
Discovering Causal Models with Optimization:
Confounders, Cycles, and Feature Selection

Frederick Eberhardt
Caltech Division of Humanities and Social Sciences, fde@caltech.edu.

Nur Kaynar*
UCLA Anderson School of Management, sema.nur.kaynar.keles.phd@anderson.ucla.edu.

Auyon Siddiq
UCLA Anderson School of Management, auyon.siddiq@anderson.ucla.edu.

We propose a new method for learning causal structures from observational data, a process known as causal

discovery. Our method takes as input observational data over a set of variables and returns a graph in which

causal relations are specified by directed edges. We consider a highly general search space that accommodates

latent confounders and feedback cycles, which few extant methods do. We formulate the discovery problem as

an integer program, and propose a solution technique that leverages the conditional independence structure

in the data to identify promising edges for inclusion in the output graph. In the large-sample limit, our

method recovers a graph that is equivalent to the true data-generating graph. Computationally, our method

is competitive with the state-of-the-art, and can solve in minutes instances that are intractable for alternative

causal discovery methods. We demonstrate our approach by showing how it can be used to examine the

validity of instrumental variables, which are widely used for causal inference. In particular, we analyze US

Census data from the seminal paper on the returns to education by Angrist and Krueger (1991), and find

that the causal structures uncovered by our method are consistent with the literature.

1. Introduction

The availability of high quality data has made integrating predictive and prescriptive models increas-

ingly promising. These models often consist of two components: a statistical procedure for learning

parameters of interest from observational data, and a prescriptive model that takes the estimated

parameters as input. This combination of methodologies has been successful in improving decision-

making in a variety of contexts, including supply chain management, revenue management, and

healthcare (Giesecke et al. 2018, Mišić and Perakis 2020).

An implicit assumption of the paradigm described above is that the decision maker has knowledge

of the causal relationship between observed variables – that is, that the fitted statistical model

alone is sufficient for predicting the effects of a hypothetical decision. However, if the underlying

causal assumptions are incorrect, then the model can yield misleading or even harmful prescriptions

(Kallus and Zhou 2020). In recognition of the importance of causality, there is a recent but limited

*Corresponding author. Authors are listed in alphabetical order.

1

2

body of work that explicitly incorporates causal inference into prescriptive models (Bertsimas and

Kallus 2016, Alley et al. 2019, Kallus and Zhou 2020, Baardman et al. 2020, Gupta et al. 2020).

While these approaches address the challenge of estimating causal effects when the variables are

subject to confounding, they primarily focus on narrowly circumscribed causal structures over the

variables of interest.

In this paper, we take a step back and consider how to learn causal relations from data in the

first place. This inference is known as causal (structure) discovery. While randomized experiments

are often considered the gold standard for identifying causal relations, they come with substantial

limitations: The experimenter has to be able to fully control the treatment, or adjust for the failure

to do so. This often implies that the experiments have to be conducted in artificial environments

with small sample sizes, undermining their validity. Further, some interventions are very costly to

perform, and some are unethical. Consequently, it is often desirable to learn as much as possible

about underlying causal structures from observational data alone, without performing experiments.

The framework of causal graphical models (Spirtes et al. 2000, Pearl 2000), discussed in more

detail in §2, enables this sort of inference by providing a precise mathematical representation of

the causal structure of a system (in terms of a directed graph) and the observed data (in terms

of a probability distribution associated with the graph). Using this framework, a variety of causal

discovery methods have been developed to infer underlying causal structures from observational

data. With a few important exceptions, these methods have relied on two restrictive assumptions,

which limit their practical relevance. The first is the absence of latent confounders – referred to as

causal sufficiency – which means that there are no unmeasured common causes of the measured

variables. The second is that there is no feedback, meaning the causal structures can be represented

by directed acyclic graphs (DAGs). Both of these assumptions can only rarely be justified in practice.

Our main contribution is a new optimization-based method for causal discovery that allows for

both unmeasured confounders and feedback cycles. Our method takes as input observational data

over a set of variables, and returns a graph in which causal relations are specified by directed edges.

There are very few extant discovery methods that consider this extremely general search space, and

those that do, do not scale well. In contrast, our approach allows us to solve in minutes instances

that are outright intractable for recently proposed methods. At a high level, the efficiency of our

approach is due to a solution technique that exploits the conditional (in)dependence structure in the

data to detect “promising” candidate edges in the underlying graph, which are then assembled into

a causal graph by an optimization model. Our main theoretical result is to show that this technique

asymptotically recovers a graph that is equivalent to the true, data-generating graph.

The generality of our method combined with its computational efficiency greatly expands the

practical relevance of causal discovery to empirical research. We demonstrate this by utilizing our

3

method to investigate the validity of an instrumental variable, which are widely used to estimate

causal effects in the presence of unmeasured confounding. In particular, we apply our method to US

Census data from the seminal paper on the returns to education by Angrist and Krueger (1991),

which contains a pioneering application of an instrumental variable, but one whose validity has been

contested (e.g., Bound et al. (1995)). We find that the causal structures uncovered by our method

are consistent with the literature on the instrument from Angrist and Krueger (1991), and that our

method pinpoints some of the sources of debate. Our results suggest that our graphical approach

can be a useful complement to well-established empirical methods.

The remainder of the paper is organized as follows. §2 reviews foundational concepts in causal

discovery, which a familiar reader may skip. §3 presents an optimization model for causal discovery

with latent confounders and feedback cycles. §4 develops a solution technique for the model. §5

extends our framework to address the challenge of feature selection. §6 examines the influential

instrumental variable from Angrist and Krueger (1991) within our framework. §7 concludes with a

brief discussion of further developments.

2. Causal Graphical Models

In the framework of causal graphical models (Pearl 2000, Spirtes et al. 2000), causal relations are

represented by a directed graph G = (V;E) over a set of nodes V , where the edge set E contains

directed edges, representing a direct (relative to V) causal effect of one node on another. We will first

introduce the theory and notation using directed acyclic graphs (DAGs), as they permit the most

intuitive explanation and the simplest causal interpretation (§2.1). We then extend these concepts

to include graphs that contain cycles and unobserved confounding variables (§2.2).

2.1. Acyclic Models Without Unmeasured Confounding

In acyclic causal models without unmeasured confounding, the graph G = (V;E) over a set of nodes

V contains at most one directed edge between any pair of nodes. We define an edge e2E as a triple

(i; t; j) with i; j 2 V , i 6= j, and t2 f!; g. A path between two distinct nodes i and j in V is then

a sequence of non-repeating edges (in any orientation) such that the first edge starts with i, the last

edge ends with j, and any consecutive edges share their last and first node, respectively. A directed

path from i to j is then a path where all edges point towards j. Any node connected by a directed

path from i is a descendant of i, any node connected by a directed path to i is an ancestor of i.

Parents and children of a node i are the direct causes and effects, respectively, of i in G. A DAG is

a directed graph in which there is no pair of distinct nodes (i; j) such that there is a directed path

from i to j and an edge j! i. We say that a node i is a collider on a path if its adjacent edges

point into i (! i). A non-collider on a path is a node i that is either a mediator (! i!) or a

4

Figure 1 Example directed acyclic graph (DAG).

common cause (i!). For example, in Figure 1, node j is a collider on the path i! j k and a

mediator on the path i! j! l, and node i is a common cause on the path l i! j.

In causal modeling, a DAG G is associated with a probability distribution PG(V), which describes

causal relations over the set of nodes V .1 A standard assumption is that the distribution is gen-

erated by the graph structure such that it factorizes: PG(V) =
Q

i2V PG(ijPa(i)), where Pa(i) are

the parents of node i in G (Spirtes and Zhang 2016, Eberhardt 2017). Based on the connection

between the causal structure and the resulting data distribution, many causal discovery algorithms,

including the one we present here, exploit the independence structure seen in the data to infer the

underlying causal relations. One of the central concepts required for this inference is the notion of d-

separation (Geiger et al. 1990), which can be thought of as the graphical counterpart to probabilistic

independence. It is based on the notion of a blocked path:

Definition 1 (Blocked paths). A path between nodes i and j is unblocked with respect to a

set of nodes C if every collider k on the path is in C or has a descendant in C, and no other nodes

on the path are in C. Otherwise the path is blocked with respect to C (Pearl 2000).

Definition 2 (d-separation). Two nodes i and j are d-separated with respect to a conditioning

set C (denoted by i? jjC) if all paths between them are blocked, otherwise they are d-connected

given C (denoted by i 6? jjC) (Pearl 2000).

To illustrate the definitions above, note that there are two paths between m and l in Figure 1:

m! i! l and m! i! j! l. By Definition 1, both of these paths are unblocked with respect to

the empty conditioning set C = fg, which by Definition 2 implies that m and l are d-connected

with respect to C = fg. Now consider the conditioning set C = fig. By Definition 2, conditioning on

node i blocks these paths because node i is a noncollider on both of these paths. Since there does

not exist an unblocked path between nodes m and l with respect to the conditioning set C = fig, it

follows that m and l are d-separated with respect to the conditioning set C = fig.

1 Given the correspondence between graphical structure and probability distribution, we will use the terms “node”
and “variable” interchangeably.

5

With this definition in hand, we can now put (conditional) d-separation in correspondence with

(conditional) independence. Following convention, we use the single turnstile (?) to denote d-

separation and the double turnstile (??) to denote probabilistic independence. There are two stan-

dard assumptions that are used to achieve this correspondence: the causal Markov condition and

the faithfulness condition.

Assumption 1 (Causal Markov). If node i is d-separated from node j given conditioning set

C in graph G = (V;E) with i; j 2 V and C � V n fi; jg, then i is probabilistically independent of j

given C in the distribution over the graph PG(V):

i? jjC in G =) i?? jjC in PG(V): (1)

Assumption 2 (Faithfulness). If variable i is probabilistically independent of variable j given

conditioning set C in the distribution over the graph PG(V), then i is d-separated from j given C in

graph G = (V;E):

i?? jjC in PG(V) =) i? jjC in G: (2)

The (global) causal Markov condition, as we have stated it here, follows from how we have defined

the probability distribution in terms of the causal structure (Pearl 2000). In contrast, the faithfulness

condition, which is the converse to the Markov condition, represents an additional assumption, as it

ensures that an independence in the data is actually due to a d-separation (rather than, for example,

two causal pathways cancelling each other out (Spirtes et al. 2000, Uhler et al. 2013)). Together,

the causal Markov and faithfulness conditions provide a tight correspondence between (conditional)

probabilistic independence and (conditional) d-separation.

Remark 1. Under the causal Markov and faithfulness conditions, a (conditional) independence

in PG(V) is present if and only if there is a corresponding (conditional) d-separation in DAG G.

This correspondence is the basis for many causal discovery methods, as one can now use the inde-

pendence structure in the data to constrain the graph structure.

2.2. Extension to Cyclic Models with Latent Confounding

We introduced the key concepts in the context of directed acyclic graphs (DAGs). In the remainder

of the paper, we focus on a more general class of graphs that permit cycles and can represent

confounding due to unobserved variables. For such graphs, many of the key ideas above can be

generalized, but they require much more book-keeping and are much less intuitive. We briefly outline

the required adjustments here.

6

Figure 2 Example graphs: (a) A directed acyclic graph (DAG). (b) The more general acyclic directed mixed graph

(ADMG), which does not contain cycles, but contains bi-directed edges to represent unmeasured confounding. (c) A

directed mixed graphs (DMG) that allows for both cycles and confounding.

A cyclic model, as its name suggests, permits feedback cycles in the causal structure. In this

setting, the edge set E in G = (V;E) may contain an edge in each direction between a pair of nodes.2

These cycles do not represent backwards-in-time causation, but should instead be understood as

shorthand notation for causal feedback that is unravelled over time; for example, it! jt+1! it+2.

One of the simplest and most well-studied cyclic causal models is the linear Gaussian cyclic model

given by x(t) = Bx(t� 1) + �, where x is a vector representation of the variables in V , � is a vector

of independent errors, and B is a square matrix representing the (possibly cyclic) causal effects

among the variables (Hyttinen et al. 2012). Under appropriate conditions, the model converges to

an equilibrium, which allows cycles such as it! jt+1! it+2 to be represented more simply without

time indices as i
!
 j.3 For this type of linear Gaussian cyclic model, the Markov and faithfulness

conditions still imply the correspondence between (conditional) d-separation and (conditional) inde-

pendence (Remark 1). However, unlike the acyclic case, the correspondence between d-separation

and probabilistic independence does not hold in general in cyclic models.

Remark 2. In the cyclic case, the correspondence between d-separation and probabilistic inde-

pendence holds for linear Gaussian causal models, but not in general (Spirtes 1995).

We will restrict consideration of cyclic models to the linear Gaussian case in order to utilize

the correspondence described in Remark 1.4 In the acyclic case, our results are not restricted to a

particular parameterization.

To represent confounding between a pair of variables (i; j) due to an unobserved common cause

c, the graphical framework is extended to include the bi-directed edge i$ j (see Figure 2(b) and

(c)). Here, i$ j is shorthand for i c! j, where c is an unobserved variable (c =2 V). The graph

G = (V;E) then consists of a set of variables V and edges E such that every pair (i; j) is permitted to

2 In principle there can also be edges from a node to itself, but such self-loops are redundant for linear Gaussian cyclic
models that we consider here (Hyttinen et al. 2012).
3 In the general case with arbitrary initial conditions, a sufficient and necessary condition for convergence to an
equilibrium is for all eigenvalues of B to be less than 1 (Hyttinen et al. 2012).
4 An extension to more general parameterizations for cyclic models is beyond the scope of this paper – see the notion
of �-separation in Forré and Mooij (2018) for a thorough treatment.

7

contain directed edges (!;), possibly in both directions, and a bi-directed edge ($) to represent

unmeasured confounding.5 Colliders remain defined as before, but now they can also arise from

bi-directed edges incident on the “colliding” variable.

The model class that includes bi-directed edges but disallows cycles is often referred to as acyclic

directed mixed graphs (ADMGs) (Figure 2(b)). Our focus will be on the general model class of

directed mixed graphs (DMGs), where both bi-directed edges and cycles are allowed (Figure 2(c)).

D-separation can be naturally extended to DMGs, one just has to keep track of a larger set of

possible edges, since any pair of variables can now be connected by three different edge types. In the

cyclic linear Gaussian model described above, confounding can be represented using a non-diagonal

covariance matrix for the error terms, resulting in correlated errors. For such linear Gaussian mod-

els with correlated errors the correspondence between d-separation and probabilistic independence

(Remark 2) still holds (Spirtes 1995).

2.3. Constraint-Based Causal Discovery

Our proposed method belongs to a class of causal discovery algorithms known as constraint-based

methods (see Maathuis et al. (2010), Spirtes and Zhang (2016) and Eberhardt (2017) for reviews).

These methods involve performing conditional independence tests on the data to construct condi-

tional (in)dependence “constraints”, that are used to search for a causal graph that satisfies these

constraints to the extent possible. Here, each input constraint is the statement i?? jjC or i 6?? jjC
for some i; j 2 V and C � V n fi; jg, which implies a d-separation or d-connection that the output

graph must satisfy (by Remark 1).

One of the first and most well-known constraint-based methods is the PC-algorithm by Spirtes

et al. (2000), which is restricted to searching for the equivalence classes of DAGs. Alternative

methods generalize the search space to acyclic graphs with unmeasured common causes (Spirtes

et al. 2000) and cyclic causal models (albeit without unmeasured confounding) (Richardson 1996). A

number of variants of these methods have been developed in the literature with the aim of improving

computational efficiency or reliability (Colombo et al. 2012, Teramoto et al. 2014). Constraint-based

methods have been shown to be asymptotically correct for their respective background assumptions,

meaning in the large-sample limit they discover the true data-generating graph up to an equivalence

class (see §3.3 for details) (Spirtes et al. 2000, Zhang and Spirtes 2002, Solus et al. 2017).

An advantage of constraint-based causal discovery is that it allows the user to completely sep-

arate the statistical challenge of establishing the (conditional) independence constraints from the

combinatorial inference of finding graphs that are consistent with them. Thus, one can choose inde-

pendence tests that are suitable for the particular domain and adopt their preferred correction

5 Only one bi-directed edge is used to represent all possible confounders between a pair of variables. A confounder of
n observed variables is represented by

(
n
2

)
bi-directed edges among the n variables.

8

method for multiple hypothesis testing. Such decisions will be informed by the sample size, the

number and dimensionality of the variables, whether the variables are categorical or continuous, or

what assumptions one is willing to make about the parametric form of the causal relations.

Our paper is most closely related to constraint-based methods that allow for both cycles and

unmeasured confounders. These methods encode d-separation constraints obtained from indepen-

dence tests in a logical representation, and either use Boolean satisfiability solvers (Hyttinen et al.

2013), answer set solvers (Hyttinen et al. 2014, 2017) or custom branch-and-bound algorithms

(Rantanen et al. 2018, 2020) to identify a graph that minimizes the (weighted) sum of violated

d-separation constraints. Because focusing on DMGs dramatically expands the search space of pos-

sible graphs, the discovery task can be computationally challenging for all of these methods, even

when the number of variables is modest (i.e., fewer than 10).

To overcome limited scalability, other causal discovery methods have considered simplifications

such as (i) only searching for causal ancestry relations, rather than direct causal connections (Magli-

acane et al. 2016)), (ii) only allowing unmeasured confounders, but no cycles (Triantafillou and

Tsamardinos 2015), or (iii) by weakening the faithfulness assumption (Zhalama et al. 2017). Instead

of imposing restrictive assumptions, our approach maintains tractability by iteratively expanding the

search space of possible graphs, and optimizing the solution using two alternating integer programs.

There are a small number of existing methods for causal discovery that are explicitly based on

integer optimization (Jaakkola et al. 2010, Cussens 2012, Bartlett and Cussens 2017, Park and

Klabjan 2017, Kucukyavuz et al. 2020, Manzour et al. 2021). These methods all focus on DAGs,

and thus do not accommodate feedback cycles or unobserved confounders. A second distinction is

in the formulation of the problem – ours is a constraint-based approach, and accordingly searches

for a graph that satisfies conditional (in)dependencies seen in the data. In contrast, the papers cited

above present score-based methods, which typically involves maximizing the likelihood of the data

under a given DAG. Such a formulation of the search problem is not easily generalized to handle

cyclic and confounded models.

3. Path-Based Model for Causal Discovery

Our model takes as input a set of (conditional) independence and dependence relations over the

variables V . Assuming the Markov and faithfulness conditions (and for the cyclic case, that the

parameterization is linear Gaussian), these relations imply a corresponding set of d-separation and

d-connection relations that must be satisfied by the output graph (Remarks 1 and 2). At a high

level, our model conceptualizes the search space of DMGs as combinations of paths, and aims to

select a set of paths such that the resulting graph minimizes violations of the the input d-separation

and d-connection constraints.

9

3.1. Adjusted D-Separation

Our approach requires a slight simplification to the definition of d-separation (Definition 2), which

is obtained by omitting one of the subconditions in the definition of blocked paths (Definition 1):

Definition 3 (Blocked paths (no descendants of colliders)). A path between nodes i

and j is unblocked with respect to a set of nodes C if every collider k on the path is in C, and no

other nodes on the path are in C. Otherwise the path is blocked with respect to C.

Definition 3 ignores the unblocked paths obtained through conditioning on descendants of colliders

(see Definition 1). The statement of d-separation (Definition 2) remains the same, but its definition

is slightly adjusted to use Definition 3 instead of Definition 1 for blocked paths. We will refer to this

adjusted definition as d-separation� and denote it by i?�G jjC to distinguish it from the standard

d-separation notation i ?G jjC. In the remainder of the paper, we will assume Definition 3 when

invoking blocked or unblocked paths, unless otherwise stated.

Overall, this small change to the definition of blocked paths entails a slight loss in inferential

power with respect to the correspondence in Remark 1 (See Appendix A.2). However, it allows us

to determine a d-connection purely with respect to the nodes on a path (and not their descendants),

which greatly improves tractability.

3.2. Model Formulation

With the adjustments above in hand, we can now develop our model. Given a data set over a

set of variables V , we denote by C � V a generic set of conditioning variables. We then define

Aij = fC j C � V nfi; jgg to be the set of all possible conditioning sets C for the pair (i; j). We refer

to the nth such conditioning set in Aij as Cn
ij 2Aij. Then, let Dij = fC 2Aij j i6??jjCg be the set of

all conditioning sets such that i and j are statistically dependent conditional on C; and similarly,

Iij = fC 2 Aij j i??jjCg to be the set of all conditioning sets such that i and j are statistically

independent conditional on C. We assume that each pair of variables (i; j) is either dependent or

independent given a particular conditioning set C. Thus, for all pairs (i; j) we have Dij [Iij =Aij

and Dij \ Iij = ;. We use Nij, ND
ij and N I

ij as index sets for Aij, Dij and Iij, respectively, where

Nij =ND
ij [N I

ij.

Based on the equivalence established in Remark 1, the sets Dij and Iij encode the d-separation�

and d-connection� relations found in the data. A graph G satisfies the d-connection implied by

C 2Dij if i 6?�G jjC; similarly, G satisfies the d-separation implied by C 2 Iij if i?�G jjC. Our objective

is to find a directed mixed graph G that minimizes the number of d-separation� and d-connection�

constraints found in the data that are not satisfied in G; that is, we want to find a graph G 2 O
where

O=

8<:G
����G 2 arg min

G

0@X
i;j2V

X
C2Dij

1(i?�G jjC) +
X

i;j2V

X
C2Iij

1(i 6?�G jjC)

1A9=; : (3)

10

We formulate the problem of searching for a graph in O as an integer program. Next, we provide

a rigorous definition of a path in the cyclic setting, which is central to our method:

Definition 4 (Path). Consider a node set V , a set of edge types T = f!; ;$g and an edge

set E of triples (v1; t; v2) where v1; v2 2 V and t 2 T . Then a path p from node i to node j where

i; j 2 V and i 6= j is a sequence of edges p= (e1; : : : ; e‘) such that (i) ek 2E for all 1� k� ‘, (ii) e1

starts with node i and e‘ ends with node j, (iii) consecutive edges are connected, and (iv) nodes

on the path do not repeat.

We define a path’s length ‘p as the number of edges in the sequence. Note that condition (iv) in

Definition 4 implies that the longest possible path in any graph has length jV j�1.6 Next, let Pij(~E)

be the set of all paths between nodes i and j over a given edge set ~E (as per Definition 4), and

define

P(~E) =
[

f(i;j)2V :i 6=jg

Pij(~E)

as the set of all paths one can construct between the pairs of nodes in V using ~E. For each p2P(~E)

and e2 ~E, let �pe be a parameter where �pe = 1 if and only if edge e belongs to path p, and let �n
ijp

be a parameter where �n
ijp = 1 if and only if the path p 2 Pij(~E) is unblocked with respect to the

conditioning set Cn
ij 2Aij.

Next, we define three types of binary decision variables. Let x 2 f0;1gj ~Ej determine edges in the

graph G = (V;E) with E � ~E, where xe = 1 if and only if edge e 2E. Similarly, let y 2 f0;1gjP(~E)j

determine paths in the graph G, where yp = 1 if and only if path p 2 P(E). Lastly, for each pair

i; j 2 V , we define the error variables zij 2 f0;1gjNij j, where zn
ij = 1 if and only if the d-separation�

relation in G does not correspond to the independence relation found in the data (that is, i?� jjCn
ij

in G but Cn
ij 2Dij, or i 6?� jjCn

ij in G but Cn
ij 2 Iij).

We can now define the constraints and objective function of the model. First, we require two

constraints that enforce coherence between the edge and path variables x and y:

yp �
X
e2 ~E

�pexe� (‘p� 1); p2P(~E); (4a)

‘pyp �
X
e2 ~E

�pexe; p2P(~E): (4b)

The first constraint ensures that if all the edges on a path p are selected, then path p is present in

the graph. The second constraint ensures that path p can only be present in the graph if all the

edges on path p are selected. Next, note that a path p is blocked with respect to a set Cn
ij if and

6 A DMG may technically contain a “route” between two nodes that has a length greater than jV j � 1 due to the
cycles. However, as we show in Appendix A.1, all d-separation relations can be accurately captured by paths that
conform to Definition 4. While this is a fairly technical result, it has important consequences the correctness of our
method, because it allows us to restrict attention to paths with non-repeating nodes without loss of inferential power.

11

only if �n
ijp = 0. Thus, to satisfy all d-separation� relations, we would ideally like to construct a

graph such that for any i; j 2 V , �n
ijpyp = 0 holds for all n 2N I

ij and p 2 Pij(~E). However, because

the set of input d-separation� and d-connection� relations may not be jointly satisfiable, we allow

for possible violations by introducing the error variable zn
ij:

�n
ijpyp � zn

ij; n2N I
ij; p2 Pij(~E); i; j 2 V: (5)

For each conditioning set Cn
ij 2 Iij, constraint (5) forces zn

ij = 1 if i and j are not d-separated� with

respect to Cn
ij. Similarly, i and j are d-connected� with respect to Cn

ij 2Dij if and only if there is

at least one unblocked path, or equivalently,
P

p2Pij(~E)�
n
ijpyp � 1. By again allowing for violations

by introducing the error variable zn
ij, we obtain the constraintX

p2Pij(~E)

�n
ijpyp � 1� zn

ij; n2ND
ij ; i; j 2 V; (6)

which forces zn
ij = 1 if i and j are not d-connected� with respect to Cn

ij 2Dij. Note that constraint

(5) and (6) are defined over N I
ij and ND

ij , respectively, so that each zn
ij variable appears in one

constraint only. It follows from (5) and (6) that the total number of violated d-connection� and d-

separation� relations is given by
P

i;j2V

P
n2Nij

zn
ij. Minimizing these violations over the constraints

(4)–(6) yields the optimization problem:

minimize
x;y;z

X
i;j2V

X
n2Nij

zn
ij

subject to (4)� (6);

CausalIP(~E) : yp 2 f0;1g; p2P(~E);

zn
ij 2 f0;1g; n2Nij; i; j 2 V;

xe 2 f0;1g; e2 ~E:

We refer to the formulation above as CausalIP(~E), where ~E is the set of edges the model has

access to. If (x;y;z) is a solution to CausalIP(~E), then the graph returned by the model is given

G(x) = (V;E) where E = feje2 ~E and xe = 1g. In Appendix B, we show how our approach can also

be restricted to DAG- or ADMG-search (although more scalable methods exist for those spaces).

Next, we address the theoretical performance of CausalIP(~E).

3.3. Discovery Guarantee

In general, the independence structure seen in observational data does not uniquely identify the

underlying causal graph. Two graphs that have the same independence structure (and thus the same

d-separation relations) are said to be Markov equivalent.

12

Definition 5 (Markov equivalence). DMG G1 = (V;E) is Markov equivalent to

DMG G2 = (V;E0) if and only if G1 and G2 have identical d-separation relations:

G1 �G2 if and only if i?G1
jjC () i?G2

jjC 8i; j 2 V and C � V n fi; jg: (8)

Two graphs that are Markov equivalent cannot be distinguished by their d-separation relations

alone.7 In the context of causal discovery, the Markov equivalence class of the true, data-generating

graph is the limit of what can be learned about the causal structure from the independence structure

in the data (Geiger and Pearl 1988, Meek 1995).8 In parallel with our adjustment to d-separation

in §3.1, our focus will be on Markov equivalence�, which we define by replacing d-separation with

d-separation� in Definition 5, and also denote by a star (�) (e.g., G1 �� G2 states G1 and G2 are

Markov equivalent�). See Appendix A.2 for an example of two graphs that are Markov equivalent�

but not Markov equivalent.

We now show that, under appropriate conditions, CausalIP correctly uncovers a graph in the

Markov equivalence� class of the true causal graph. We assume that we have access to the results

of all possible independence tests over a given set of variables, and that the test results correctly

describe an underlying ground truth DMG GT :

Assumption 3 (Complete oracle). Let GT be the true data-generating graph. For all i; j 2 V
and C � V n fi; jg: (i) C 2 Dij if and only if i 6?? jjC in PGT

(V), and (ii) C 2 Iij if and only if

i?? jjC in PGT
(V).

Assumption 3 allows us to separate the discovery task, handled by CausalIP, from the statistical

inference of the conditional independence tests. The assumption also describes the model inputs

(i.e., Iij and Dij) that would be obtained in the large-sample limit, which we use to prove the

asymptotic correctness of our model. Next, let

Ec = fi j; i! j; i$ j; 8i; j 2 V : i 6= jg (9)

be the set of all possible directed and bi-directed edges in a complete graph over V . We can now

state the main result of this section:

Proposition 1. Let Gc be the graph returned by CausalIP(Ec) given Assumption 3. Then (i)

Gc 2 O (i.e., Gc minimizes the objective in (3)) and (ii) Gc �� GT (i.e., Gc and GT are Markov

equivalent�).

7 In the acyclic, causally sufficient case (i.e., for DAGs), the features shared by Markov equivalent DAGs can be easily
characterized: two DAGs are Markov equivalent if and only if they share the same skeleton (unoriented adjacency
structure) and the same unshielded colliders (Verma and Pearl (1991)). For the general class of DMGs that we are
considering here, no such compact characterization of Markov equivalent graphs exists.
8 To further distinguish Markov equivalent graphs requires experimental intervention, stronger background assump-
tions, or that one can make assumptions about the data distribution that go beyond its independence structure (e.g.,
about particular parameterizations; see e.g. Eberhardt (2017) for an overview).

13

Figure 3 Collider chains (a) and non-collider chains (b).

Proposition 1 confirms the asymptotic correctness of CausalIP (all proofs are contained in

Appendix E). When V is small, it is possible to solve CausalIP over the complete set of edges

Ec using off-the-shelf integer programming solvers. However, this approach is not viable even for

moderately sized graphs (jV j> 6), because CausalIP(Ec) searches over all possible paths induced

by the set Ec, which explodes combinatorially in jV j. For larger graphs, a more efficient way of

selecting paths is required.

4. Edge Generation Algorithm

Rather than attempt to solve CausalIP(Ec) over the complete set of edges Ec, we build an iterative

procedure that efficiently constructs a set of candidate edges ~E �Ec. The selection of new edges is

based on the observation that every path p (with ‘p � 2) can be represented as a concatenation of

node triples (i; j; k) that either form a collider at j or a non-collider at j. We refer to such a triple

as a collider chain or a non-collider chain, respectively (see Figure 3). Next, we present necessary

conditions for the presence of collider and non-collider chains in the underlying causal graph:

Lemma 1 (Necessary conditions for chains). Suppose Assumption 3 holds and consider a

triple of nodes (i; j; k) in a graph G �� GT . Then

(i) If there exists a collider chain over (i; j; k) in G, then Iij = Ijk = ; and j 62C for all C 2 Iik.

(ii) If there exists a non-collider chain over (i; j; k) in G, then Iij = Ijk = ; and j 2 C for all

C 2 Iik.

Lemma 1 formalizes the intuition that every triple along every path of the underlying causal graph

will leave its corresponding signature in the independence structure of the data. These signatures

serve as indicators of the potential presence of the corresponding chains in the graph. The conditions

in Lemma 1 do not guarantee that the underlying graph contains the corresponding chain, because

they can also be generated by other causal structures (see Figure 4). In other words, if a triple (i; j; k)

14

satisfies the conditions in Lemma 1(i) or (ii), we interpret this as strong (but not conclusive) evidence

of the corresponding chain’s presence in the underlying causal graph. Using this characterization of

chains, we construct the following two sets:

S = f(i; j; k)jIij = Ijk = ; and j 62C for all C 2 Iikg; (10)

�S = f(i; j; k)jIij = Ijk = ; and j 2C for all C 2 Iikg: (11)

Here, S and �S contain all triples (i; j; k) whose independence structure is indicative of a collider and

non-collider chain, respectively. These sets are not disjoint in general: A triple (i; j; k) where (i; k)

are never conditionally independent (i.e., Iik = ;) will be included in both S and �S.

Figure 4 (a) The triple (i; j; k) satisfies all conditions in Lemma 1(i) but does not form a collider chain. (b) The

triple (i; j; k) satisfies all conditions in Lemma 1(ii) but does not form a non-collider chain.

The sets S and �S contain triples that plausibly form chains in the underlying graph, and thus

indicate plausible edges as well. We therefore focus on edges represented by the sets S and �S when

constructing the set of candidate edges ~E.

We further refine our search for edges by also considering d-connection� or d-separation� relations

that are unsatisfied by an incumbent solution. For an initial set of candidate edges ~E, let (x;y;z) be

the solution to CausalIP(~E) with the corresponding graph G(x). The error variable z tracks those

d-separations� and d-connections� that are inconsistent with the independence and dependence

findings in the data. Since our method will incrementally add edges to ~E, we focus on those errors

where a conditional dependence found in the data is not yet matched by a d-connection� in the

graph G(x). Specifically, we are interested in the pairs (i; k) where we have Cn
ik 2 Dik based on

the test results, but the d-connection i 6?� kjCn
ik is not satisfied in G(x), and consequently zn

ik = 1.

Accordingly, for each pair (i; k), we can define the set

ND
ik (z) = fn2ND

ik jzn
ik = 1g (12)

to represent the d-connection� relations for (i; k) that are implied by the conditional independence

tests but violated by the current graph G(x). Since our goal is to select new edges to add to ~E, we

15

have to identify edges that are not already in ~E. To that end, let Eijk and �Eijk be the sets of all

possible edges in a chain over (i; j; k), in which j is a collider or non-collider, respectively:

Eijk =
�
i! j; i$ j; j k; j$ k

	
; (13a)

�Eijk =
�
i j; i! j; i$ j; j k; j! k; j$ k

	
(13b)

Here, Eijk is the set of edges that define the collider chains in Figure 3(a), and �Eijk is the set of

edges that define the non-collider chains in Figure 3(b). We can now identify triples that satisfy two

criteria: (i) some of their edges have not yet been considered (i.e., Eijk 6� ~E or �Eijk 6� ~E), and (ii)

in the incumbent graph G(x), i and k are d-separated� for some conditioning set Cn
ik (i?� kjCn

ik),

even though test results indicate that i and k are dependent for that conditioning set (i 6?? kjCn
ik).

We now define two sets that contain triples that satisfy these two criteria:

	(z) = f(i; j; k) j there exists n2ND
ik (z) such that j 2Cn

ik and Eijk 6� ~Eg; (14a)

�	(z) = f(i; j; k) j there exists n2ND
ik (z) such that j =2Cn

ik and �Eijk 6� ~Eg: (14b)

The sets 	(z) and �	(z) need not be disjoint. They only differ in their check of whether j belongs

to a conditioning set Cn
ik that shows i and k to be dependent in the data. This specific check on

the role of j ensures that if we now combine the 	-sets with the S-sets, the collider/non-collider

chains associated with the triples of the respective sets are candidates to address the inconsistencies

identified by z. We can finally define the sets that are the focal points of our search for new edges:

S(z) = S \	(z); (15a)

�S(z) = �S \ �	(z); (15b)

Intuitively, S(z) and �S(z) represent chains that we have good reason to think exist in the graph

(because of S and �S) and correspond to edges useful for satisfying a required d-connection� that is

violated by G(x) (because of 	(z) and �	(z)).

We have thus far established that edges among the triples in S(z) and �S(z) are strong candidates

for inclusion in the candidate set ~E to send to CausalIP(~E). We now address the problem of how

to actually select edges from these sets to pass to CausalIP(~E).

4.1. Generating Candidate Edges

Since the tractability of CausalIP(~E) suffers if the edge set ~E is too large, we would ideally like to

select edges that can reconcile unsatisfied d-connections�, without needlessly introducing redundant

edges. To that end, our approach will be to select the smallest number of edges such that at least

one edge from each triple in S(z) and �S(z) is selected. This minimal edge selection problem is itself

16

a combinatorial optimization problem, because the chains in S(z) and �S(z) may share common

edges. Accordingly, we formulate it as an integer program, which we call NewEdgesIP.

There are three types of edges that may exist between every pair of nodes (i; j): i! j; i j and

i$ j. We index these three edge types by t 2 f1;2;3g, respectively. Let wt
ij be a binary decision

variable where wt
ij = 1 if a type t edge between nodes i and j is selected to be included in ~E, and

wt
ij = 0 otherwise. Let �t

ij be a parameter where �t
ij = 1 if ~E contains a type t edge between nodes

i and j, and �t
ij = 0 otherwise.

We now define the constraints and objective of NewEdgesIP. To select edges from S(z), we

include the following constraints:X
t2f1;3g

(wt
ij +�t

ij)� 1; (i; j; k)2 S(z); (16a)X
t2f2;3g

(wt
jk +�t

jk)� 1; (i; j; k)2 S(z); (16b)X
t2f1;3g

wt
ij +

X
t2f2;3g

wt
jk � 1; (i; j; k)2 S(z): (16c)

The first two constraints construct a collider chain over (i; j; k): the first ensures that there is either

a new or existing edge between i and j with an arrowhead at j, and the second ensures there is

either a new or existing edge between k and j with an arrowhead at j. Then, the third constraint

forces at least one new edge to be selected from the candidate collider chain. Similarly, to select

edges from �S(z), we include: X
t2f1;2;3g

(wt
ij +�t

ij)� 1; (i; j; k)2 �S(z); (17a)X
t2f1;2;3g

(wt
jk +�t

jk)� 1; (i; j; k)2 �S(z); (17b)

w2
ij +�2

ij +w1
jk +�1

jk � 1; (i; j; k)2 �S(z); (17c)X
t2f1;2;3g

(wt
ij +wt

jk)� 1; (i; j; k)2 �S(z): (17d)

Analogous to (16a) and (16b), the first three constraints above construct a non-collider chain over

(i; j; k), using either existing or new edges: The first two constraints ensure an edge exists between

both (i; j) and (j; k), and the third constraint ensures that j is a non-collider. Then, the fourth

constraint forces at least one new edge to be selected from the constructed non-collider chain.

The final group of constraints we include are:

wt
ij +�t

ij � 1; i; j 2 V; t2 f1;2;3g; (18a)

w1
ij =w2

ji; i; j 2 V; (18b)

w3
ij =w3

ji; i; j 2 V: (18c)

17

The first constraint ensures we do not select an edge that is already included in ~E. The second

constraint enforces that i! j and j i are the same edge, and the third constraint enforces that

i$ j and j$ i are the same edge.

Our objective is to minimize the total number of new edges added to the set of candidate edges
~E. Combining this objective with the constraints (16)–(18) and forcing each wt

ij to be binary yields

the following formulation:

minimize
w

X
i;j2V

X
t2f1;2;3g

wt
ij

NewEdgesIP(S(z); �S(z)): subject to (16)� (18)

wt
ij 2 f0;1g; i; j 2 V; t2 f1;2;3g:

The output of this formulation is a set of new edges Enew to be added to ~E, where Enew contains a

type t edge between nodes i and j if and only if wt
ij = 1 at an optimal solution to NewEdgesIP. In

summary, NewEdgesIP generates edges efficiently by searching for edges that satisfy the following

criteria:

(i) the edges belong to collider or non-collider chains for which we have strong evidence of their

presence in the true graph based on the observed independence and dependence relations (i.e.,

the chains belong to S or �S), and

(ii) The edges belong to collider or non-collider chains whose inclusion in the graph would satisfy

a d-connection relation violated by the incumbent solution (i.e., the chains belong to 	(z) or
�	(z)).

Having defined the key components of our method, we now present a summary of the algorithm

and prove its correctness.

4.2. Algorithm Summary and Main Result

Algorithm 1 provides an overview of the main steps. In the main loop, the algorithm iterates

between calling the sub-algorithm UpdateEdges to generate new edges to add to ~E, and solving

CausalIP(~E) to identify unsatisfied d-separation and d-connection relations. The algorithm ter-

minates and returns the graph G� when all d-connection and d-separation relations are satisfied, or

a generic alternate termination criterion (represented by Term in Algorithm 1) is satisfied.

Algorithm 2 describes the UpdateEdges sub-algorithm that is used to generate new edges,

which primarily involves solving NewEdgesIP. In the case where S(z) = �S(z) = ;, UpdateEdges

randomly picks triples from S and �S to pass to NewEdgesIP. To capture edges that may not

belong to any chain in the true graph (i.e., those that do not correspond to any member of S or �S),

we initialize the set of candidate edges as ~E0:

~E0 = fi! j; i j; i$ j j Iij = ;;Dik =Djk = ; for all k 2 V n fi; jgg:

18

Algorithm 1: EdgeGen.

Input: V , S, �S.
Output: G�.
Initialize: ~E = ~E0,
1. Solve CausalIP(~E) to obtain solution (x;y;z).
2. while

P
i;j2V

P
n2Nij

zn
ij > 0 and Term=false:

Call UpdateEdges to update ~E.
Solve CausalIP(~E) to obtain solution (x;y;z).

3. Set E� = fe2 ~Ejxe = 1g and return G� = (V;E�).

Algorithm 2: UpdateEdges sub-algorithm.

Input: S(z); �S(z); S; �S; ~E.
Output: Updated candidate edges ~E.
1. if S(z)[�S(z) 6= ; :

Solve NewEdgesIP(S(z); �S(z)) to obtain Enew.
else:
Pick any (i; j; k)2 S such that Eijk 6� ~E. Set R(z) = (i; j; k).
Pick any (i; j; k)2 �S such that �Eijk 6� ~E. Set �R(z) = (i; j; k).
Solve NewEdgesIP(R(z); �R(z)) to obtain Enew.

2. Update ~E ~E [Enew.

In the setting where there exists a directed mixed graph that can satisfy all input constraints,

EdgeGen is guaranteed to terminate with such a graph.

Proposition 2. Under Assumption 3, EdgeGen terminates with
P

i;j2V

P
n2Nij

zn
ij = 0.

When the input relations are not jointly satisfiable, we require an alternate termination condition.

A straightforward approach, which we use in our numerical experiments, is to terminate EdgeGen

after a fixed number of iterations with no improvement in the number of unsatisfied input constraints

(i.e., the optimal objective of CausalIP(~E)). We can now formally state our main theoretical

result, which builds on Proposition 2:

Theorem 1 Let G� be the graph returned by EdgeGen given Assumption 3. Then (i) G� 2O (i.e.,

G� minimizes the objective in (3) and (ii) G� �� GT (i.e., G� and GT are Markov equivalent�).

Theorem 1 states that EdgeGen, which is far more scalable than a brute-force solution of

CausalIP(Ec), preserves the same discovery guarantees given in Proposition 1.

Similar to Proposition 1, Theorem 1 is an asymptotic guarantee, due to its dependence on Assump-

tion 3. In the more realistic finite-sample setting where Assumption 3 does not hold, the input

relations may not be jointly satisfiable. In this setting, most constraint-based methods that also

allow for cycles and confounders aim to find a graph that minimizes (weighted) violations of the

19

input constraints (Hyttinen et al. 2013, 2014, 2017, Rantanen et al. 2020). However, exactly mini-

mizing such violations requires searching over the entire space of DMGs, which, in the pursuit of

improved scalability, we deliberately avoid (by only considering a subset of possible edges ~E instead

of the complete edge set Ec). As a consequence, in the finite-sample setting where Assumption 3

does not hold, our approach can be viewed as a heuristic for minimizing the number of unsatis-

fied dependence and independence relations. As demonstrated in the numerical results below, the

advantage of this heuristic approach is that it scales to instances that are intractable for provably

optimal methods from the literature, while maintaining reasonable accuracy. Further, in the setting

where Assumption 3 does hold, our method outperforms appropriate benchmark algorithms by an

order of magnitude with respect to solution time, without sacrificing optimality.

4.3. Computational Performance

In this section we examine the computational performance of EdgeGen using synthetic data. To

serve as performance benchmarks, we also implemented the causal discovery methods described in

Hyttinen et al. (2013) and Hyttinen et al. (2014), both of which also allow for feedback loops and

latent confounders.9 Hyttinen et al. (2013) solve the discovery problem using a Boolean satisfiability

solver, and Hyttinen et al. (2014) propose a solution method based on answer set programming; for

conciseness, we will refer to these two approaches as SAT and ASP, respectively. We also created

an additional benchmark by combining the logical encoding developed in Hyttinen et al. (2013) and

the solver used in Hyttinen et al. (2014), which we refer to as SAT+ASP.

4.3.1. Setup. We conducted two sets of numerical experiments. First, we considered a conflict-

free setting in which there are no conflicts among the input d-separation� and d-connection� relations

(i.e., Assumption 3 holds). Because all four methods are guaranteed to return a graph that is Markov

equivalent� to the ground truth graph GT in this setting, we focus our comparison exclusively on

solution times. Second, we considered a conflicted setting where the input constraints are not jointly

satisfiable (i.e., Assumption 3 does not hold). In this setting, the SAT algorithm does not apply, so

we compare EdgeGen with ASP with respect to solution time and accuracy.

For the conflict-free case, we generated 50 random directed graphs for jV j = 5;6; : : : ;15. These

graphs were generated to have an average degree of 3, and were permitted to have cycles and

unobserved confounders. In all generated graphs, no collider had a descendant (so that there was no

distinction between d-separation and d-separation�). For each graph, we computed all d-separation�

and d-connection� relations, which are the required inputs for all four methods. Note that in the

9 Hyttinen et al. (2017) and Rantanen et al. (2020) are also relevant benchmarks here, but we do not compare against
them because implementable code is not publicly available for those methods.

20

conflict-free setting, the data generation procedure is irrelevant, because we have direct knowledge

of the d-separation� and d-connection� relations of the ground-truth graphs.

For the conflicted case, we set up the experiment using the code from Hyttinen et al. (2014).

We generated 50 linear Gaussian models with jV j = 4;5; : : : ;9. In this setup, the independence

and dependence relations for each model are computed using correlation based t-tests over 500

samples, with a significance level of 0:01. We ran all experiments on an Intel Xeon E5-2680 machine

with 3.0GHz�24 processors and 20 GB of memory, and used Gurobi v8.0 to solve CausalIP and

NewEdgesIP. We terminated EdgeGen if no improvement in the objective was observed after

three consecutive iterations. Because all methods require the same pre-computation of d-separation

and d-connection relations (either from a ground truth graph or through conditional independence

tests), we isolate the performance of each of the four methods by reporting the solution times of

the discovery task only.

4.3.2. Results. Table 1 summarizes the average solution time over 50 instances for EdgeGen,

SAT, ASP and SAT+ASP, and demonstrates how the solution times increase in jV j for all four

methods. The impact of the instance size on solution time is most pronounced for SAT and ASP,

which are unable to scale past jV j= 11 and jV j= 13 nodes, respectively, consistent with the results

reported in those papers. The SAT+ASP procedure is superior to both of its constituent methods

with respect to solution time, although it cannot scale past jV j= 14 variables, also due to insuffi-

cient memory. By comparison, EdgeGen significantly reduces solution times (and memory usage),

allowing it to solve instances with jV j = 15 nodes in 30 seconds on average. We note here that a

brute-force solution of CausalIP(Ec) is unable to scale past jV j = 6 nodes (results not shown).

This suggests that the efficiency of EdgeGen is due to the edge generation procedure, and not a

consequence of formulating the discovery problem as an integer program.

An important observation in Table 1 is that the main computational bottleneck in SAT, ASP and

SAT+ASP is the discovery task itself. For these three benchmark methods, one could argue that

the time required to compute all d-separation� and d-connection� relations is irrelevant, because

they encounter memory issues during the discovery phase for larger instances. In contrast, Table

1 shows that EdgeGen scales gracefully with respect to solution time on the discovery task. We

did not test instances larger than jV j= 15 because the time required to compute the (exponential

number of) d-separation� and d-connection� relations becomes a bottleneck for all four methods

(e.g., for jV j= 16, they cannot be computed in under two hours).

Table 2 summarizes the results for the case with conflicted independence relations. Because SAT

and SAT+ASP are not designed to handle conflicts, we report the average solution time and accu-

racy of EdgeGen and ASP only. We report the accuracy of each algorithm using two performance

21

jV j EdgeGen SAT ASP SAT+ASP

5 0 0 0 0
6 0 1 0 0
7 0 5 1 0
8 0 29 2 1
9 0 102 6 2
10 0 436 22 6
11 1 1,524 61 18
12 2 - 207 41
13 4 - 638 109
14 12 - - 294
15 31 - - -

Table 1. Average solution times (nearest CPU second) over 50 random instances in conflict-
free setting. Dashes indicate instance could not solve due to insufficient memory (20GB).

metrics. Loss refers to the fraction of independence relations that are unsatisfied by the returned

graph (for EdgeGen, Loss is the value of the CausalIP objective at termination.) Error refers

to the fraction of d-separation and d-connection relations from the true graph that are unsatisfied.

This distinction arises because the independence relations obtained from data may not reflect the

d-separation relations of the true graph due to errors in statistical testing.

Table 2 shows that (the provably optimal) ASP algorithm outperforms EdgeGen with respect

to accuracy for small graphs, but cannot scale beyond jV j= 6. The EdgeGen algorithm scales up

to jV j = 9, and reaches the termination criterion in under 1 minute for a majority of instances,

although the solutions are not optimal. For jV j= 10, EdgeGen frequently reached the 1 hour time

limit, so we did not conduct comprehensive tests for graphs of that size. Note that ASP outperforms

EdgeGen with respect to both accuracy measures for small graphs. Two factors contribute to

this gap, both related to tractability: First, we chose to terminate EdgeGen before exhausting

all possible edges, which restricts the search space of possible graphs, and second, we weakened

the definition of d-separation (discussed in §1). More comprehensive experiments may reveal the

extent to which each of these factors contribute to the accuracy gap between EdgeGen and ASP.

Regardless, for larger instances (jV j � 6), the iterative approach of EdgeGen allows it to produce

graphs with reasonable accuracy for problem sizes where ASP is unable to return any graph at all.

In summary, Tables 1 and 2 suggest that EdgeGen offers substantial advantages over the bench-

marks with respect to both solution time and memory usage. The efficiency of our approach is most

apparent in the conflict-free setting (Table 1), where all methods produce optimal solutions, but

EdgeGen dramatically outperforms all three benchmarks. In the conflicted setting (Table 2), the

trade-off is clear – EdgeGen is less computationally demanding with respect to memory, allowing

it to handle larger instances, but unlike ASP, the output graphs are not provably optimal.

22

EdgeGen ASP
Solution time Accuracy Solution time Accuracy

jV j Average Median Loss Error Average Median Loss Error
4 0 0 0.05 0.13 0 0 0.04 0.12
5 1 0 0.10 0.12 0 0 0.07 0.11
6 5 0 0.16 0.18 56 31 0.11 0.15
7 171 2 0.17 0.19 - - - -
8 678 4 0.22 0.25 - - - -
9 1,077 25 0.24 0.27 - - - -

Table 2. Average and median solution times (rounded to nearest CPU second), loss, and
error over 50 random instances in conflicted setting. Dashes indicate instance could not solve
due to insufficient memory (20GB).

5. Feature Selection Using Markov Blankets

Thus far, our focus has been on constructing a complete causal graph over a set of observed variables,

in which all causal relations are deemed equally important. In empirical applications, however, there

may be a target variable whose causes are of particular interest to the researcher (e.g., income or

health outcomes). An intuitive approach to investigating causality with respect to a target variable

is to simply construct the graph over all observed variables, which then reveals causal pathways

related to the target variable. However, if the number of variables is large, this naive approach may

be computationally inefficient or intractable. Instead, if we can a priori identify a subset of variables

that collectively carry all useful information about the the target variable, then we can sidestep the

computational burden of learning causal relations among variables of secondary importance. The

concept of a Markov blanket is a formalization of this idea:

Definition 6 (Markov blankets). The Markov blanket of a target variable T , MB(T), is a

minimal set of variables in V n fTg such that

i?? T jMB(T) for all i2 V n fMB(T); Tg: (20)

Given a target variable T , a Markov blanket MB(T) is the smallest set of variables such that all

other variables are probabilistically independent of T conditional on MB(T). In machine learning

contexts where T is the variable to be predicted (e.g., a class label), the Markov blanket of T is

the smallest subset of features that has the same predictivity as the full set of features. Accord-

ingly, identifying a Markov blanket based on causal structures is often referred to as causal feature

selection (Aliferis et al. 2010). Further, under the usual correspondence between independence and

d-separation (Remark 1), the Markov blanket of a target variable T contains the direct causes and

effects of T (in addition to other nodes). To that end, learning Markov blankets can be viewed

as a step toward discovering the local causal structures around a target variable T , which is the

perspective we adopt here.

23

In this section, we present an optimization model for returning a Markov blanket of an input

target variable T based purely on the independence structure of the data. This approach can then be

used as a pre-processing step to be run before the EdgeGen algorithm, with the aim of eliminating

potentially redundant variables from the discovery task before searching for the local DMG structure

around T .

5.1. Related Literature

There are two general approaches to finding Markov blankets. Aliferis et al. (2010) denote them as

causal vs. non-causal methods, to distinguish whether the search for the Markov blanket requires

the identification of the (local) causal structure of the target variable prior to identification of the

Markov blanket, or not. Since our motivation is to use the Markov blanket as an aid to focus the

local causal discovery, our approach to searching for the Markov blanket itself has to be non-causal.

This approach also sidesteps one of the challenges of extant causal methods to find the Markov

blanket that have to make assumptions about the nature of the underlying causal structure. Most

of these methods assume acyclicity and causal sufficiency, making them inapplicable to the more

general setting we are considering in this paper.

In the causally sufficient setting, the first provably correct algorithm in discovering the Markov

blanket of a target variable is introduced by Margaritis and Thrun (2000). Several other methods

have aimed to improve the efficiency and scalability of Markov blanket discovery under various

assumptions on the underlying class of graphs and available data (Tsamardinos et al. (2003), Yara-

makala and Margaritis (2005), Tsamardinos et al. (2006), Pena et al. (2007), Aliferis et al. (2010),

Gao and Ji (2015), Wu et al. (2019), Yu et al. (2019)).

Previous work on Markov blankets in causally insufficient settings is limited. Richardson (2003)

and Pellet and Elisseeff (2008) provide characterizations of Markov blankets for classes of graphs that

permit unobserved confounders. Two recently proposed approaches for learning Markov blankets in

the presence of confounding are by Yu et al. (2018) and Triantafillou et al. (2021), although both

focus on acyclic graphs.

5.2. Learning Markov Blankets with Optimization

Given that we assume the results of all possible conditional independence tests are available, iden-

tifying the Markov blanket is equivalent to searching for the minimal conditioning set that satisfies

(20), which can be done by simply sorting all possible conditional sets. However, we formulate the

search for a Markov blanket as an optimization problem, which allows us to easily include additional

considerations, namely, balancing the number of selected variables with the number of violations of

the Markov blanket condition (20).

24

Let mi be a binary decision variable where mi = 1 if and only if node i is selected to be included

in the Markov blanket. For convenience, we will write V (T) = fi 2 V jmi = 1g to denote the set of

nodes selected by the model. For each i2 V and n2N I
T i, let vn

i be a binary decision variable where

vn
i = 1 if and only if V (T) =Cn

T i, and define a parameter �n
ij where �n

ij = 1 if and only if j 2Cn
T i. We

define the following two constraints to enforce the correspondence between m and v:

vn
i �mj; j 2Cn

T i; n2N I
T i; i2 V n fTg; (21a)

mj + vn
i � �n

ij + 1; n2N I
T i; i; j 2 V n fTg: (21b)

The first constraint ensures that if vn
i = 1 (equivalently, if V (T) =Cn

T i), then all nodes j 2Cn
T i are

selected. The second constraint ensures that if V (T) =Cn
T i, then the nodes not in Cn

T i cannot be in

V (T). Note that constraint (21b) is active only when vn
i = 1 and �n

ij = 0, which forces mj to be zero.

Definition 6 for the Markov blanket is then satisfied if we minimize the number of selected variables

– given by
P

i2V nfTgmi – subject to (21) and the following constraint:

mi +
X

n2NI
T i

vn
i � 1: (22)

This would simply implement the search over conditioning sets to find the exact Markov blanket.

However, doing so would neglect the practical challenges a user often faces, such as trading-off

between the number of variables selected, and their predictivity with respect to the target T com-

pared to the full set of variables V . In particular, while Markov blankets in a DAG consist just

of the parents, children and spouses (other parents of the children) of the target variable T (Pearl

2000), in DMGs so-called collider paths (see Appendix C) can result in variables with an arbitrary

distance to T in the graph being part of the Markov blanket of T . This can lead to an explosion in

the size of the Markov blanket, which a user may want to control.

To that end, instead of enforcing (22), we allow for possible violations of the Markov blanket

condition (20) by introducing the error variables �i, i2 V n fTg, which yields the constraint:

mi +
X

n2NI
T i

vn
i � 1� �i; i2 V n fTg: (23)

Constraint (23) forces �i = 1 for every i =2 V (T) such that i 6?? T jV (T); equivalently, �i = 1 for each

i 62 V (T) that violates (20) in Definition 6. Our objective is to minimize violations of (20) while

also controlling the total number of variables selected. We introduce a penalty constant � 2 (0;1)

to modulate this trade-off, resulting in the following optimization problem:

minimize
m;v;ξ

X
i2V nfTg

((1��) � �i +� �mi)

BlanketIP: subject to (21)� (23);

vn
i 2 f0;1g; n2N I

T i; i2 V n fTg;

mi; �i 2 f0;1g; i2 V n fTg:

25

Let (m�;v�;��) be an optimal solution to BlanketIP, and let V �(T) = fi 2 V jm�i = 1g be the

corresponding set of variables. When � is close to 1, BlanketIP emphasizes selecting a small

number of variables; when � is close to 0, the model emphasizes satisfaction of (20). Next, we present

the main result of this section, which is that BlanketIP correctly retrieves the Markov blanket in

the idealized setting where the independence tests are error-free.

Theorem 2 Let Assumption 3 hold. If �2 (0;1=jV j), then V �(T) =MB(T), i.e., the optimal solu-

tion to BlanketIP corresponds to the Markov blanket of T .

Similar to Theorem 1, Theorem 2 can be interpreted as an asymptotic result, due to its dependence

on Assumption 3. The intuition behind the small threshold of 1=jV j is that Theorem 2 also invokes

Assumption 3, which corresponds to a setting where the independence tests have power 1 (due to

an infinite sample size). In this high-powered setting, the trade-off between the size of V �(T) and

satisfaction of (20) is non-existent, and so larger values of � will needlessly penalize the size of the

set of selected variables V �(T), resulting in inaccurate inference of the Markov blanket. However, in

lower-powered settings, the trade-off between the size of V �(T) and satisfaction of (20) is non-trivial,

making it possible for the most effective values of � to be larger than 1=jV j.

There are many variations of BlanketIP one could consider. For example, it may be fruitful

to weight the nodes in the output blanket by the marginal or conditional dependence they have

with T (as a measure of their predictivity), or introduce a constraint on the total number of nodes

that the output may contain, especially if the causal discovery algorithm they are subsequently fed

into is limited in its scalability. BlanketIP is intended to illustrate the utility of taking an integer

optimization approach to Markov blanket-based feature selection.

5.3. Numerical Results

Our discussion of Markov blankets, including Definition 6 and the formulation of BlanketIP, has

thus far been primarily in probabilistic terms. However, given the correspondence in Remark 1, we

can naturally define the Markov blanket of a target node T within a causal graph as well (i.e., by

replacing the independence condition in (20) with d-separation). This graphical interpretation of

a Markov blanket allows us to numerically evaluate the performance of BlanketIP, namely, by

checking how accurately it recovers the Markov blanket of a node in a ground-truth causal graph

from observational data generated by the graph.

We conducted numerical experiments to examine the accuracy of BlanketIP, with a focus on

the sensitivity of the output to the penalty �. First, we generated 50 linear Gaussian models with

jV j = 10 using three different sample sizes: n 2 f250;500;1000g. Similar to §4.3, we set up this

experiment using the code from Hyttinen et al. (2014). For each of the 50 instances, we first found the

26

true Markov blanket MB(T) of a randomly selected target variable in the ground-truth graph (see

Appendix C for a characterization of Markov blankets for DMGs). Because Markov blanket discovery

is akin to a binary classification problem (i.e., for each variable, determine whether it belongs to

MB(T)), we measure the accuracy of the selected variables V �(T) returned by BlanketIP using

precision and recall (Buckland and Gey 1994). In our context, precision is the fraction of variables

that are in both V �(T) andMB(T) among the variables in V �(T), and recall is fraction of variables

that are in both V �(T) andMB(T) among the variables inMB(T). Both performance metrics take

on values between 0 and 1, with 1 representing perfect accuracy.

Table 3 reports the number of variables returned by BlanketIP, and the corresponding precision

and recall for varying penalty constant � and sample size n, averaged over 50 instances. As expected,

Table 3 shows that the number of selected variables decreases with the penalty �. Accordingly,

precision and recall increase and decreases with �, respectively. Further, Tables 3 shows that both

performance metrics generally improve with the sample size n due to the increased power of the

t-tests, although the effect of increasing the sample size from 250 to 1;000 is subtle. These results

demonstrate how the penalty term � can be used to control the behavior of BlanketIP in a

finite-sample setting with potential errors in the test results.

n
� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

250 5.52 5.33 4.51 3.41 2.58 1.78 1.44 1.00 1.00
500 6.02 5.64 4.82 3.56 2.60 2.22 1.76 1.18 1.00
1000 6.22 5.14 5.11 4.48 2.54 2.26 1.68 1.12 1.00
250 0.66 0.70 0.71 0.72 0.78 0.81 0.94 0.99 1.00
500 0.69 0.70 0.71 0.76 0.83 0.86 0.92 0.98 1.00
1000 0.73 0.74 0.77 0.78 0.86 0.88 0.94 0.99 1.00

250 0.93 0.92 0.84 0.67 0.60 0.50 0.38 0.32 0.30
500 0.89 0.89 0.83 0.71 0.62 0.53 0.44 0.35 0.33
1000 0.95 0.92 0.89 0.75 0.69 0.60 0.48 0.36 0.33

Table 3. Average number of selected variables jV �(T)j (top), precision (middle), and recall
(bottom) for varying penalty � and sample size n.

6. Empirical Study: Graphical Validation of an Instrumental Variable

In this section, we apply our method to US Census data used in the landmark study on the returns

to education by Angrist and Krueger (1991) (hereafter, AK-91). We focus on AK-91 because it

presents one of the pioneering applications of an instrumental variable, which are widely used for

causal inference. In particular, we show how our method can be used to investigate the validity of

an instrumental variable within the framework of causal graphical models. Existing work on the

27

instrument from AK-91 is extensive; our goal is to demonstrate the value of taking a complementary,

graphical perspective. Our findings are consistent with the literature on AK-91’s instrument – that

it is plausible, but potentially undermined by confounding.

6.1. Instrumental Variables and Graphical Criteria

Instrumental variables (Bowden and Turkington 1990, Angrist et al. 1996, Angrist and Krueger 2001)

are one of the most widely used techniques for causal inference. Their primary use is in overcoming

bias in estimates of causal effects that arise from unmeasured confounding. For example, consider the

problem of estimating the causal effect of one variable, X, on another, Y . The correlation between

X and Y may provide a misleading picture of the causal effect due to unmeasured confounders

that influence both variables. Intuitively, a third variable, I, is called an instrument for X if it is

correlated with X, and any effect I has on Y is exclusively via X. Under these conditions, any

correlation between I and Y is then taken as evidence thatX is a cause of Y . The following definition

formalizes instrumental variables in a graphical setting:

Definition 7 (Instrumental variables). A node i is an instrument for the effect of j on k

if (i) i 6? kjC for C � V n k and (ii) every unblocked path from i to k contains an arrow pointing

into j (Pearl 2000).

Figure 5 provides examples of valid and invalid instruments given various true causal structures. In

Figures 5(a) and (b), i is a valid instrument for estimating the effect of j on k because the causal

relationship between i and k is always mediated by j. In Figure 5(c), i is an invalid instrument

because the path i$ l! k violates Definition 7(ii).

A major challenge in using an instrumental variable is identifying an appropriate one in the first

place. For the most part, instruments are selected subjectively based on domain knowledge.10 This is

because verifying whether a proposed instrument satisfies the critical exclusion criterion (condition

(ii) in Definition 7) is generally difficult (Angrist et al. 1996, Stock 2002).11 As a consequence, the

use of an instrumental variable is typically accompanied by context-specific arguments in favor of

its validity. The subjective nature of instrumental variables has also led to extensive work on the

potential pitfalls of using weak instruments, and how to detect or overcome them (Bound et al.

(1995), Staiger and Stock (1997), Stock et al. (2002), Murray (2006)).

In this section, we show how our method can be used to intuitively examine the validity of an

instrumental variable. Specifically, within our graphical framework, checking instrument validity

amounts to learning causal structures over the relevant data and checking the extent to which the

output graph abides by Definition 7.

10 Angrist and Krueger (2001) write “good instruments often come from detailed knowledge of the economic mechanism
and institutions”, and Imbens and Rosenbaum (2005) write “finding instruments is an art rather than a science.”
11 The necessary conditions for valid instruments are often said to be unverifiable from data (Stock 2002), although
there is a recent line of work on developing tests for instrument validity under various assumptions (e.g., Kitagawa
(2015), Mourifié and Wan (2017), Kédagni and Mourifié (2020)).

28

Figure 5 Node i is a valid instrument for the effect of j on k in (a) and (b), but an invalid instrument in (c)

because the path i$ l! k violates Definition 7(ii).

6.2. Quarter-of-Birth Instrument from Angrist and Krueger (1991)

The causal effect of education on income is a classical question in economics with significant policy

implications, but one that is challenging to measure due to unobserved confounders (Card 1999).

The remedy for confounding proposed by AK-91 is to use quarter-of-birth as an instrument for years

of education completed. The argument for this instrument is as follows: Because students are born

year-round, the age at which students start school varies. Further, compulsory schooling laws in

many states prohibit students from dropping out before they reach a certain age (e.g., their 16th

birthday). The combination of variability in starting ages and compulsory schooling laws effectively

forces some students to complete more schooling than others, making quarter-of-birth correlated

with education. Further, AK-91 argues that there is little reason to think quarter-of-birth would be

correlated with income beyond its effect on education, and conclude it to be a valid instrument for

estimating the effect of education on income.

AK-91’s pioneering use of quarter-of-birth as an instrument for education has led to its adoption in

numerous other studies (Buckles and Hungerman (2013)). Meanwhile, the validity of this instrument

has been the subject of extensive debate and discussion (e.g., Bound et al. (1995), Card (1999),

Staiger and Stock (1997), Angrist and Krueger (2001), Imbens and Rosenbaum (2005), Buckles and

Hungerman (2013)). For quarter-of-birth to be a valid instrument for education, Definition 7 implies

that it must be related to education (condition (i)), and that there cannot exist a path from quarter-

of-birth to income that does not pass through education (condition (ii)). To that end, our approach

will be to apply our method to the data from AK-91, and to check whether the quarter-of-birth

variable indeed satisfies these two criteria.

6.3. Data and Experimental Setup

We focus on a subset of the data used in AK-91 containing information about 329,509 individuals

taken from the 1980 US Census.12 There are six available variables: QOB (quarter-of-birth, an integer

12 Angrist and Krueger (1991) repeat their analysis for three cohorts separately – those born in the 1920s, 1930s, and
1940s – obtaining similar results across all three cohorts. For conciseness in our presentation, we use data from just
the middle cohort.

29

value between 1 and 4), EDU (years of education completed), WAGE (weekly wage), RACE (race, 1

= Black) MAR (marital status, 1 = married), and SMSA (location of residence, 1 = Metropolitan

Statistical Area). The data is publicly available (Angrist 1991). To remove the effect of year-of-birth,

we de-trended the data following the steps described in AK-91.

As discussed in §2, an important modeling decision in all constraint-based causal discovery

methods, including ours, is the choice of the conditional independence test used to generate the

input d-separation constraints. We use correlation-based t-tests for their simplicity and compu-

tational efficiency. Because the outcomes of the conditional independence tests depend critically

on the significance level � used in the t-tests, we repeat our analysis for four different values:

�2 f0:05;0:01;0:001;0:0001g.

Similar to other constraint-based methods, our algorithm does not assign confidence to the causal

relations it uncovers – that is, an edge is either present or absent in the output. To introduce a

notion of confidence in the discovered edges, we used a simple bootstrapping procedure. First, we

re-sampled the data with replacement to construct 50 datasets, each having the same sample size as

the original dataset. For each of the 50 repetitions, we apply the t-tests to generate the independence

relations, which are input to EdgeGen to construct a causal graph. We terminate the algorithm

if no improvement in the number of unsatisfied input constraints is found after three consecutive

iterations. As a consequence of the bootstrap, our results take the form of relative edge frequencies

over the 50 graphs, where higher frequencies denote greater confidence in the causal relation implied

by the edge.

6.4. Results

Figure 6 shows the four graphs obtained under each value of the significance level �, where the

frequency of an edge is denoted by its thickness. All edge frequencies are reported in Appendix D.

Note that edge frequencies generally increase in the significance level �, which is expected. Intu-

itively, this occurs because a rejection of the null hypothesis in each of the conditional independence

tests implies that the variables in question are conditionally dependent (and thus conditionally

d-connected), and satisfying each d-connection relation requires a path in the output graph. As

a result, smaller values of � generate fewer d-connection relations for the input of our algorithm,

yielding sparser graphs.

We use our results to address three questions that determine the validity of quarter-of-birth as

an instrument for education:

(Q1) Is there a relationship between QOB and EDU?

(Q2) Is there a (potentially latent) confounder between QOB and WAGE?

(Q3) Is QOB a direct cause of WAGE?

