ) + (1− µ)ry(γ)}, where

x, y ∈ {a, b, c} and the rx(γ) functions are defined in Lemma F.5.

Lemma F.6 (Revenue function properties). For any γ ∈ (0, 12 ] and λ ∈ [ 12 , 1), (i) ra(γ) and rb(γ) both

strictly decrease in ρ on ρ ∈ [0, 1], and (ii) rc(γ) strictly increases in ρ on ρ ∈ [0, 1].

Proof. (i). First note for any γ ∈ (0, γm],

∂ra

∂ρ
=

∂

∂ρ

{
γ

2

(
qH − (c(1− λ)ρ)2

qH(1− γ)2

)}
= −c

2γ(1− λ)2ρ

(1− γ)2qH
< 0.

For rb(γ), we have

∂rb

∂ρ
=

∂

∂ρ

{
γ

4

(
qL(2− (1− λ)ρ)− (c(1− λ)(2− ρ)ρ)2

qL(1− γ)2(2− (1− λ)ρ)

)}
=
γ

4

(
−qL(1− λ)−

c2(1− λ)2(2− ρ)ρ
(
8 + 3(1− λ)ρ2 − 2(5− λ)ρ

)
qL(1− γ)2(2− (1− λ)ρ)2

)
< 0,

where the strict inequality follows because ρ ∈ [0, 1] and λ ∈ [ 12 , 1] imply 8 + 3(1 − λ)ρ2 > 2(5 − λ)ρ. Thus,

ra(γ) and rb(γ) both strictly decrease in ρ.

(ii). To prove the result, we first show that ∂
∂ρr

c > 0 at ρ = 1. We then show ∂2

∂ρ2 r
c ≤ 0 for all ρ ∈ [0, 1],

which implies ∂
∂ρr

c > 0 for all ρ ∈ [0, 1]. To begin, note

∂rc

∂ρ
=
γ

4
· ∂
∂ρ

{
(1 + (1− λ)ρ)

(
qH − (4c(1− λ)ρ)2

qH((1− γ)(3 + (1− λ)ρ) + λ)2

)}
=
γ

4

(
(1− λ)

(
qH − (4c(1− λ)ρ)2

qH((1− γ)(3 + (1− λ)ρ) + λ)2

)
− (1 + (1− λ)ρ)

(
32c2(1− λ)2(3(1− γ) + λ)ρ

qH((1− γ)(3 + (1− λ)ρ) + λ)3

))

≥ γc

(
(1− λ)

(
1− ((1− λ)ρ)2

((1− γ)(3 + (1− λ)ρ) + λ)2

)
− (1 + (1− λ)ρ)

(
2(1− λ)2(3(1− γ) + λ)ρ

((1− γ)(3 + (1− λ)ρ) + λ)3

))
,

(44)

where the third line above follows because d
dρr

c increases in qH and qH ≥ 4c by Assumption 3. Then
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substituting ρ = 1,(
∂rc

∂ρ

) ∣∣∣∣
ρ=1

≥ γc

(
(1− λ)

(
1− (1− λ)2

((1− γ)(4− λ) + λ)2

)
− (2− λ)

(
2(1− λ)2(3(1− γ) + λ)

((1− γ)(4− λ) + λ)3

))
. (45)

Next, it can be shown algebraically that (45) holds if g(γ) > 0, where

g(γ) := (1− λ)
(
((1− γ)(4− λ) + λ)2 − (1− λ)2

)
((1− γ)(4− λ) + λ)− (2− λ)

(
2(1− λ)2(3(1− γ) + λ)

)
.

With some effort, it can be verified that ∂2

∂γ2 g > 0 and limγ→ 1
2

∂
∂γ g ≤ 0, which together imply g(γ) strictly

decreases in γ on γ ∈ [0, γm]. It is straightforward to verify that g (γm) > 0 because λ ∈ [ 12 , 1) and γ
m ≤ 1

2 .

It follows that g(γ) > 0 for all γ ∈ [0, γm]. Therefore, ∂
∂ρr

c > 0 at ρ = 1. It remains to show ∂2

∂ρ2 r
c ≤ 0.

Following (44), we have

∂rc

∂ρ
≥ γc

(
(1− λ)

(
1− ((1− λ)ρ)2

((1− γ)(3 + (1− λ)ρ) + λ)2

)
− (1 + (1− λ)ρ)

(
2(1− λ)2(3(1− γ) + λ)ρ

((1− γ)(3 + (1− λ)ρ) + λ)3

))
= γc(1− λ)

(
1− ((1− λ)ρ)2

((1− γ)(3 + (1− λ)ρ) + λ)2
− (1 + (1− λ)ρ)

(
2(1− λ)(3(1− γ) + λ)ρ

((1− γ)(3 + (1− λ)ρ) + λ)3

))
= γc(1− λ)

(
1− (1− λ)ρ

((1− γ)(3 + (1− λ)ρ) + λ)3
· k(ρ)

)
= γc(1− λ) (1− h(ρ) · k(ρ)) ,

where

k(ρ) := (1− λ)ρ((1− γ)(3 + (1− λ)ρ) + λ) + 2(1 + (1− λ)ρ)(3(1− γ) + λ),

h(ρ) :=
(1− λ)ρ

((1− γ)(3 + (1− λ)ρ) + λ)3
.

Observe that k(ρ) weakly increases in ρ for all γ ∈ [0, 12 ] and λ ∈ [ 12 , 1]. It remains to show h(ρ) also increases

in ρ. Note

∂h

∂ρ
=

(1− λ)(((1− γ) (3 + (1− λ)ρ) + λ)− 3ρ(1− γ)(1− λ))

((1− γ) (3 + (1− λ)ρ) + λ)
4 =

(1− λ)(3(1− γ) + λ− 2ρ(1− γ)(1− λ))

((1− γ) (3 + (1− λ)ρ) + λ)
4 ≥ 0,

where the inequality follows because γ ∈ [0, 12 ] and λ ∈ [ 12 , 1]. The result follows. □

Lemma F.7 (Optimal commission rate). Suppose that µ = 1 and ϕ = 0. Then there exists ρ ∈ [0, 1) and

ρ̄ ∈ (ρ, 1) such that γ∗ > γHs if ρ > ρ̄, γ∗ = γHs if ρ ∈ [ρ, ρ̄], and γ∗ = γm if ρ < ρ.

Proof. Note γHs is continuous and decreasing in ρ and limρ→0 γ
H
s = 1− λ ≥ γm. It follows that there exists

ρ ∈ (0, 1] such that γHs < γm if and only if ρ > ρ. Therefore, if ρ ≤ ρ, then platform revenue is given by

R(γ) = ra(γ) for γ ≤ γm. Because ra(γ) strictly increases in γ (Lemma A.12), we have γ∗ = γm for ρ ≤ ρ, as

desired. The remainder of the proof addresses the interval (ρ, 1]. We focus on showing there exists ρ̄ ∈ (ρ, 1)

such that γ∗ > γHs if and only if ρ > ρ̄; we later strengthen this result to show γ∗ = γHs if ρ ∈ (ρ, ρ̄]. For

µ = 1, the platform’s revenue is

R(γ) =

ra(γ) if γ ≤ γHs ,

rc(γ) if γ > γHs .
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Next, for convenience define the function

h(ρ) := max
γ≥γH

s

rc(γ)− max
γ≤γH

s

ra(γ),

Note γ∗ > γHs if and only if h(ρ) > 0. To see why, note γ∗ > γHs immediately implies h(ρ) > 0 by definition

of R(γ). For the reverse direction, it is straightforward to show ra(γ) > rc(γ) for all γ ∈ (0, γm], meaning

rc(γ) cannot attain its maximum over γ ≥ γHs at γ = γHs . Thus, h(ρ) > 0 implies γ∗ > γHs . It remains

to show there exists ρ̄ ∈ (ρ, 1) such that h(ρ) > 0 if and only if ρ ≥ ρ̄. Note for fixed γ, ra(γ) strictly de-

creases in ρ and rc(γ) strictly increases in ρ (Lemma F.6). Further, γHs strictly decreases in ρ. It follows that

maxγ≤γH
s
ra(γ) strictly decreases in ρ and maxγ≤γH

s
rc(γ) strictly increases in ρ. Hence, h(ρ) strictly increases

in ρ. Further, because limρ→ρ γ
H
s = γm and limρ→1 γ

H
s = 0, we have limρ→ρ h(ρ) = −maxγ≤γm ra(γ) < 0

and limρ→1 h(ρ) = maxγ≥0 r
c(γ) > 0. It follows that there exists ρ̄ ∈ (ρ, 1) such that h(ρ) > 0 if and only if

ρ > ρ̄. We conclude γ∗ > γHs if and only if ρ > ρ̄. Lastly, note that ρ ∈ (ρ, ρ̄] implies γ∗ = argmaxγ≤γH
s
ra(γ).

Using the expressions in Lemma F.3, it is straightforward to show ra(γ) strictly increases in γ. It follows that

γ∗ = γHs for ρ ∈ (ρ, ρ̄]. □

Proposition 6. Suppose the switching cost is ϕ = 0. Then there exists µ̄ ∈ [0, 1) and ρ̄ ∈ [0, 1) such that

if the share of type-H sellers is large µ ≥ µ̄, the platform’s optimal revenue R(γ∗) strictly decreases in the

learning parameter ρ on ρ ∈ [0, ρ̄) and strictly increases in ρ on ρ ∈ (ρ̄, 1].

Proof. The proof largely follows from Lemmas F.6 and F.7. Let µ = 1, and let ρ̄ be as defined in Lemma F.7.

First suppose ρ ≤ ρ̄, which implies γ∗ = min{γHs , γm} by the statement and proof of Lemma F.7; we consider

γ∗ = γHs and γ∗ = γm separately. By Lemma F.4, γ∗ = γHs implies the platform’s optimal revenue is

R(γ∗) = µra(γ∗) + (1− µ)rb(γ∗)+. Then, for ρ ∈ [0, ρ̄] we have

dR

dρ

∣∣∣∣
γ=γ∗

=

(
∂R

∂γ

dγHs
dρ

+
∂R

∂ρ

) ∣∣∣∣
γ=γH

s

=

((
µ
∂ra

∂γ
+ (1− µ)

∂rb

∂γ

)
dγHs
dρ

+

(
µ
∂ra

∂ρ
+ (1− µ)

∂rb

∂ρ

)) ∣∣∣∣
γ=γH

s

<

(
µ
∂ra

∂γ
+ (1− µ)

∂rb

∂γ

)
dγHs
dρ

∣∣∣∣
γ=γH

s

,

where the strict inequality follows because ∂
∂ρr

a < 0 and ∂
∂ρr

b < 0 by Lemma F.6. It remains to show(
µ
∂ra

∂γ
+ (1− µ)

∂rb

∂γ

)
dγHs
dρ

∣∣∣∣
γ=γH

s

≤ 0. (46)

Because ϕ = 0, we have γHs = 1− ωs by Lemma A.10, which implies

d

dρ
γHs = − (1− λ)λ

(1− (1− λ)ρ)2
< 0.

Further, because
(
µ∂ra

∂γ + (1− µ)∂r
b

∂γ

)
≥ 0 must hold at γ = γ∗, we conclude that (46) holds. Therefore,

R(γ∗) strictly decreases in ρ for ρ ∈ [0, ρ̄) if γ∗ = γHs . The case where γ∗ = γm follows by a similar argument,

where the condition (46) (with γm in place of γHs ) holds trivially because d
dργ

m = 0. We conclude R(γ∗)

strictly decreases in ρ for ρ ∈ [0, ρ̄). It remains to show that R(γ∗) increases in ρ on (ρ̄, 1]. By Lemma F.7,
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ρ > ρ̄ implies γHs < γ∗, and thus R(γ∗) = µrc(γ∗). Therefore, we have

dR

dρ

∣∣∣∣
γ=γ∗

= µ

(
∂rc

∂γ

dγ∗

dρ
+
∂rc

∂ρ

) ∣∣∣∣
γ=γ∗

= µ
∂rc

∂ρ

∣∣∣∣
γ=γ∗

> 0.

To see why the second equality holds, consider two cases: γ∗ = γm and γ∗ < γm. If γ∗ = γm, then d
dργ

∗ = 0;

if γ∗ < γm, then ∂
∂ρr

c = 0 at γ = γ∗ by the envelope theorem. Finally, the strict inequality follows because
∂
∂ρr

c > 0 by Lemma F.6. We have thus shown R(γ∗) strictly increases in ρ on ρ ∈ (ρ̄, 1] for µ = 1. The

existence of the threshold µ̄ < 1 in the proposition statement then follows by continuity of d
dρR(γ

∗) in µ. □

F.4.3 Proof of Proposition 7

Proposition 7. Let γ∗(ϕ) be the optimal commission rate under switching cost ϕ. There exists ϕ̄ > 0 and

ρ̄ ∈ [0, 1) such that for any ρ ≥ ρ̄ and ϕ ≥ ϕ̄, the optimal commission rate is higher in the absence of switching

costs, γ∗(0) ≥ γ∗(ϕ), where the inequality is strict if γ∗(ϕ) < γm.

Proof. Note by Lemma F.5, the platform’s revenue is

R(γ) =


µra(γ) + (1− µ)rb(γ)+ if γ ∈ [0, γHs ],

µrc(γ) + (1− µ)rb(γ)+ if γ ∈ (γHs , γ
L
s ],

µrc(γ) + (1− µ)rd(γ)+ if γ ∈ (γLs , γ
m].

Further, by Lemma F.4, we have γHs = γLs = 0 at ϕ = 0 and ρ = 1. By continuity of γHs and γLs in ρ, it

follows that there exists ρ̂ ∈ [0, 1] such that γ∗ = min{γcd, γm} if ϕ = 0 and ρ ≥ ρ̂. Similarly, because γHs

strictly increases in ϕ (Lemma F.4), there exists ϕ̄ > 0 such that γ∗ = min{γab, γm} if ϕ ≥ ϕ̄. Because γab

does not depend on ϕ, it remains to show there exists ρ̄ ≥ ρ̂ such that γab < γcd if ρ ≥ ρ̄ and ϕ = 0, which

we do in four steps. First, we define four auxilliary functions, ℓx(γ) for x ∈ {a, b, c, d}, which have the useful

property that ℓx(γx) = 0. Second, we show there exists ρ̄ ∈ [ρ̂, 1) such that ℓa(γ) < ℓc(γ) for all γ ∈ [0, γm]

if ρ ≥ ρ̄. Third, we show ℓb(γ) < ℓd(γ) for all γ ∈ [0, γm] and ρ ∈ [0, 1]. Fourth, we combine the first three

steps to prove the proposition statement.

Step 1. Fix ϕ = 0. We begin by defining four auxiliary functions ℓa(γ), ℓb(γ), ℓc(γ), and ℓd(γ). Note

differentiating ra(γ) in γ yields

∂ra

∂γ
=

∂

∂γ

{
γ

(
qH
2

− (ρc(1− λ))2

2qH(1− γ)2

)}
=
qH
2

(
1− (ρc(1− λ))2

q2H
· (1 + γ)

(1− γ)3

)
︸ ︷︷ ︸

ℓa(γ)

, (47)

where ℓa(γ) is defined as shown in (47). Similarly, for rb(γ),

∂rb

∂γ
=

∂

∂γ

{
qL(2− (1− λ)ρ)

4

(
γ − (c(1− λ)(2− ρ)ρ)2

q2L(2− (1− λ)ρ)2
· γ

(1− γ)2

)}
(48)

=
qL(2− (1− λ)ρ)

4

(
1− (c(1− λ)(2− ρ)ρ)2

q2L(2− (1− λ)ρ)2
· (1 + γ)

(1− γ)3

)
︸ ︷︷ ︸

ℓb(γ)

.
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For rc(γ),

∂rc

∂γ
=

∂

∂γ

{
qH
4
(1 + (1− λ)ρ)

(
γ − (4c(1− λ)ρ)2

q2H
· γ

((1− γ)(3 + (1− λ)ρ) + λ)2

)}
=
qH
4
(1 + (1− λ)ρ)

(
1− (4c(1− λ)ρ)2

q2H
· (1 + γ)(3 + (1− λ)ρ) + λ

((1− γ)(3 + (1− λ)ρ) + λ)3

)
︸ ︷︷ ︸

ℓc(γ)

. (49)

Lastly, for rd(γ),

∂rd

∂γ
=

∂

∂γ

{
qL
4

(
γ − (2c(1− λ)(2− ρ)ρ)

2

q2L
· γ

((1− γ)(3− (1− λ)ρ) + λ)2

)}

=
qL
4

(
1− (2c(1− λ)(2− ρ)ρ)

2

q2L
· (1 + γ)(3− (1− λ)ρ) + λ

((1− γ)(3− (1− λ)ρ) + λ)3

)
︸ ︷︷ ︸

ℓd(γ)

. (50)

Further, note for x ∈ {a, b, c, d} we have ℓx(γx) = 0.

Step 2. We now show there exists ρ̄ ∈ [ρ̂, 1) such that ℓa(γ) < ℓc(γ) for all γ ∈ [0, γm] if ρ ≥ ρ̄. Using the

expressions given in (47) and (49), note ℓa(γ) < ℓc(γ) holds if and only if

(ρc(1− λ))2

q2H
· 1 + γ

(1− γ)3
>

(4c(1− λ)ρ)2

q2H
· (1 + γ)(3 + (1− λ)ρ) + λ

((1− γ)(3 + (1− λ)ρ) + λ)3
,

or equivalently, h(γ) < 0, where

h(γ) =
16((1 + γ)(3 + (1− λ)ρ) + λ)

((1− γ)(3 + (1− λ)ρ) + λ)3
− 1 + γ

(1− γ)3
.

It remains to show that for any γ ∈ (0, γm], h(γ) < 0 if ρ > ρ̄ for some ρ̄ ∈ [ρ̂, 1). First, observe that

lim
ρ→1

h(γ) = 16
(1 + γ)(4− λ) + λ

((1− γ)(4− λ) + λ)3
− 1 + γ

(1− γ)3

= 16
1 + γ

(1− γ)3

(4− λ) + λ
1+γ

((4− λ) + λ
1−γ )

3
− 1 + γ

(1− γ)3

< 16
1 + γ

(1− γ)3
(4− λ) + λ

((4− λ) + λ)3
− 1 + γ

(1− γ)3

= 16
1 + γ

(1− γ)3
1

42
− 1 + γ

(1− γ)3

= 0,

where the strict inequality follows because γ ∈ (0, γm]. We also have

∂h

∂ρ
= −

32(1− λ)
(
(1− γ2)(3 + (1− λ)ρ) + λ(1− 2γ)

)
((1− γ)(3 + (1− λ)ρ) + λ)4

≤ 0,

where the inequality follows because γ ∈ [0, 12 ]. We have thus shown that for any γ ∈ [0, γm], h(γ) strictly

decreases in ρ and limρ→1 h(γ) < 0. It follows that for each γ ∈ [0, γm], there exists ρ̄(γ) ∈ [0, 1) such that

h(γ) < 0 and thus ℓa(γ) < ℓc(γ) if ρ > ρ̄(γ). The result follows by choosing ρ̄ to be the larger of maxγ≥0 ρ̄(γ)

and the threshold ρ̂ defined at the beginning of the proof.
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Step 3. The proof is similar to Step 2. Using the expressions from (48) and (50), it can be shown that

ℓb(γ) < ℓd(γ) holds if and only if g(γ) < 0, where

g(γ) =
4((1 + γ)(3− (1− λ)ρ) + λ)

((1− γ)(3− (1− λ)ρ) + λ)3
− 1 + γ

(1− γ)3
.

We show that for any γ ∈ (0, γm], g(γ) < 0 for all ρ ∈ [0, 1] and λ ∈ [ 12 , 1]. We first show g(γ) decreases in λ.

To see this, note

∂g

∂λ
=

∂

∂λ

{
4

((1− γ)(3− (1− λ)ρ) + λ)2
· (1 + γ)(3− (1− λ)ρ) + λ

((1− γ)(3− (1− λ)ρ) + λ)
− 1 + γ

(1− γ)3

}
=

∂

∂λ

{
4

((1− γ)(3− (1− λ)ρ) + λ)2

}
· (1 + γ)(3− (1− λ)ρ) + λ

((1− γ)(3− (1− λ)ρ) + λ)

+
4

((1− γ)(3− (1− λ)ρ) + λ)2
· ∂
∂λ

{
(1 + γ)(3− (1− λ)ρ) + λ

((1− γ)(3− (1− λ)ρ) + λ)

}
< − 4

((1− γ)(3− (1− λ)ρ) + λ)2
· 2γ(3− ρ)

((1− γ)(3− (1− λ)ρ) + λ)2

< 0.

The first strict inequality above follows because (1−γ)(3− (1−λ)ρ)+λ strictly increases in λ, which implies
∂
∂λ

{
4

((1−γ)(3−(1−λ)ρ)+λ)2

}
< 0. Because g(γ) strictly decreases in λ, plugging in λ = 0 yields the upper

bound

g(γ) <
4(1 + γ)(3− ρ)

((1− γ)(3− ρ))3
− 1 + γ

(1− γ)3
=

1 + γ

(1− γ)3

(
4

(3− ρ)2
− 1

)
≤ 0

for ρ ∈ [0, 1] and λ ∈ [ 12 , 1]. We have thus shown g(γ) < 0, which implies ℓb(γ) < ℓd(γ).

Step 4. We now complete the proof by showing γcd > γab holds for ϕ = 0 and ρ ≥ ρ̄. Analogous to Lemma

A.12, it can be shown that rx(γ) is strictly concave in γ for x ∈ {a, b, c, d}. It follows that µra(γ)+(1−µ)rb(γ)
and µrc(γ)+(1−µ)rd(γ) are both strictly concave in γ. Therefore, to show γcd > γab, it suffices to show(

µ
∂rc

∂γ
+ (1− µ)

∂rd

∂γ

) ∣∣∣∣
γ=γab

> 0. (51)

Using the expressions for ℓa(γ) and ℓb(γ), it is straightforward to verify that γb ≤ γa. Further, because ra(γ)

and rb(γ) are both strictly concave, we must have γb ≤ γab ≤ γa. By Step 2, we have γa < γc for ρ ≥ ρ̄,

which implies γab < γc and thus ∂
∂γ r

c > 0 at γ = γab for ρ ≥ ρ̄. Therefore, (51) follows immediately if
∂
∂γ r

d ≥ 0 at γ = γab. It remains to show (51) also holds when ∂
∂γ r

d < 0 at γ = γab. By Step 2, for each

γ ∈ (0, γm] we have ℓa(γ) < ℓc(γ) for ρ ≥ ρ̄. It follows that

∂rc/∂γ

∂ra/∂γ
=

1 + (1− λ)ρ

2
· ℓ

c(γ)

ℓa(γ)
>

1 + (1− λ)ρ

2
. (52)

Similarly, by Step 3 we have ℓb(γ) < ℓd(γ) for any γ ∈ (0, γm], which implies

∂rd/∂γ

∂rb/∂γ
=

1

2− (1− λ)ρ
· ℓ

d(γ)

ℓb(γ)
>

1

2− (1− λ)ρ
. (53)
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We can now write for ρ ≥ ρ̄,(
µ
∂rc

∂γ
+ (1− µ)

∂rd

∂γ

) ∣∣∣∣
γ=γab

>

(
µ
∂ra

∂γ
· 1 + (1− λ)ρ

2
+ (1− µ)

∂rb

∂γ
· 1

2− (1− λ)ρ

) ∣∣∣∣
γ=γab

≥ 1 + (1− λ)ρ

2

(
µ
∂ra

∂γ
+ (1− µ)

∂rb

∂γ

) ∣∣∣∣
γ=γab

≥ 0,

where the strict inequality follows from applying (52) and (53) and noting that γab ≤ γa ≤ γc implies ∂
∂γ r

a ≥ 0

and ∂
∂γ r

c ≥ 0 at γ = γab; the second inequality holds because 1+(1−λ)ρ
2 ≥ 1

2−(1−λ)ρ for all λ ∈ [ 12 , 1] and

ρ ∈ [0, 1], and because γb ≤ γab implies ∂
∂γ r

b ≤ 0 at γ = γab; and the final inequality follows by definition

of γab. Because γ∗ = min{γab, γm} for all ϕ ≥ ϕ̄ and γ∗ = min{γcd, γm} for ϕ = 0 as established at the

beginning of the proof, we conclude γ∗(0) ≥ γ∗(ϕ) for all ϕ ≥ ϕ̄ and ρ ≥ ρ̄. Finally, to see that the inequality

is strict wherever γ∗(ϕ) < γm, note γ∗(ϕ) < γm implies γ∗(ϕ) = γab < min{γcd, γm} = γ∗(0). □
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