
Discovering Causal Models with Optimization:
Confounders, Cycles, and Instrument Validity

Frederick Eberhardt
Division of Humanities and Social Sciences, California Institute of Technology, fde@caltech.edu.

Nur Kaynar*
Samuel Curtis Johnson Graduate School of Management, Cornell University, sk2739@cornell.edu.

Auyon Siddiq
Anderson School of Management, University of California, Los Angeles, auyon.siddiq@anderson.ucla.edu.

We propose a new optimization-based method for learning causal structures from observational data, a

process known as causal discovery. Our method takes as input observational data over a set of variables

and returns a graph in which causal relations are specified by directed edges. We consider a highly general

search space that accommodates latent confounders and feedback cycles, which few extant methods do.

We formulate the discovery problem as an integer program, and propose a solution technique that exploits

the conditional independence structure in the data to identify promising edges for inclusion in the output

graph. In the large-sample limit, our method recovers a graph that is (Markov) equivalent to the true data-

generating graph. Computationally, our method is competitive with the state-of-the-art, and can solve in

minutes instances that are intractable for alternative causal discovery methods. We leverage our method

to develop a procedure for investigating the validity of an instrumental variable and demonstrate it on the

influential instruments for estimating the returns to education from Angrist and Krueger (1991) and Card

(1993). In particular, our procedure complements existing instrument tests by revealing the precise causal

pathways that undermine instrument validity, highlighting the unique merits of the graphical perspective on

causality.

1. Introduction
Establishing causality is central to empirical research in the natural and social sciences. While ran-

domized experiments are often considered the gold standard for determining causal relations, they

come with substantial limitations: The experimenter has to be able to fully control the treatment,

or adjust for the failure to do so. This often implies that the experiments have to be conducted

in artificial environments with small sample sizes, undermining their validity. Further, some inter-

ventions are very costly to perform, and some are unethical. Consequently, it is often desirable to

learn as much as possible about underlying causal relations from observational data alone, without

performing experiments.

Understanding causal relations from data can be naturally framed as two distinct but comple-

mentary kinds of inference. The first is causal inference, which typically seeks to estimate the causal

*Corresponding author. Authors are listed in alphabetical order.

1

2

effect (i.e., sign and magnitude) of a treatment or intervention on a given outcome, often from

observational data. These methods are typically built upon assumptions regarding the underlying

causal structure (i.e., whether a cause-effect relationship exists at all between two variables, and in

which direction) over the variables of interest. Although these assumptions are necessary for iden-

tifying causal effects, it is well known that misspecifications of causal structure can lead to biased

estimates and erroneous conclusions. Further, while in some cases the relevant causal structures

may follow from contextual knowledge, in others they may be unknown or only partially known,

which can undermine the validity of the obtained estimates. This naturally leads to the second kind

of inference: How might we learn causal structures directly from the data in the first place? This

process, which is the focus of our paper, is known as causal discovery.

The framework of causal graphical models (Spirtes et al. 2000, Pearl 2000), discussed in more

detail in §2, enables inference of causal structure by providing a precise mathematical representation

of causal relations (in terms of a directed graph) and the observed data (in terms of a probability

distribution associated with the graph). Using this framework, a variety of causal discovery methods

have been developed to infer underlying causal structures from observational data. With a few

important exceptions, these methods have relied on two restrictive assumptions, which limit their

practical relevance. The first is the absence of latent confounders – referred to as causal sufficiency

– which means that there are no unmeasured common causes of the measured variables. The second

is that there is no feedback, meaning the causal structures can be represented by directed acyclic

graphs (DAGs). Both of these assumptions can only rarely be justified in practice.

Our main contribution is a new optimization-based method for causal discovery that allows for

both unmeasured confounders and feedback cycles. Our method takes as input observational data

over a set of variables, and returns a graph in which causal relations are specified by directed edges.

There are very few extant discovery methods that consider this extremely general search space, and

those that do, do not scale well. In contrast, our approach allows us to solve in minutes instances

that are outright intractable for recently proposed methods. At a high level, the efficiency of our

approach is due to a solution technique that exploits the conditional (in)dependence structure in the

data to detect “promising” candidate edges in the underlying graph, which are then assembled into

a causal graph by an optimization model. Our main theoretical result is to show that this technique

asymptotically recovers a graph that is equivalent to the true, data-generating graph.

The generality of our method combined with its computational efficiency greatly expands the

practical relevance of causal discovery to empirical research. We demonstrate this by using our

method to develop a graphical procedure for investigating the validity of instrumental variables,

which are widely used to estimate causal effects in the presence of unmeasured confounding. In

particular, we apply our procedure to the instruments from the seminal papers on the returns to

3

education by Angrist and Krueger (1991) and Card (1993). We find that the causal structures

uncovered by our method are consistent with the literature, and that our results are qualitatively

consistent with the well-known test for instrument validity proposed by Kitagawa (2015).

The remainder of the paper is organized as follows. §2 reviews foundational concepts in causal

discovery, which a familiar reader may skip. §3 presents an optimization model for causal discovery

with latent confounders and feedback cycles. §4 develops a solution technique for the model. §5

proposes a test for instrument validity within our framework. §6 concludes.

2. Causal Graphical Models

In the framework of causal graphical models (Pearl 2000, Spirtes et al. 2000), causal relations are

represented by a directed graph G = (V,E) over a set of nodes V , where the edge set E contains

directed edges, representing a direct (relative to V) causal effect of one node on another. We will first

introduce the theory and notation using directed acyclic graphs (DAGs), as they permit the most

intuitive explanation and the simplest causal interpretation (§2.1). We then extend these concepts

to include graphs that contain cycles and unobserved confounding variables (§2.2).

2.1. Acyclic Models Without Unmeasured Confounding

In acyclic causal models without unmeasured confounding, the graph G = (V,E) over a set of nodes

V contains at most one directed edge between any pair of nodes. We define an edge e ∈ E as a

triple (i, t, j) with i, j ∈ V , i 6= j, and t∈ {→,←}.1 Central to our algorithm is the notion of a path

between two variables :

Definition 1 ((undirected) Path). Given a node set V and an edge set E, we define a path

pij from node i to node j with i, j ∈ V, i 6= j, as a sequence of edges pij = (e1, . . . , e`) such that ek ∈E

for all 1≤ k ≤ `, e1 starts with node i, e` ends with node j, consecutive edges are connected, and

nodes on the path do not repeat (other than as start- and endpoint of consecutive edges).

A directed path from i to j is then a path where all edges point towards j. Any node connected

by a directed path from i is a descendant of i, any node connected by a directed path to i is an

ancestor of i. Parents and children of a node i are the direct causes and effects, respectively, of i

in G. A directed acyclic graph (DAG) is a directed graph in which there is no pair of distinct nodes

(i, j) such that there is a directed path from i to j and an edge j→ i. We say that a node i is a

collider on a path if its adjacent edges point into i (→ i←). A non-collider on a path is a node i

that is either a mediator (→ i→) or a common cause (← i→). For example, in Figure 1, node j is

a collider on the (undirected) path i→ j← k and a mediator on the path i→ j→ l, and node i is

a common cause on the (undirected) path l← i→ j.

1 We will extend the edge types to accomodate unmeasured confounding in §2.2.

4

Figure 1 Example directed acyclic graph (DAG).

In causal modeling, a DAG G is associated with a probability distribution PG(V), which describes

causal relations over the set of nodes V .2 A standard assumption is that the distribution is gen-

erated by the graph structure such that it factorizes: PG(V) =
∏
i∈V PG(i|Pa(i)), where Pa(i) are

the parents of node i in G (Spirtes and Zhang 2016, Eberhardt 2017). Based on the connection

between the causal structure and the resulting data distribution, many causal discovery algorithms,

including the one we present here, exploit the independence structure seen in the data to infer the

underlying causal relations. One of the central concepts required for this inference is the notion of d-

separation (Geiger et al. 1990), which can be thought of as the graphical counterpart to probabilistic

independence. It is based on the notion of a blocked path:

Definition 2 (Blocked paths). A path between nodes i and j is unblocked with respect to a

set of nodes C if every collider k on the path is in C or has a descendant in C, and no non-colliders

on the path are in C. Otherwise the path is blocked with respect to C (Pearl 2000).

Definition 3 (d-separation). Two nodes i and j are d-separated with respect to a conditioning

set C (denoted by i⊥ j|C) if all paths between them are blocked, otherwise they are d-connected

given C (denoted by i 6⊥ j|C) (Pearl 2000).

To illustrate the definitions above, note that there are two paths between m and l in Figure 1:

m→ i→ l and m→ i→ j→ l. By Definition 2, both of these paths are unblocked with respect to

the empty conditioning set C = ∅, which by Definition 3 implies that m and l are d-connected with

respect to C = ∅. Now consider the conditioning set C = {i}. By Definition 3, conditioning on node

i blocks these paths because node i is a noncollider on both of these paths. Since there does not

exist an unblocked path between nodes m and l with respect to the conditioning set C = {i}, it
follows that m and l are d-separated with respect to the conditioning set C = {i}.
To establish a correspondence between (conditional) d-separation and (conditional) independence,

two key assumptions are commonly employed: the causal Markov principle and the faithfulness

condition. These assumptions allow us to relate the notation of d-separation (⊥) to probabilistic

independence (⊥⊥).

2 Given the correspondence between graphical structure and probability distribution, we will use the terms “node”
and “variable” interchangeably.

5

If node i is d-separated from node j given conditioning set C in graph G = (V,E) with i, j ∈ V

and C ⊆ V \ {i, j}, then i is probabilistically independent of j given C in the distribution over the

graph PG(V):

i⊥ j|C in G =⇒ i⊥⊥ j|C in PG(V). (1)

Assumption 1 (Faithfulness). If variable i is probabilistically independent of variable j given

conditioning set C in the distribution over the graph PG(V), then i is d-separated from j given C in

graph G = (V,E):

i⊥⊥ j|C in PG(V) =⇒ i⊥ j|C in G. (2)

The (global) causal Markov condition, as we have stated it here, follows from how we have defined

the probability distribution in terms of the causal structure (Pearl 2000). In contrast, the faithfulness

condition, which is the converse to the Markov condition, represents an additional assumption, as it

ensures that an independence in the data is actually due to a d-separation (rather than, for example,

two causal pathways cancelling each other out (Spirtes et al. 2000, Uhler et al. 2013)). Together,

the causal Markov and faithfulness conditions provide a tight correspondence between (conditional)

probabilistic independence and (conditional) d-separation.

Remark 1. Under the causal Markov and faithfulness conditions, a (conditional) independence

in PG(V) is present if and only if there is a corresponding (conditional) d-separation in DAG G.

This correspondence is the basis for many causal discovery methods, as one can now use the inde-

pendence structure in the data to constrain the graph structure.

2.2. Extension to Cyclic Models with Latent Confounding

We introduced the key concepts in the context of directed acyclic graphs (DAGs). In the remainder

of the paper, we focus on a more general class of graphs that permit cycles and can represent

confounding due to unobserved variables. For such graphs, many of the key ideas above can be

generalized, but they require much more book-keeping and are much less intuitive. We briefly outline

the required adjustments here.

A cyclic model, as its name suggests, permits feedback cycles in the causal structure. In this

setting, the edge set E in G = (V,E) may contain an edge in each direction between a pair of nodes.3

These cycles do not represent backwards-in-time causation, but should instead be understood as

shorthand notation for causal feedback that is unravelled over time; for example, it→ jt+1→ it+2.

One of the simplest and most well-studied cyclic causal models is the linear Gaussian cyclic model

3 In principle there can also be edges from a node to itself, but such self-loops are redundant for linear Gaussian cyclic
models that we consider here (Hyttinen et al. 2012).

6

Figure 2 Example graphs: (a) A directed acyclic graph (DAG). (b) The more general acyclic directed mixed graph

(ADMG), which does not contain cycles, but contains bi-directed edges to represent unmeasured confounding. (c) A

directed mixed graph (DMG) that allows for both cycles and confounding.

given by x(t) =Bx(t− 1) + ε, where x is a vector representation of the variables in V , ε is a vector

of independent errors, and B is a square matrix representing the (possibly cyclic) causal effects

among the variables (Hyttinen et al. 2012). Under appropriate conditions, the model converges to

an equilibrium, which allows cycles such as it→ jt+1→ it+2 to be represented more simply without

time indices as i
→
← j.4 For this type of linear Gaussian cyclic model, the Markov and faithfulness

conditions still imply the correspondence between (conditional) d-separation and (conditional) inde-

pendence (Remark 1). However, unlike the acyclic case, the correspondence between d-separation

and probabilistic independence does not hold in general in cyclic models.

Remark 2. In the cyclic case, the correspondence between d-separation and probabilistic inde-

pendence holds for linear Gaussian causal models, but not in general (Spirtes 1995).

We will restrict consideration of cyclic models to the linear Gaussian case in order to utilize

the correspondence described in Remark 1.5 In the acyclic case, our results are not restricted to a

particular parameterization.

To represent confounding between a pair of variables (i, j) due to an unobserved common cause

c, the graphical framework is extended to include the bi-directed edge i↔ j (see Figure 2(b) and

(c)). Here, i↔ j is shorthand for i← c→ j, where c is an unobserved variable (c /∈ V). The graph

G = (V,E) then consists of a set of variables V and edges E such that every pair (i, j) is permitted to

contain directed edges (→,←), possibly in both directions, and a bi-directed edge (↔) to represent

unmeasured confounding.6 Definition 1 (of paths) can be extended to include bi-directed edges

between variables, i.e., t ∈ {→,←,↔}. See Appendix A for formalization. Colliders remain defined

as before, but now they can also arise from bi-directed edges incident on the “colliding” variable.

4 In the general case with arbitrary initial conditions, a sufficient and necessary condition for convergence to an
equilibrium is for all eigenvalues of B to be less than 1 (Hyttinen et al. 2012).
5 An extension to more general parameterizations for cyclic models is beyond the scope of this paper – see the notion
of σ-separation in Forré and Mooij (2018) for a thorough treatment.
6 Only one bi-directed edge is used to represent all possible confounders between a pair of variables. A confounder of
n observed variables is represented by

(
n
2

)
bi-directed edges among the n variables. See Evans (2016) for important

subtle issues about this representation that, however, do not matter to the independence structure we consider here.

7

The model class that includes bi-directed edges but disallows cycles is often referred to as acyclic

directed mixed graphs (ADMGs) (Figure 2(b)). Our focus will be on the general model class of

directed mixed graphs (DMGs), where both bi-directed edges and cycles are allowed (Figure 2(c)).

D-separation can be naturally extended to DMGs, one just has to keep track of a larger set of

possible edges, since any pair of variables can now be connected by three different edge types. In the

cyclic linear Gaussian model described above, confounding can be represented using a non-diagonal

covariance matrix for the error terms, resulting in correlated errors. For such linear Gaussian mod-

els with correlated errors the correspondence between d-separation and probabilistic independence

(Remark 2) still holds (Spirtes 1995).

2.3. Constraint-Based Causal Discovery

Our proposed method belongs to a class of causal discovery algorithms known as constraint-based

methods (see Maathuis et al. (2010), Spirtes and Zhang (2016) and Eberhardt (2017) for reviews).

These methods involve performing conditional independence tests on the data to construct condi-

tional (in)dependence “constraints”, that are used to search for a causal graph that satisfies these

constraints to the extent possible. Here, each input constraint is the statement i⊥⊥ j|C or i 6⊥⊥ j|C

for some i, j ∈ V and C ⊂ V \ {i, j}, which implies a d-separation or d-connection that the output

graph must satisfy (by Remark 1).

One of the first and best-known constraint-based methods is the PC-algorithm by Spirtes et al.

(2000), which is restricted to searching for the equivalence classes of DAGs. Alternative methods

generalize the search space to acyclic graphs with unmeasured common causes (Spirtes et al. 2000)

and cyclic causal models (albeit without unmeasured confounding) (Richardson 1996). A number

of variants of these methods have been developed in the literature with the aim of improving

computational efficiency or reliability (Colombo et al. 2012, Teramoto et al. 2014). Constraint-based

methods have been shown to be asymptotically correct for their respective background assumptions,

meaning in the large-sample limit they discover the true data-generating graph up to an equivalence

class (see §3.2 for details) (Spirtes et al. 2000, Zhang and Spirtes 2002, Solus et al. 2021).

An advantage of constraint-based causal discovery is that it allows the user to completely sep-

arate the statistical challenge of establishing the (conditional) independence constraints from the

combinatorial inference of finding graphs that are consistent with them. Thus, one can choose inde-

pendence tests that are suitable for the particular domain and adopt their preferred correction

method for multiple hypothesis testing. Such decisions will be informed by the sample size, the

number and dimensionality of the variables, whether the variables are categorical or continuous, or

what assumptions one is willing to make about the parametric form of the causal relations.

8

Our paper is most closely related to constraint-based methods that allow for both cycles and

unmeasured confounders. These methods encode d-separation constraints obtained from indepen-

dence tests in a logical representation, and either use Boolean satisfiability solvers (Hyttinen et al.

2013), answer set solvers (Hyttinen et al. 2014, 2017) or custom branch-and-bound algorithms

(Rantanen et al. 2018, 2020) to identify a graph that minimizes the (weighted) sum of violated

d-separation constraints. Since the class of DMGs dramatically expands the search space of possible

graphs, the discovery task can be computationally challenging for all of these methods, even when

the number of variables is modest (i.e., fewer than 10).

To overcome limited scalability, other causal discovery methods have considered simplifications

such as (i) only searching for causal ancestry relations, rather than direct causal connections (Magli-

acane et al. 2016)), (ii) only allowing unmeasured confounders, but no cycles (Triantafillou and

Tsamardinos 2015), or (iii) by weakening the faithfulness assumption (Zhalama et al. 2017). Instead

of imposing restrictive assumptions, our approach maintains tractability by iteratively expanding the

search space of possible graphs, and optimizing the solution using two alternating integer programs.

There is a small number of existing methods for causal discovery that are explicitly based on inte-

ger optimization (Jaakkola et al. 2010, Cussens 2012, Bartlett and Cussens 2017, Park and Klabjan

2017, Kucukyavuz et al. 2020, Manzour et al. 2021). These methods all focus on DAGs, and thus do

not accommodate feedback cycles or unobserved confounders. Chen et al. (2021) develop an integer

program for causal discovery with unobserved confounders but their framework does not capture

feedback cycles. A second distinction is in the formulation of the problem – ours is a constraint-based

approach, and accordingly searches for a graph that satisfies conditional (in)dependencies seen in

the data. In contrast, the papers cited above present score-based methods, which typically involve

maximizing the likelihood of the data for a given DAG. Such a formulation of the search problem

is not easily generalized to handle cyclic and confounded models.

3. Path-Based Model for Causal Discovery

Our model takes as input a set of (conditional) independence and dependence relations over the

variables V . Assuming the Markov and faithfulness conditions (and for the cyclic case, that the

parameterization is linear Gaussian), these relations imply a corresponding set of d-separation and

d-connection relations that must be satisfied by the output graph (Remarks 1 and 2). At a high

level, our model conceptualizes the search space of DMGs as combinations of paths, and aims to

select a set of paths such that the resulting graph minimizes violations of the input d-separation

and d-connection constraints.

9

3.1. Model Formulation

Given a data set over a set of variables V , we denote by C ⊂ V a generic set of conditioning

variables. We then define Aij = {C | C ⊆ V \ {i, j}} to be the set of all possible conditioning sets

C for the pair (i, j). We refer to the nth such conditioning set in Aij as Cn
ij ∈Aij. Then, let Dij =

{C ∈Aij | i 6⊥⊥j|C} be the set of all conditioning sets such that i and j are statistically dependent

conditional on C; similarly, let Iij = {C ∈Aij | i⊥⊥j|C} be the set of all conditioning sets such that

i and j are statistically independent conditional on C. We assume that each pair of variables (i, j)

is either dependent or independent given a particular conditioning set C. Thus, for all pairs (i, j)

we have Dij ∪ Iij =Aij and Dij ∩ Iij = ∅. We use Nij, ND
ij and N I

ij as index sets for Aij, Dij and Iij,

respectively, where Nij =ND
ij ∪N I

ij.

Based on the equivalence established in Remark 1, the sets Dij and Iij encode the d-separation

and d-connection relations implied by the distribution PG(V).7 A graph G satisfies the d-connection

implied by C ∈Dij if i 6⊥G j|C; similarly, G satisfies the d-separation implied by C ∈ Iij if i⊥G j|C.

Our objective is to find a directed mixed graph G that minimizes the weighted sum of d-separation

and d-connection constraints found in the data that are not satisfied in G; that is, we want to find

a graph G that minimizes the following loss function:

L(G) =
∑
i,j∈V

∑
n∈NDij

ωnij ·1(i⊥G j|Cn
ij) +

∑
i,j∈V

∑
n∈NIij

ωnij ·1(i 6⊥G j|Cn
ij). (3)

The parameters ωnij > 0 are penalization weights for violating the d-separation or d-connection

relation between i and j implied by conditioning set Cn
ij. Various weighting schemes have been

proposed in the literature (see e.g., Hyttinen et al. (2014)). We formulate the problem of searching

for a graph that minimizes L(G) as an integer program (IP). Our model constructs a graph by

selecting paths that best fit the discovered d-connection and d-separation conditions. Despite the

possible cycles in DMGs, we show in Appendix A that checking only a finite number of finite length

paths is sufficient to determine all d-connection relations.8 We define a path’s length `p as the number

of unique edges in p.

Let colpij be the set of colliders on a path pij. To capture possible d-connections obtained by

conditioning on descendants of colliders, we define an appendage of pij to be an (acyclic) directed

path that has as root a collider in colpij and does not pass through i or j. We refer to a path with

one or more appendages as an extended path, and those without any appendages as a simple path.

7 In practice, the conditional independence relations in PG(V) are unknown and inferred through statistical testing.
Our numerical results in §4 considers the performance of our method with and without errors in testing.
8 A DMG may technically contain paths with repeating nodes, due to cycles. However, as we show in Appendix A,
all d-separation relations can be accurately captured by paths that conform to Definition 1. While this is a fairly
technical result, it has important consequences for the correctness of our method, because it allows us to restrict
attention to paths with non-repeating nodes without loss of inferential power.

10

A key aspect of our method, discussed further in §4, is controlling the length of simple paths that

can be constructed using a given set of edges Ẽ. Accordingly, let P(Ẽ, ζ) =
⋃
{(i,j)∈V :i 6=j}Pij(Ẽ, ζ),

where Pij(Ẽ, ζ) stores all simple and extended paths between i and j that can be constructed from

the edges in the set Ẽ such that the longest simple path has length less than or equal to ζ.

For each p∈P(Ẽ, ζ) and e∈ Ẽ, let φpe be a parameter where φpe = 1 if and only if edge e belongs

to path p, and let αnijp be a parameter where αnijp = 1 if and only if the path p∈ Pij(Ẽ, ζ) is unblocked

with respect to the conditioning set Cn
ij ∈Aij. Following Definition 2, a simple path p is unblocked

with respect to a conditioning set Cn
ij if all colliders on p are in Cn

ij and no non-colliders on p are in

Cn
ij. An extended path p is unblocked with respect to Cn

ij if for each collider k on p we have k ∈Cn
ij

or p contains an appendage that starts from k and has a node in Cn
ij, and no non-colliders on p are

in Cn
ij.

Next, we define three types of binary decision variables. Let x∈ {0,1}|Ẽ| determine the presence

of edges in the constructed graph G = (V,E), where xe = 1 if and only if edge e ∈E. Note that Ẽ

is an arbitrary set of edges and E ⊆ Ẽ are the edges present in the constructed graph. Similarly,

let y ∈ {0,1}|P(Ẽ,ζ)| determine paths in the graph G, where yp = 1 if and only if path p is in the

graph G, i.e., p∈P(E,ζ). Lastly, for each pair i, j ∈ V , we define the error variables zij ∈ {0,1}|Nij |,

where znij = 1 if and only if the d-separation relation in G does not correspond to the independence

relation found in the data (that is, i⊥G j|Cn
ij but Cn

ij ∈Dij, or i 6⊥G j|Cn
ij but Cn

ij ∈ Iij).

We can now define the constraints and objective function of the model. First, we require two

constraints that enforce coherence between the edge and path variables x and y:

yp ≥
∑
e∈Ẽ

φpexe− (`p− 1), p∈P(Ẽ, ζ), (4a)

yp ≤ xe, e∈ {e∈ Ẽ|φpe = 1}, p∈P(Ẽ, ζ). (4b)

The first constraint ensures that if all the edges on a path p are selected, then path p is present

in the graph. The second constraint ensures that path p can only be present in the graph if all

the edges on path p are selected. Next, note that a path p is blocked with respect to a set Cn
ij if

and only if αnijp = 0. Thus, to satisfy all d-separation relations, we would ideally like to construct a

graph such that for any i, j ∈ V , αnijpyp = 0 holds for all n∈N I
ij and p∈ Pij(Ẽ, ζ). However, because

the set of input d-separation and d-connection relations may not be jointly satisfiable, we allow for

possible violations by introducing the error variable znij:

αnijpyp ≤ znij, n∈N I
ij, p∈ Pij(Ẽ, ζ), i, j ∈ V. (5)

For each conditioning set Cn
ij ∈ Iij, constraint (5) forces znij = 1 if i and j are not d-separated with

respect to Cn
ij. Similarly, i and j are d-connected with respect to Cn

ij ∈Dij if and only if there is at

11

least one unblocked path, or equivalently,
∑

p∈Pij(Ẽ,ζ)
αnijpyp ≥ 1. By again allowing for violations by

introducing the error variable znij, we obtain the constraint∑
p∈Pij(Ẽ,ζ)

αnijpyp ≥ 1− znij, n∈ND
ij , i, j ∈ V, (6)

which forces znij = 1 if i and j are not d-connected with respect to Cn
ij ∈Dij. Note that constraint

(5) and (6) are defined over N I
ij and ND

ij , respectively, so that each znij variable appears in one

constraint only. Finally, let ωnij be the weight associated with the error variables znij. It follows

from (5) and (6) that the total weighted violations of d-connection and d-separation relations is

given by
∑

i,j∈V
∑

n∈Nij
ωnijz

n
ij. Minimizing these violations over the constraints (4)–(6) yields the

optimization problem:

minimize
x,y,z

∑
i,j∈V

∑
n∈Nij

ωnijz
n
ij

subject to (4)− (6),

CausalIP
(
P(Ẽ, ζ)

)
: xe ∈ {0,1}, e∈ Ẽ,

yp ∈ {0,1}, p∈P(Ẽ, ζ),

0≤ znij ≤ 1, n∈Nij, i, j ∈ V.

We refer to the formulation above as CausalIP
(
P(Ẽ, ζ)

)
, where Ẽ and P(Ẽ, ζ) are the set of

candidate edges and paths the model has access to, respectively.9 Note that while ζ is the maximum

length in the set of candidate paths P(Ẽ, ζ), the constructed graph may still contain paths longer

than ζ through concatenation of shorter paths. Also, while the errors tracked by the znij variables are

binary (i.e., whether or not a d-separation relation is violated), in Appendix B we show that each znij
is guaranteed to take on a value of 0 or 1 without requiring binary constraints, which greatly reduces

the number of integer variables in the model. If (x,y,z) is a solution to CausalIP
(
P(Ẽ, ζ)

)
, then

the graph returned by the model is given by G(x) = (V,E) where E = {e|e ∈ Ẽ and xe = 1}. In

Appendix B, we show how our approach can also be restricted to DAG- or ADMG-search, although

more scalable methods already exist for those search spaces. Next, let

Ec = {i← j, i→ j, i↔ j, ∀i, j ∈ V : i 6= j} (8)

be the set of all possible directed and bi-directed edges in a complete graph over V . Also, note that

the maximum length of a simple path (i.e., without appendages) over Ec is |V |−1. We now address

the performance of the formulation.

9 In the case where all input d-separation and d-connection relations are known to be jointly satisfiable, CausalIP
can be expressed equivalently as a feasibility problem, i.e., with no objective and constraints znij = 0, n∈Nij , i, j ∈ V .

12

Proposition 1. Let Gc be the graph returned by CausalIP
(
P(Ec, |V | − 1)

)
for some ω > 0.

Then Gc ∈ argmin
G

L(G), i.e., Gc minimizes the loss function in (3).

Proposition 1 confirms that CausalIP minimizes the loss function in (3) when it has access to

complete set of edges Ec and complete set of paths P(Ec, |V |−1). All proofs for the main body are

contained in Appendix E.

3.2. Discovery Guarantee

In general, the independence structure seen in observational data does not uniquely identify the

underlying causal graph. Two graphs that have the same independence structure (and thus the same

d-separation relations) are said to be Markov equivalent.

Definition 4 (Markov equivalence). DMG G1 = (V,E) is Markov equivalent to

DMG G2 = (V,E′) if and only if G1 and G2 have identical d-separation relations:

G1 ∼G2 if and only if i⊥G1
j|C ⇐⇒ i⊥G2

j|C ∀i, j ∈ V and C ⊆ V \ {i, j}. (9)

Two graphs that are Markov equivalent cannot be distinguished by their d-separation relations

alone.10 In the context of causal discovery, the Markov equivalence class of the true, data-generating

graph is the limit of what can be learned about the causal structure from the independence structure

in the data (Geiger and Pearl 1988, Meek 1995).11

We now show that, under appropriate conditions, CausalIP correctly uncovers a graph in the

Markov equivalence class of the true causal graph. We assume that we have access to the results

of all possible independence tests over a given set of variables, and that the test results correctly

describe an underlying ground truth DMG GT :

Assumption 2 (Complete oracle). Let GT be the true data-generating graph. For all i, j ∈ V

and C ⊆ V \ {i, j}: (i) C ∈ Dij if and only if i 6⊥⊥ j|C in PGT (V), and (ii) C ∈ Iij if and only if

i⊥⊥ j|C in PGT (V).

Assumption 2 allows us to separate the discovery task, handled by CausalIP, from the statistical

inference of the conditional independence tests. The assumption also describes the model inputs

(i.e., Iij and Dij) that would be obtained in the large-sample limit, which we use to prove the

asymptotic correctness of our model. We can now state the main result of this section:

10 In the acyclic, causally sufficient case (i.e., for DAGs), the features shared by Markov equivalent DAGs can be easily
characterized: two DAGs are Markov equivalent if and only if they share the same skeleton (unoriented adjacency
structure) and the same unshielded colliders (Verma and Pearl (1991)). For the general class of DMGs that we are
considering here, no such compact characterization of Markov equivalent graphs exists.
11 To further distinguish Markov equivalent graphs requires experimental intervention, stronger background assump-
tions, or that one can make assumptions about the data distribution that go beyond its independence structure (e.g.,
about particular parameterizations; see e.g. Eberhardt (2017) for an overview).

13

Proposition 2. Let Gc be the graph returned by CausalIP
(
P(Ec, |V |−1)

)
given Assumption 2.

Then Gc ∼GT (i.e., Gc and GT are Markov equivalent) for any ω> 0.

Proposition 2 confirms the asymptotic correctness of CausalIP. When V is small, it is possible

to solve CausalIP over the complete set of edges Ec and complete set of paths P(Ec, |V |−1) using

off-the-shelf integer programming solvers. However, this approach is not viable even for moderately

sized graphs (|V | > 6), because CausalIP searches over all possible paths and extended paths

induced by the set Ec, which explodes combinatorially in |V |. For larger graphs, a more efficient

way of selecting paths is required.

4. Edge Generation Algorithm

Instead of attempting to solve CausalIP over the complete set of edges Ec, we develop an iterative

solution algorithm that efficiently constructs a set of candidate edges Ẽ ⊂Ec. In broad terms, the

algorithm iterates between a master problem that constructs a graph using only the candidate edges

in Ẽ ⊂ Ec and a subproblem that leverages the results of the conditional independence tests to

select new edges to include in Ẽ.12

4.1. Preliminaries

The selection of new edges is based on the observation that every path p (with `p ≥ 2) can be

represented as a concatenation of node triples (i, j, k) that either form a collider at j or a non-collider

at j. We refer to such a triple as a collider chain or a non-collider chain, respectively (see Figure

3). Next, we present necessary conditions for the presence of collider and non-collider chains in the

underlying causal graph:

Lemma 1 (Necessary conditions for chains). Suppose Assumption 2 holds and consider a

triple of nodes (i, j, k) in a graph G ∼ GT . Then

(i) If there exists a collider chain over (i, j, k) in G, then Iij = Ijk = ∅ and j 6∈C for all C ∈ Iik.

(ii) If there exists a non-collider chain over (i, j, k) in G, then Iij = Ijk = ∅ and j ∈ C for all

C ∈ Iik.

Lemma 1 formalizes the intuition that every triple along every path of the underlying causal graph

may leave its corresponding signature in the independence structure of the data. These signatures

can serve as indicators of the presence of the corresponding chains in the graph. The features in

12 Our solution technique is related to constraint-and-column generation methods, which are widely-used for solving
large-scale integer programs, and for which many variations exist, including the branch-price-and-cut algorithm (Barn-
hart et al. 1998). A distinct feature of our algorithm is that the subproblem uses results of conditional independence
tests to identify the columns and constraints to be introduced into the master problem. As with all integer-linear
programs, branch-price-and-cut can be applied to solve CausalIP as well. See Lubbecke and Desrosiers (2005) for a
review of column generation methods.

14

Figure 3 Collider chains (a) and non-collider chains (b).

Lemma 1 do not guarantee that the underlying graph contains the corresponding chain, since they

can also arise from other causal structures (see Figure 4). In other words, if a triple (i, j, k) satisfies

the conditions in Lemma 1(i) or (ii), we interpret this as strong (but not conclusive) evidence of

the corresponding chain’s presence in the underlying causal graph. Using this characterization of

chains, we construct the following two sets:

S = {(i, j, k)|Iij = Ijk = ∅ and j 6∈C for all C ∈ Iik}, (10)

S̄ = {(i, j, k)|Iij = Ijk = ∅ and j ∈C for all C ∈ Iik}. (11)

Here, S and S̄ contain all triples (i, j, k) whose independence structure is indicative of a collider and

non-collider chain, respectively. These sets are not disjoint in general: A triple (i, j, k) where (i, k)

are never conditionally independent (i.e., Iik = ∅) will be included in both S and S̄.

Let Eijk and Ēijk be the sets of all possible edges in a collider and non-collider chain over (i, j, k),

respectively:

Eijk =
{
i→ j, i↔ j, j← k, j↔ k

}
, (12a)

Ēijk =
{
i← j, i→ j, i↔ j, j← k, j→ k, j↔ k

}
(12b)

Notice that Eijk is the set of edges that are in the collider chains in Figure 3(a), and Ēijk is the

set of edges that are in the non-collider chains in Figure 3(b). The sets S and S̄ contain triples

that plausibly form chains in the underlying graph, and thus indicate plausible edges as well. We

therefore focus on edges contained in the sets S and S̄ when constructing the set of candidate edges

Ẽ.

We further refine our search for edges by also considering d-connection or d-separation relations

that are unsatisfied by an incumbent solution. For an initial set of candidate edges Ẽ, let (x,y,z) be

the solution to CausalIP(P(Ẽ, ζ)) with the corresponding graph G(x). The error variable z tracks

15

Figure 4 (a) The triple (i, j,k) satisfies all conditions in Lemma 1(i) but does not form a collider chain. (b) The

triple (i, j,k) satisfies all conditions in Lemma 1(ii) but does not form a non-collider chain. In both cases the i→ j edge

is missing.

those d-separations and d-connections that are inconsistent with the independence and dependence

findings in the data. Since our method will incrementally add edges to Ẽ, we focus on those errors

where a conditional dependence found in the data is not yet matched by a d-connection in the

graph G(x). Specifically, we are interested in the pairs (i, k) where we have Cn
ik ∈ Dik based on

the test results, but the d-connection i 6⊥ k|Cn
ik is not satisfied in G(x), and consequently znik = 1.

Accordingly, for each pair (i, k), we can define the set

ND
ik (z) = {n∈ND

ik |znik = 1} (13)

to represent the d-connection relations for (i, k) that are implied by the conditional independence

tests but violated by the current graph G(x). Since our goal is to select new edges to add to Ẽ,

we have to identify edges that are not already in Ẽ. We can now identify triples that satisfy two

criteria: (i) some of their edges have not yet been considered (i.e., Eijk 6⊂ Ẽ or Ēijk 6⊂ Ẽ), and (ii) in

the incumbent graph G(x), i and k are d-separated for some conditioning set Cn
ik (i⊥ k|Cn

ik), even

though test results indicate that i and k are dependent for that conditioning set (i 6⊥⊥ k|Cn
ik). We

now define two sets that contain triples that satisfy these two criteria:

Ψ(z) = {(i, j, k) | there exists n∈ND
ik (z) such that j ∈Cn

ik and Eijk 6⊂ Ẽ}, (14a)

Ψ̄(z) = {(i, j, k) | there exists n∈ND
ik (z) such that j /∈Cn

ik and Ēijk 6⊂ Ẽ}. (14b)

The sets Ψ(z) and Ψ̄(z) need not be disjoint. They only differ in their check of whether j belongs

to a conditioning set Cn
ik that shows i and k to be dependent in the data. This specific check on

the role of j ensures that if we now combine the Ψ-sets with the S-sets, the collider/non-collider

chains associated with the triples of the respective sets are candidates to address the inconsistencies

identified by z. We can finally define the sets that are the focal points of our search for new edges:

S(z) = S ∩Ψ(z), (15a)

S̄(z) = S̄ ∩ Ψ̄(z), (15b)

16

Intuitively, S(z) and S̄(z) represent chains that we have good reason to think exist in the graph

(because of S and S̄) and correspond to edges useful for satisfying a required d-connection that is

violated by G(x) (because of Ψ(z) and Ψ̄(z)).

We have thus far established that edges among the triples in S(z) and S̄(z) are strong candidates

for inclusion in the candidate set Ẽ to send to CausalIP. We now address the problem of how to

actually select edges from these sets to pass to CausalIP.

4.2. Generating Candidate Edges

Since the tractability of CausalIP suffers if the edge set Ẽ is too large, we would ideally like to

select edges that can reconcile unsatisfied d-connections, without needlessly introducing redundant

edges. To that end, our approach will be to select the smallest number of edges such that at least

one edge from each triple in S(z) and S̄(z) is selected. Proposition 3 below establishes that this

minimal edge selection sub-problem – which we call NewEdgesIP – is NP-hard; accordingly, we

formulate and solve it as an integer program.

There are three types of edges that may exist between every pair of nodes (i, j): i→ j, i← j,

and i↔ j. We index these three edge types by t∈ {1,2,3}, respectively. Let τ tij be a binary decision

variable where τ tij = 1 if a type t edge between nodes i and j is selected to be included in Ẽ, and

τ tij = 0 otherwise. Let λtij be a parameter where λtij = 1 if Ẽ contains a type t edge between nodes i

and j, and λtij = 0 otherwise.

We now define the constraints and objective of NewEdgesIP. To select edges from S(z), we

include the following constraints:∑
t∈{1,3}

(τ tij +λtij)≥ 1, (i, j, k)∈ S(z), (16a)∑
t∈{2,3}

(τ tjk +λtjk)≥ 1, (i, j, k)∈ S(z), (16b)∑
t∈{1,3}

τ tij +
∑

t∈{2,3}

τ tjk ≥ 1, (i, j, k)∈ S(z). (16c)

The first two constraints construct a collider chain over (i, j, k): the first ensures that there is either

a new or existing edge between i and j with an arrowhead at j, and the second ensures there is

either a new or existing edge between k and j with an arrowhead at j. Then, the third constraint

forces at least one new edge to be selected from the candidate collider chain. Similarly, to select

edges from S̄(z), we include: ∑
t∈{1,2,3}

(τ tij +λtij)≥ 1, (i, j, k)∈ S̄(z), (17a)∑
t∈{1,2,3}

(τ tjk +λtjk)≥ 1, (i, j, k)∈ S̄(z), (17b)

17

τ 2
ij +λ2

ij + τ 1
jk +λ1

jk ≥ 1, (i, j, k)∈ S̄(z), (17c)∑
t∈{1,2,3}

(τ tij + τ tjk)≥ 1, (i, j, k)∈ S̄(z). (17d)

Analogous to (16a) and (16b), the first three constraints above construct a non-collider chain over

(i, j, k), using either existing or new edges: The first two constraints ensure an edge exists between

both (i, j) and (j, k), and the third constraint ensures that j is a non-collider. Then, the fourth

constraint forces at least one new edge to be selected from the constructed non-collider chain.

The final group of constraints we include are:

τ tij +λtij ≤ 1, i, j ∈ V, t∈ {1,2,3}, (18a)

τ 1
ij = τ 2

ji, i, j ∈ V, (18b)

τ 3
ij = τ 3

ji, i, j ∈ V. (18c)

The first constraint ensures we do not select an edge that is already included in Ẽ. The second

constraint enforces that i→ j and j← i are the same edge, and the third constraint enforces that

i↔ j and j↔ i are the same edge.

Our objective is to minimize the total number of new edges added to the set of candidate edges

Ẽ. Combining this objective with the constraints (16)–(18) and forcing each τ tij to be binary yields

the following formulation:

minimize
τ

∑
i,j∈V :
j<i

∑
t∈{1,2,3}

τ tij

NewEdgesIP(S(z), S̄(z),λ): subject to (16)− (18)

τ tij ∈ {0,1}, i, j ∈ V, t∈ {1,2,3}.

Next, we analyze the computational complexity of NewEdgesIP.

Proposition 3. The integer programming problem NewEdgesIP is NP-hard.

The output of this formulation is a set of new edges Enew to be added to Ẽ, where Enew contains a

type t edge between nodes i and j if and only if τ tij = 1 at an optimal solution to NewEdgesIP. In

summary, NewEdgesIP generates edges efficiently by searching for edges that satisfy the following

criteria:

(i) the edges belong to collider or non-collider chains for which we have strong evidence of their

presence in the true graph based on the observed independence and dependence relations (i.e.,

the chains belong to S or S̄), and

18

(ii) The edges belong to collider or non-collider chains whose inclusion in the graph would satisfy

a d-connection relation violated by the incumbent solution (i.e., the chains belong to Ψ(z) or

Ψ̄(z)).

Having defined the key components of our method, we now present a summary of the algorithm

and prove its correctness.

4.3. Algorithm Summary and Main Result

Algorithm 1 (EdgeGen) provides an overview of the main steps. Let P−(Ẽ, ζ) =⋃
{(i,j)∈V :i 6=j}P

−
ij (Ẽ, ζ), where P−ij (Ẽ, ζ) is the set of all simple paths (i.e., without appendages)

between i and j that have maximum length ζ and can be constructed from the edges in Ẽ. In step 1,

for an initial set of candidate edges Ẽ and value of ζ, EdgeGen solves CausalIP over P−(Ẽ, ζ)

and returns a graph Gs = (V,Es). By ignoring simple paths longer than ζ and all extended paths in

step 1, it dramatically reduces the number of candidate paths that are considered by CausalIP,

which allows the model to quickly return an approximate solution. But it also implies that the loss

function in CausalIP may undercount the number of violated input relations. Thus, in step 2,

we call the G-Postprocess sub-algorithm (Algorithm 2) to manually check all paths (including

appendages) in the returned graph Gs to precisely identify the d-separation or d-connection relations

violated in Gs. The errors are tracked in ε: For conditioning set Cn
ij that makes i and j dependent,

we have εnij = 0 if there exists a d-connecting path in Gs, otherwise εnij = 1. Similarly, for conditioning

set Cn
ij that make i and j independent, we have εnij = 1 if there exists a d-connecting path in Gs,

otherwise εnij = 0.

If G-Postprocess finds that Gs violates any input relations, new simple paths are introduced

in step 3.1 of EdgeGen. Specifically, it calls the UpdateEdges sub-algorithm (Algorithm 3)

to generate new simple paths by either adding new edges to Ẽ by solving NewEdgesIP, or by

increasing the maximum path length ζ. If S(z)∪ S̄(z) 6= ∅, we solve NewEdgesIP to obtain new

edges Enew, otherwise we randomly pick triples from S and S̄ to pass to NewEdgesIP. When

Enew = ∅, we increment the path length ζ while ζ < |V | − 1, otherwise we randomly select a new

edge to add to Ẽ.

EdgeGen terminates and returns the graph G∗ when all d-connection and d-separation relations

are satisfied, or all possible candidate paths have been generated. Note that as the initial edge set

in EdgeGen, we use

Ẽ0 = {i→ j, i← j, i↔ j | Iij = ∅,Dik =Djk = ∅ for all k ∈ V \ {i, j}},

which captures edges that may not belong to any chains implied by dependencies (i.e., those that

do not correspond to any member of S or S̄).

Next we show that EdgeGen always terminates.

19

Algorithm 1: EdgeGen.

Input: V,S, S̄,ω, ζ.
Output: G∗.
Initialize: Ẽ = Ẽ0, σ= ∅, s= 1.
1. Solve CausalIP

(
P−(Ẽ, ζ)

)
and get Gs = (V,Es) where Es = {e∈ Ẽ|xe = 1}.

2. Call G-Postprocess to obtain εs associated with Gs. Set σs =ω>εs.
3. if ω>εs > 0:

3.1. Call UpdateEdges to update ζ and Ẽ. Update s= s+ 1.
3.2. if Ẽ 6=Ec or ζ < |V | − 1:

Go to Step 1.
3.3 else:

Solve CausalIP
(
P(Ẽ, ζ)

)
and get Gs = (V,Es).

Set σs =ω>εs. Go to Step 4.
4. Return G∗ = Gs∗ where s∗ = argminsσs.

Algorithm 2: G-Postprocess sub-algorithm.

Input: Es, Iij and Dij for i, j ∈ V .
Output: εnij for i, j ∈ V,n∈Nij.
1. for n∈N I

ij and i, j ∈ V :
If
∑

p∈Pij(Es,|V |−1)α
n
ijp > 0, then εnij = 1. Otherwise, εnij = 0.

2. for n∈ND
ij and i, j ∈ V :

If
∑

p∈Pij(Es,|V |−1)α
n
ijp > 0, then εnij = 0. Otherwise, εnij = 1.

3. Return εnij for i, j ∈ V,n∈Nij.

Algorithm 3: UpdateEdges sub-algorithm.

Input: S(z), S̄(z), S, S̄, Ẽ, Ẽ0, ζ.
Output: ζ, Ẽ.
1. if S(z)∪ S̄(z) 6= ∅ :

Solve NewEdgesIP(S(z), S̄(z),λ) to obtain Enew.
else:
Pick any (i, j, k)∈ S such that Eijk 6⊂ Ẽ. Set R(z) = (i, j, k).
Pick any (i, j, k)∈ S̄ such that Ēijk 6⊂ Ẽ. Set R̄(z) = (i, j, k).
Solve NewEdgesIP(R(z), R̄(z),λ) to obtain Enew.

2. Update Ẽ← Ẽ ∪Enew.
3. if Enew = ∅ and ζ < |V | − 1:

Update ζ = ζ + 1 and Ẽ← Ẽ0.
else if Enew = ∅ and ζ = |V | − 1:
Select a random edge e∈Ec \ Ẽ. Update Ẽ← Ẽ ∪ e .

4. Return ζ, Ẽ.

Proposition 4. EdgeGen is guaranteed to terminate. Further, if Assumption 2 holds, the objec-

tive in (3) is equal to zero at termination.

We now present our main result:

20

Theorem 1. Let G∗ be the graph returned by EdgeGen for ω> 0.

(i) Gc ∈ argmin
G

L(G), i.e., Gc minimizes the objective in (3).

(ii) Further, if Assumption 2 holds, G∗ ∼GT (i.e., G∗ and GT are Markov equivalent).

Theorem 1(ii) states that EdgeGen, which is far more scalable than a brute-force solution of

the full CausalIP(P(Ẽ, ζ)) model, preserves the same discovery guarantees given in Proposition 2.

Similar to Proposition 2, Theorem 1(ii) is an asymptotic guarantee, due to its dependence on

Assumption 2. In the more realistic finite-sample setting where Assumption 2 does not hold, the

input relations may not be jointly satisfiable, in which case we obtain the weaker result Theorem 1(i).

In this setting, most constraint-based methods that also allow for cycles and confounders aim to find

a graph that minimizes (weighted) violations of the input constraints (Hyttinen et al. 2013, 2014,

2017, Rantanen et al. 2020). However, exactly minimizing such violations requires searching over the

entire space of DMGs. As a consequence, in the finite-sample setting where Assumption 3 does not

hold, our approach can be viewed as a way to prioritize certain edges for minimizing the number of

unsatisfied dependence and independence relations. As demonstrated in the numerical results below,

the advantage of this heuristic approach is that it scales to instances that are intractable for provably

optimal methods from the literature, while maintaining reasonable accuracy. Further, in the setting

where Assumption 2 does hold, our method outperforms appropriate benchmark algorithms by an

order of magnitude with respect to solution time, without sacrificing optimality.

4.4. Computational Performance

In this section we examine the computational performance of EdgeGen using synthetic data. To

serve as performance benchmarks, we also implemented the causal discovery methods described in

Hyttinen et al. (2013) and Hyttinen et al. (2014), both of which also allow for feedback loops and

latent confounders.13 Hyttinen et al. (2013) only address the conflict-free setting, that is, where the

joint set of conditional independence and dependence constraints are consistent with some DMG.

They solve the discovery problem using a Boolean satisfiability solver. In contrast, Hyttinen et al.

(2014) allow for conflicts among the constraints and propose a solution method based on answer set

programming. For conciseness, we will refer to these two approaches as SAT and ASP, respectively.

We also created an additional hybrid benchmark by combining the logical encoding developed in

Hyttinen et al. (2013) and the solver used in Hyttinen et al. (2014), which we refer to as SAT+ASP.

All algorithms are available in the code package at https://github.com/nkaynar/causal-IP.

We conducted three sets of numerical experiments. First, we considered a conflict-free setting in

which we supply as input the (conditional) independence and dependence relations that hold for the

13 Hyttinen et al. (2017) and Rantanen et al. (2020) are also relevant benchmarks here, but we do not compare against
them because implementable code is not publicly available for those methods.

21

ground truth graph GT . This allows us to separate the statistical question of how to handle errors

that arise from finite samples from the combinatorial challenge of identifying the graph given the set

of constraints. All four methods are guaranteed to return a graph that is Markov equivalent to GT
in this setting, so we focus our comparison exclusively on solution times. Second, we considered a

conflicted setting where the input constraints are estimated from finite samples generated by GT and

therefore may not be jointly satisfiable (i.e., Assumption 2 does not hold). In this setting, the SAT

algorithm does not apply, so we compare EdgeGen with ASP with respect to solution time and

accuracy. Third, we test how well EdgeGen scales to large graphs when we limit the conditioning

set size. We report solution times and accuracy.

The full graph and data generating procedure is discussed in Appendix C. In all simulations, we

simulated 25 DMGs for each setting (allowing for cycles and unobserved confounders) and varied the

graph density by controlling the maxDegree of nodes. Directed and bi-directed edges were sampled

with equal probability. All experiments were run on an Intel Xeon E5-2680 machine with 3.0GHz×24

processors and 20 GB of memory, and used Gurobi v8.0 to solve CausalIP and NewEdgesIP.

4.4.1. Conflict-free setting. For the conflict-free case, we considered graphs over |V | =

6,8 . . . ,18 nodes and varied the maxDegree from 2 through 5. As required by default for all four

methods, we computed all (conditional) dependence and independence relations for each graph.

In fact, generating all ground truth constraints from each graph ultimately constituted the limit-

ing factor for scaling this simulation beyond 18 nodes. Since we used the true independence and

dependence relations as input to the method, no data generation procedure is needed.

Following Hyttinen et al. (2014), for ASP we used uniform weights for all constraints. SAT

and SAT+ASP do not have a weighting scheme, but effectively also treat the constraints with

equal weight. Since EdgeGen is sensitive to being flooded with too many edges, we weighted the

dependence constraints with ωnij = 1 and the independence constraints with ωnij =M where M is a

large integer14. Since the set of constraints is satisfiable in this setting, this weighting scheme only

amounts to prioritizing independence constraints in the search. Since all methods require the same

pre-computation of independence and dependence relations, we isolate the performance of each of

the four methods by reporting the solution times of the discovery task only.

Table 1 shows the results: The median solution times (without any time-outs) across 25 instances

for each algorithm to identify a DMG that is Markov equivalent to the ground truth graph GT . Edge-

Gen is 1-2 orders of magnitude faster than the competing methods and can solve large instances

for which the other methods exceeded our 20GB memory capacity.

14 We set M to
∑
i,j∈V |Aij | where |Aij | is the cardinality of set Aij .

22

|V | EdgeGen SAT ASP SAT+ASP

6 0 0 0 0
8 0 2 1 0
10 1 19 15 5
12 2 115 166 34
14 9 - - 242
16 56 - - -
18 316 - - -

(a) Maximum node degree 2.

|V | EdgeGen SAT ASP SAT+ASP

6 0 1 0 0
8 0 12 1 1
10 1 108 15 5
12 2 - 182 38
14 20 - - 273
16 61 - - -
18 339 - - -

(b) Maximum node degree 3.

|V | EdgeGen SAT ASP SAT+ASP

6 0 1 0 0
8 1 17 1 1
10 2 293 17 6
12 3 - 192 39
14 14 - - 265
16 211 - - -
18 1428 - - -

(c) Maximum node degree 4.

|V | EdgeGen SAT ASP SAT+ASP

6 0 1 0 0
8 2 41 2 1
10 3 825 22 8
12 15 - 206 43
14 34 - - 278
16 490 - - -
18 - - - -

(d) Maximum node degree 5.

Table 1. Median solution times (nearest CPU second) over 25 random instances in the conflict-free
setting. Dashes indicate that the instances could not be solved due to insufficient memory (20GB).

4.4.2. Conflicted setting. For the conflicted case, we generated the 25 DMGs for each |V |=

5,6, . . . ,10,15 with maxDegree varying from 2 through 5 as before. We then used the code from

Hyttinen et al. (2014) to parameterize the graphs as linear Gaussian models and generated 5,000

observations from each graph. We computed weights for each constraint using their most success-

ful weighting scheme, the pseudo-Bayesian “log-weights”. These weights approximate the posterior

probability that a particular (conditional) independence holds in the data starting from a uniform

prior on independence and dependence (for details, see Section 4.3 and Appendix B of Hyttinen

et al. (2014)).15 Due to the size of this simulation and the complexity of this inference task, we

enforced a 500 seconds time limit per instance on both methods.

Table 2 shows the results: For each set of 25 DMGs over a particular number of nodes |V | and

edge density controlled by maxDegree, we show the median fraction of incorrect independence and

dependence constraints (relative to the ground truth graph) implied by the output graph returned

by each method. To provide some calibration of the quality of the set of input constraints, the

second column (“Test”) gives the fraction of incorrect constraints in the input. Since ASP can solve

small instances optimally, we mark them with an asterisk (∗) when this occurred within the 500s

15 Computing the weights this way is computationally intensive, so for the largest instances with |V |= 15 we followed
Hyttinen et al’s suggestion to use the Bayesian Information Criterion (BIC) to determine the weights more efficiently.

23

time limit for all 25 instances. We use a dash (−) to indicate ASP was not able to return even an

initial graph after 500s.

EdgeGen achieves almost optimal results for the small instances where we can compute the

optimal answers using ASP (the ∗-cases). For larger instances, EdgeGen returns more accurate

results than ASP within the 500s time limit, and is close to or below the baseline error rate from

the input tests. For most of these instances it is not known how long ASP would take to return the

optimal solution, or even just a solution with lower error rates than EdgeGen.

Error

|V | Test EdgeGen ASP

5 0.19 0.19 0.18∗

6 0.16 0.18 0.13∗

7 0.17 0.09 0.13
8 0.12 0.10 0.21
9 0.13 0.10 0.35
10 0.13 0.12 0.53
15 0.08 0.06 -

(a) Maximum node degree 2.

Error

|V | Test EdgeGen ASP

5 0.23 0.19 0.18∗

6 0.19 0.14 0.10∗

7 0.21 0.18 0.18
8 0.21 0.18 0.25
9 0.22 0.21 0.41

10 0.21 0.20 0.43
15 0.12 0.08 -

(b) Maximum node degree 3.

Error

|V | Test EdgeGen ASP

5 0.25 0.16 0.16∗

6 0.23 0.17 0.17∗

7 0.22 0.16 0.21
8 0.25 0.24 0.25
9 0.26 0.21 0.30
10 0.28 0.22 0.34
15 0.21 0.21 -

(c) Maximum node degree 4.

Error

|V | Test EdgeGen ASP

5 0.19 0.14 0.13∗

6 0.31 0.28 0.25∗

7 0.24 0.18 0.16
8 0.27 0.21 0.21
9 0.31 0.21 0.25

10 0.31 0.24 0.30
15 0.25 0.27 -

(d) Maximum node degree 5.

Table 2. Median errors (fraction of incorrect (conditional) independence and dependence constraints in
the output graph relative to the ground truth graph) over 25 random instances in the conflicted setting,
using a 500 seconds time limit. “∗” indicates that all 25 instances solved optimally within the time limit.
Dashes indicate that no solution could be returned within the time limit. Column “Test” reports the fraction
of incorrect constraints (relative to ground truth) in the input.

4.4.3. Large graphs and limited conditioning sets. For the scalability simulation, we

generated graphs for |V | ∈ {20,30,40,50} with maxDegree for each node again varying from 2 to

5. The graph generation, as well as the weighting scheme for the constraints, followed that of the

unconflicted setting above. However, for graphs of this size we cannot efficiently generate all the

ground truth (in)dependence relations as there are
(|V |

2

)
2|V |−2 such relations for each graph. We

24

therefore limited the input constraints to conditioning sets of size 0 or 1, and again imposed a time

limit of 500s. Even though all the input constraints are correct with respect to the ground truth

graph, errors can arise in the output, as only a subset of all the constraints are given to EdgeGen.

Since we do not have all the ground truth constraints, we cannot use the same error measure as in

the conflicted setting, so we report Type 1 (false positive) and Type 2 errors (false negative) and the

False Discovery Rate (FDR) for the undirected adjacency relations in the output graph compared

to the ground truth (two nodes are adjacent in a graph if they have an edge between them).

|V | Solution
time

Type 1 Type 2 FDR

20 0 0 0 0
30 1 0 0 0
40 3 0 0 0
50 7 0 0 0

(a) Maximum node degree 2.

|V | Solution
time

Type 1 Type 2 FDR

20 1 0.006 0 0.042
30 2 0.002 0 0.029
40 4 0.001 0 0.023
50 25 0.002 0 0.038

(b) Maximum node degree 3.

|V | Solution
time

Type 1 Type 2 FDR

20 15 0.043 0 0.213
30 77 0.021 0 0.157
40 - - - -
50 - - - -

(c) Maximum node degree 4.

|V | Solution
time

Type 1 Type 2 FDR

20 177 0.049 0.034 0.235
30 - - - -
40 - - - -
50 - - - -

(d) Maximum node degree 5.

Table 3. Median solution times and errors over 25 random instances in the unconflicted setting with a
maximum conditioning set size of 1. Dashes indicate that no instance could produce a solution within 500
seconds.

Table 3 shows the results. Unsurprisingly, for maxDegree= 2, the unconflicted constraints with

a maximum conditioning set size of 1 are sufficient to correctly identify the adjacency relations

(panel (a)), and EdgeGen solves these sparse graphs within a few seconds. As these large graphs

get denser, solution times quickly increase, but the adjacency errors remain low. For graphs with

maxDegree= 5 (panel (d)), we were able to solve all 25 instances to optimality within the 500s time

limit for |V |= 20; for |V | ≥ 30, our method did not return any graph at all within 500s. Nevertheless,

it should be noted that we are not aware of any other discovery method that can handle graphs

with cycles and unmeasured confounders over this many nodes.

5. Empirical Study: Investigating the Validity of an Instrumental Variable

In this section, we show how our discovery method can be used to investigate the validity of an

instrumental variable. As a point of reference, we compare our method to the test proposed in

25

Kitagawa (2015) by applying both approaches to the data used in the landmark studies on the

returns to education by Angrist and Krueger (1991) and Card (1993).

5.1. Instrumental Variables and Graphical Criteria

Instrumental variables (Bowden and Turkington 1990, Angrist et al. 1996, Angrist and Krueger

2001) are one of the most widely used techniques to adjust causal effect estimates for bias due

to unmeasured confounding. In order to isolate the causal effect of the treatment on the outcome

from the spurious dependence due to confounding, the instrument must satisfy a set of structural

assumptions. Pearl (2000) formalizes these conditions in graphical terms as follows:

Definition 5 (Instrumental variables). Given a graph G, a node i is an instrument for the

effect of j on k if (1) i 6⊥G j and (2) i⊥Ḡ k, where Ḡ is the graph obtained by removing j→ k from

G.
Condition (1) is often referred to as the relevance criterion – the instrument must be correlated with

the treatment – while condition (2) combines the exclusion and exogeneity criteria: the instrument

can only affect the outcome via the treatment and there cannot be any confounding of the instru-

ment and outcome. Figure 5 provides examples of valid and invalid instruments for different causal

structures.

Figure 5 Node i is a valid instrument for the effect of j on k in (a) and (b), but an invalid instrument in (c) because

the path i↔ l→ k violates Definition 5(2). Conditioning on W = {l} in (c) makes i a valid conditional instrument.

When a variable violating condition (2) can be turned into a valid instrument using a suitable

conditioning set W , then it is said to be a conditional instrument, and Definition 5 can be slightly

generalized to capture the case:

Definition 6 (Conditional instrumental variables). Given a graph G, a node i is an

conditional instrument for the effect of j on k if there exists a conditioning set W such that (1)

i 6⊥G j|W , (2) i⊥Ḡ k|W , where Ḡ is the graph obtained by removing the edge j→ k from G, and (3)

W contains only non-descendants of k. (Pearl 2000).

In both definitions above, verifying that an instrument satisfies condition (1) is easily done by

ensuring it is sufficiently correlated with the treatment.16 In contrast, establishing condition (2) poses

16 Relatedly, there is extensive work on the pitfalls of using weak (i.e., low correlation) instruments and potential
remedies (Bound et al. (1995), Staiger and Stock (1997), Stock et al. (2002), Murray (2006)).

26

a major challenge (Angrist et al. 1996, Stock 2002). As a consequence, the validity of instruments

is often justified by context-specific arguments.17 A recent line of work has developed tests for

instrument validity under a variety of assumptions (e.g., Kitagawa (2015), Mourifié and Wan (2017),

Kédagni and Mourifié (2020)). Kitagawa’s test, which we will compare to in §5.3 and §5.4, assumes

a binary treatment and a discrete instrument. The test builds on the “testable implications” of valid

instruments from Balke and Pearl (1997) and Heckman and Vytlacil (2005), and uses a Kolmogorov-

Smirnov statistic to compare the empirical outcome distributions for each value of the instrument,

for both treated and control units.

5.2. A Path-Based Procedure for Investigating Instrument Validity

In contrast to Kitagawa’s test, our procedure does not make any parametric assumptions and instead

directly evaluates the extent to which a candidate instrument conforms to the graphical criteria

in Definition 5 (or 6). In particular, given observational data for the relevant variables (i.e., the

instrument, treatment, outcome, and additional covariates), we solve a causal discovery problem

over two search spaces: the full space of directed mixed graphs, and the subspace of graphs in

which the graphical criteria in Definition 5 (or 6) are enforced. If forcing the instrument to be

valid degrades model fit – as measured by the loss function L(G) in CausalIP – we take that

to constitute evidence against the instrument’s validity, because it implies that the instrument is

invalid in the graphs most consistent with the data. Obviously, failure to reject validity does not

imply the validity of the instrument, especially for our procedure, since causal structures with valid

instruments can be Markov equivalent to structures with invalid instruments (see Appendix D.1 for

an example). In spirit, our procedure is similar to likelihood ratio tests commonly used to test for

model misspecification, except that we use the loss function from an integer program to evaluate

model fit instead of a likelihood function, which is not well defined in this model space.

In CausalIP the graphical criteria in Definitions 5 can be directly expressed as the presence or

absence of particular paths. Specifically, enforcing the exclusion criterion amounts to simply pre-

computing all paths that violate condition (2) in Definition 5 and prohibiting them from appearing

in the output graph. Formally, let i, j, and k denote the instrument, treatment, and outcome nodes,

respectively. Then Definition 5(2) can be enforced by adding to CausalIP the constraints

yp = 0, p∈PIV, (20)

where PIV contains all unblocked paths from i to k that do not contain the edge j → k (i.e., all

paths that violate the exclusion criterion). Similarly, the relevance criterion (Definition 5(1)) can

17 Angrist and Krueger (2001) write “good instruments often come from detailed knowledge of the economic mechanism
and institutions”, and Imbens and Rosenbaum (2005) write “finding instruments is an art rather than a science.”

27

be enforced by ensuring the graph contains at least one edge (of any type) between the instrument

and treatment, which can be done by adding the constraint∑
e∈Eij

xe ≥ 1, (21)

where Eij = {i→ j, i← j, i↔ j}. When the constraints (20) and (21) are added to CausalIP, we

refer to the resulting space of graphs as the restricted model space; analogously, we refer to the full

space of directed mixed graphs as the unrestricted model space. A similar approach can be used to

enforce the criteria for conditional instruments from Definition 6, given appropriate adjustments to

the set of violating paths PIV.

Our procedure for checking instrument validity is based on the bootstrap percentile method (Efron

and Tibshirani (1994)) and is summarized in Algorithm 4. The bootstrap percentile value generated

by Algorithm 4 is the fraction of bootstrap repetitions in which enforcing the instrument criteria

did not degrade model fit; accordingly, we interpret a small bootstrap percentile value as evidence

against the candidate instrument’s validity. Note that obtaining valid p-values in this setting requires

an asymptotic characterization of the loss difference L(GIV)−L(G), which is beyond the scope of

this paper. We therefore rely on bootstrap percentile values to informally measure the extent to

which a variable satisfies the graphical criteria of an instrumental variable, and caution against

interpreting them as p-values.

Algorithm 4: Path-Based Procedure for Instrument Validity

Input: Bootstrap repetitions B, BIC complexity parameter c.
Output: Bootstrap percentile value.
1. for b= 1,2, . . . ,B:

1.1 Solve CausalIP on bootstrap sample b over unrestricted model space and get graph Gb.
1.2 Repeat for restricted model space and get graph GbIV.
1.3 Set δb =L(GbIV)−L(Gb).

2. Compute bootstrap percentile value = 1
B

∑B

b=1 1(δb ≤ 0).

To explore our procedure, we apply it to two well-known instruments for estimating the returns

to education: the quarter-of-birth instrument from Angrist and Krueger (1991) and the proximity-

to-college instrument from Card (1993).

5.3. Example 1: Quarter-of-Birth Instrument from Angrist and Krueger (1991)

The causal effect of education on income is a classical question in economics with significant policy

implications, but one that is challenging to measure due to unobserved confounders (Card 1999).

The remedy for confounding proposed by Angrist and Krueger (1991) is to use quarter-of-birth as an

instrument for years of education completed. The justification for the validity of this instrument is

28

given as follows: Because students are born year-round, the age at which students start school varies.

Further, compulsory schooling laws in many states prohibit students from dropping out before they

reach a certain age (e.g., their 16th birthday). The combination of variability in starting ages and

compulsory schooling laws effectively forces some students to complete more schooling than others,

making quarter-of-birth correlated with years of education. Further, Angrist and Krueger (1991)

argue that there is little reason to think quarter-of-birth would be correlated with income beyond its

effect on education, thereby ensuring validity of the instrument to estimate the effect of education

on income.

Angrist and Krueger (1991)’s pioneering use of quarter-of-birth as an instrument for education

has led to its adoption in numerous other studies (Buckles and Hungerman (2013)). Meanwhile,

the validity of this instrument has been the subject of extensive debate and discussion (e.g., Bound

et al. (1995), Card (1999), Staiger and Stock (1997), Angrist and Krueger (2001), Imbens and

Rosenbaum (2005), Buckles and Hungerman (2013)). We investigate the validity of the quarter-of-

birth instrument by applying the path-based procedure described in §5.2, and by implementing the

test proposed by Kitagawa (2015) for comparison.

5.3.1. Data and experimental setup. We focus on a subset of the data used in Angrist and

Krueger (1991) containing information about 329,509 individuals taken from the 1980 US Census.18

There are six available variables: QOB (quarter-of-birth, an integer value between 1 and 4), EDU

(years of education completed), WAGE (weekly wage), RACE (race, 1 = Black) MAR (marital status,

1 = married), and SMSA (location of residence, 1 = Metropolitan Statistical Area). To remove the

effect of year-of-birth, we de-trended the data following the steps described in Angrist and Krueger

(1991) and used the Bayesian Information Criterion (BIC) (see Appendix C.2) to determine the

independence relations and their weights.19 Since the outcomes of the conditional independence tests

depend critically on the BIC complexity parameter c, we repeat the procedure for three different

values of c. In particular, we consider c ∈ {c0.95, c1, c1.05}, where c1 = 1, c0.95 is the value that

generates 5% fewer d-separation conditions than c1, and c1.05 is the value that generates 5% more

d-separation conditions than c1.

For each value of the complexity parameter, we generate a bootstrap percentile value by running

Algorithm 4 with B = 50. The graphs G and GIV are generated by solving CausalIP using the

EdgeGen algorithm described in §4, terminating after 500 seconds in each bootstrap iteration.

18 Angrist and Krueger (1991) repeat their analysis for three cohorts separately – those born in the 1930s, 1940s, and
1950s – obtaining similar results across all three cohorts. For conciseness in our presentation, we use data from just
the first cohort.
19 As suggested in Hyttinen et al. (2014), BIC weights are a fast approximation of the log-weights discussed in §4.4,
which are computationally intensive to compute for large datasets like in Angrist and Krueger (1991).

29

Since quarter-of-birth is proposed as an “unconditional” instrument in Angrist and Krueger (1991),

we apply Definition 5 when constructing the restricted model space.

Kitagawa’s test assumes a binary treatment, so we binarized EDU by assuming that individuals

with 12 or more years of education are treated, that is, the treatment is considered as obtaining high

school degree, and implemented the test using the R functions used in Kitagawa (2015), again with

50 bootstrap repetitions. Kitagawa’s test is parameterized by a user-defined “trimming constant”

ξ, which is a regularization parameter that stabilizes a variance-based weighting scheme for the

proposed test statistic. We implement Kitagawa’s test using the same values for ξ used in Kitagawa

(2015): ξ ∈ {0.07,0.3,1}.

5.3.2. Results. Table 4 presents the bootstrap percentile values obtained by applying our path-

based procedure to the quarter-of-birth instrument from Angrist and Krueger (1991). We find the

values to be highly sensitive to the specification of the complexity parameter c, and obtain a range

of 0.12 to 0.52. Table 5 shows the results from applying Kitagawa’s test, which generates p-values

showing similar variability (0.16 to 0.9).

BIC penalty, c c0.95 c1 c1.05

bootstrap percentile value 0.52 0.62 0.12

Table 4. Bootstrap percentile values from path-based procedure (Algorithm
4) applied to quarter-of-birth instrument from Angrist and Krueger (1991),
based on 50 bootstrap repetitions. c1.05 corresponds to the strongest penalty
on model complexity.

Trimming constant, ξ 0.07 0.3 1
p-value 0.9 0.53 0.16

Table 5. p-values from Kitagawa’s test applied to quarter-of-birth instru-
ment from Angrist and Krueger (1991), based on 50 bootstrap repetitions.

Our graph-based procedure also allows us to take the additional step of probing where potential

violations of the criteria for valid instruments may lie. In particular, a graph constructed over the

variables from Angrist and Krueger (1991) may reveal a causal path that violates the exclusion

criterion, or show a weak relation to the treatment. A natural approach is to count the frequency

with which each edge appears over all bootstrapped graphs in Algorithm 4, where higher frequencies

denote greater confidence in the causal relation implied by the edge. Figure 6 visualizes the edge

30

frequencies over 50 bootstrap repetitions for the quarter-of-birth instrument, where thicker lines are

used for higher frequency edges. Appendix D.2 contains detailed tables with all edge frequencies.20

(a) c0.95 (b) c1 (c) c1.05

Figure 6 Edge frequencies over 50 bootstrap repetitions of EdgeGen applied to Angrist and Krueger (1991) data for

three levels of complexity penalty. Only edges with frequency ≥ 0.1 are shown.

The results in Figure 6 provide some evidence of confounding between QOB and RACE. The bi-

directed edge QOB ↔ RACE appears with a frequency of 0.68 for c= c0.95; notably, no other edge

appears more frequently at this value of c (see Appendix D.2). However, the edge QOB ↔ RACE

vanishes at higher values of c. Although QOB↔ RACE only appears at low values of c, the presence

of this edge threatens the validity of quarter-of-birth as an instrument for education. Because the

edge RACE → WAGE appears with moderate frequency (0.54 under c = c0.95), the edge QOB ↔

RACE violates condition (2) in Definition 5 by creating a causal path from QOB to WAGE that does

not pass through EDU. Our results also show that the edge QOB → EDU appears with a frequency

of 0.64 and 0.54 for c= c0.95 and c= c1, respectively, indicating that condition (1) in Definition 5

is not satisfied in half of the output graphs. For c= c1.05, the frequency of QOB → EDU drops to

0.10, which speaks to potential weakness of QOB as an instrument for EDU, and we conjecture is

responsible for the sharp drop in the bootstrap percentile value in Table 4 at c= c1.05.

These concerns about the validity of quarter-of-birth as an instrument are not new – two well

known critiques of this instrument are presented by Bound et al. (1995) (hereafter BJB-95) and

Buckles and Hungerman (2013) (BH-13). The main criticism in BJB-95 is that quarter-of-birth’s

association with education is so weak that even minimal confounding may lead to biased estimates,

despite the large sample sizes in Angrist and Krueger (1991). As noted above, this weak association

between quarter-of-birth and education is reflected in our results by the edge QOB→ EDU drop-

ping to a frequency of 0.1 for c= c1.05, while other edges persist. More interestingly, BJB-95 also

suggest that quarter-of-birth may be associated with family characteristics that are predictive of

20 Strobl et al. (2019) develop analytical upper bounds on the p-values for individual edges in DAGs, which depend
on the significance level of the underlying conditional independence tests. However, their method of generating edge-
specific p-values does not hold for the more general class of DMGs, and we are unaware of any that do.

31

an individual’s income. In particular, they argue that race may be associated with quarter-of-birth,

and also point to research that finds families with high incomes are less likely to have children

in the winter months (Kestenbaum 1987). These conjectures about potential confounding due to

family background are rigorously examined by BH-13, who propose that maternal characteristics

can explain a significant share of the association between quarter-of-birth and income. Using birth

certificate and US Census data, BH-13 find that children born in the winter are more likely to

have mothers that are non-white, teenagers, and lacking a high school diploma. BH-13 state that

because quarter-of-birth is associated with family background (which is itself related to income),

the quarter-of-birth instrument violates the critical exclusion criterion. Notably, our detection of a

causal relationship between RACE and QOB is well-aligned with both BJB-95 and BH-13’s claims

of potential confounding between quarter-of-birth and income due to race.

Beyond the effect of race, BJB-95 also argue that it is plausible that quarter-of-birth has a direct

effect on income, and point to research in psychology and education for possible mechanisms. Our

results do not support this claim, because we do not find quarter-of-birth to be a direct cause of

income, nor do we detect any confounding between those variables other than race. Although our

findings suggest that confounding between QOB and WAGE is predominantly captured by RACE,

this does not rule out the possibility that there exists a weak and undetected edge between QOB

and WAGE, which may still meaningfully bias estimates of the effect of EDU on WAGE.21

5.4. Example 2: Proximity-to-College Instrument from Card (1993)

Card (1993) proposes the presence of a college near an individual’s childhood home as a binary

instrument for the effect of education on income. The argument put forth is that living near a college

reduces the cost of education by allowing students to live at home, making students with nearby

colleges more likely to pursue higher education. Further, the exclusion criterion is claimed to be

satisfied because proximity to a college should be independent of a student’s unobserved ability.

5.4.1. Data and experimental setup. The data from Card (1993) is taken from the National

Longitudinal Survey of Young Men, which conducted surveys of men aged 14-24 from 1966 through

1981. In the dataset provided by Card (1993), the survey respondents’ place of residence is taken

from the 1966 survey, and years of education and income are taken from the 1976 survey.

Kitagawa (2015) analyses Card (1993)’s proximity-to-college instrument using his test of validity.

We follow his set-up by using the following variables: PROX (proximity to 4 year college, 0 or 1), EDU

(years of education completed), WAGE (wage), RACE (race, 1 = Black), SOUTH (location in 1966,

1 = lives in a Southern state), and SMSA (location in 1966, 1 = Metropolitan Statistical Area). We

remove observations with missing entries, which yields 1,600 observations in total. We implement

21 See Belloni et al. (2014) for a general related discussion.

32

our path-based procedure in an identical manner to §5.3 using Algorithm 4, and reproduce the table

from Kitagawa (2015) below.

5.4.2. Results. Table 6 presents the results of applying our procedure to the proximity-to-

college instrument from Card (1993). Following Kitagawa (2015), we consider two settings: one

in which proximity-to-college is assumed to be an unconditional instrument (i.e., Definition 5 is

enforced in the restricted model space), and one in which proximity is used as a conditional instru-

ment with conditioning set W = {RACE,SOUTH,SMSA} (Definition 6 is enforced). As in §5.3, our

results are qualitatively consistent with those from Kitagawa (2015), reproduced here as Table 7. In

particular, when testing the validity of proximity-to-college as an unconditional instrument, Kita-

gawa’s test produces p-values of 0.00 for all values of the trimming constant ξ, rejecting the validity

of the instrument. We obtain bootstrap percentile values of 0.08 to 0.26 depending on the value of

the BIC penalty c. When investigating proximity-to-college as a conditional instrument, the boot-

strap percentile values returned by our approach (0.64 - 0.88) are comparable to the p-values from

Kitagawa’s test (0.71 - 0.91). Notably, the values from both our procedure and Kitagawa’s test are

relatively stable with respect to the tuning parameters c and ξ, in sharp contrast to the wide range

of values obtained from testing quarter-of-birth in §5.3.

No covariates With covariates

BIC penalty, c c0.95 c1 c1.05 c0.95 c1 c1.05

Bootstrap percentile value 0.26 0.08 0.10 0.88 0.72 0.64

Table 6. Bootstrap percentile values from path-based procedure (Algorithm 4) applied to
proximity-to-college instrument from Card (1993), based on 50 bootstrap repetitions. “No
covariates” refers to testing proximity as an unconditional instrument; “With covariates”
refers to testing proximity as a conditional instrument with setW = {RACE,SOUTH,SMSA}.

No covariates With covariates

Trimming constant, ξ 0.07 0.3 1 0.07 0.3 1
p-value 0.00 0.00 0.00 0.89 0.71 0.91

Table 7. p-values from Kitagawa’s test applied to proximity-to-college instrument from
Card (1993), based on 500 bootstrap repetitions. Table reproduced from Kitagawa (2015).

Analogous to §5.3, Figure 7 shows the edge frequencies for each value of the complexity parameter

c. For all values of c, we observe the path from PROX ↔ SMSA → WAGE with moderate frequency,

with PROX↔ SMSA appearing with frequency 0.48 - 0.54 across the three values of c and SMSA→

WAGE appearing with frequency 0.82 - 0.88. The robustness of this path underscores the invalidity

33

(a) c0.95 (b) c1 (c) c1.05

Figure 7 Edge frequencies over 50 bootstrap repetitions of EdgeGen applied to Card (1993) data for three levels of

complexity penalty. Only edges with frequency ≥ 0.1 are shown.

of proximity-to-college as an unconditional instrument, and thus the importance of conditioning on

the location variable SMSA. Similarly, at c= c0.95, the edges in the path PROX↔ SOUTH→WAGE

appears with frequency 0.28 and 0.32, which violates Definition 5(2), although the edge SOUTH→
WAGE vanishes at higher values of c. The edge PROX→ EDU appears with frequencies of 0.56−0.8

across the values of c tested. This edge thus appears to be more durable than QOB→ EDU in §5.3,

which drops to a frequency of 0.1 under c= c1.05.

5.5. Discussion

We have outlined a graph-based procedure for investigating instrument validity and applied it to

the instruments from Angrist and Krueger (1991) and Card (1993). Our results are qualitatively

consistent with the test proposed in Kitagawa (2015), although both methods are sensitive to user-

specified tuning parameters, and our approach relies on the more informal bootstrap percentile

method. When applied to the quarter-of-birth instrument from Angrist and Krueger (1991), Kita-

gawa’s test produces highly variable p-values depending on the tuning parameter, but does not

conclusively rejects its validity; similarly, we observe a wide range of bootstrap percentile values

from our procedure. For the proximity-to-college instrument from Card (1993), both approaches

generate large values when location and race variables are conditioned on; in the unconditional

setting, Kitagawa’s test generates p-values close to 0, while the lowest bootstrap percentile value

under our test is 0.08.

For invalid instruments, our graph-based procedure can identify specific causal pathways that

violate the critical exclusion criterion. Identifying these paths may also reveal covariates that can

restore the validity of a proposed instrument once conditioned on, as demonstrated by the results

for the Card (1993) data. While the additional insights regarding exclusion-violating paths are not

obtained under Kitagawa’s test, we note that they come at the cost of the higher computational

burden associated with causal discovery.

Our approach has limitations. As discussed above, the output graphs are sensitive to the choice of

conditional independence test and the weighting scheme. We tested sensitivity to the BIC complexity

34

penalty c, but not to the choice of independence test; the use of other tests may alter our results.

Further, there may exist multiple graphs within the Markov equivalence class of graphs implied

by the input independence relations, and we only considered one of them per run in this analysis.

Lastly, we terminated the algorithm after 500 seconds in order to complete the many bootstraps

and settings in reasonable time. Adjusting this criterion may also affect our findings.

Our procedure is also not unique to our causal discovery method. In principle, one could develop

a similar test using other causal discovery techniques. However, an effective way of encoding the

instrument conditions and a representation of possible latent confounding is essential, and none of

the existing causal discovery methods for this search space scale well.

6. Conclusion

In this article, we presented a new optimization-based method for causal discovery: the problem of

learning causal structures from observational data. The key to our method is an iterative solution

algorithm that makes use of the conditional independence structure in the data to identify promising

edges and paths to include in the output graph. Our method is one of the few in the literature that

allows for both feedback cycles and unmeasured confounding, and performs favorably compared

with those that do.

We also proposed a procedure for investigating instrument validity built upon our causal discovery

method. Our approach complements instrument tests from the literature by revealing the precise

causal pathways that invalidate an instrumental variable, which in turn identifies conditioning vari-

ables that can transform an otherwise invalid instrument into a valid conditional instrument.

There are numerous potential directions for future research. On the algorithmic side, natural can-

didates include methods that efficiently select a subset of conditional independence tests to further

improve scalability, and systematically exploring different weighting schemes for the input relations.

Regarding the estimation of treatment effects, our focus was on instrumental variables; however, our

results suggest that causal discovery methods may provide valuable structural justification for many

other causal inference methods. This is especially the case for our integer programming-based frame-

work, which can easily incorporate structural assumptions and background information. Lastly, a

sound understanding of causal structures can play a vital role in correctly evaluating counterfactu-

als and the development of data-driven decision-making models. As causal discovery methods and

computational power more generally both continue to advance, opportunities to tractably blend the

inference of causal structure with prescriptive models will invariably arise.

35

References
Angrist, Joshua D, Guido W Imbens, Donald B Rubin. 1996. Identification of causal effects using

instrumental variables. Journal of the American Statistical Association 91(434) 444–455.

Angrist, Joshua D, Alan B Krueger. 1991. Does compulsory school attendance affect schooling and

earnings? The Quarterly Journal of Economics 106(4) 979–1014.

Angrist, Joshua D, Alan B Krueger. 2001. Instrumental variables and the search for identification: From

supply and demand to natural experiments. Journal of Economic Perspectives 15(4) 69–85.

Balke, Alexander, Judea Pearl. 1997. Bounds on treatment effects from studies with imperfect compliance.

Journal of the American Statistical Association 92(439) 1171–1176.

Barnhart, Cynthia, Ellis L Johnson, George L Nemhauser, Martin WP Savelsbergh, Pamela H Vance. 1998.

Branch-and-price: Column generation for solving huge integer programs. Operations Research 46(3)

316–329.

Bartlett, Mark, James Cussens. 2017. Integer linear programming for the bayesian network structure

learning problem. Artificial Intelligence 244 258–271.

Belloni, Alexandre, Victor Chernozhukov, Christian Hansen. 2014. Inference on treatment effects after

selection among high-dimensional controls. The Review of Economic Studies 81(2) 608–650.

Bound, John, David A Jaeger, Regina M Baker. 1995. Problems with instrumental variables estimation

when the correlation between the instruments and the endogenous explanatory variable is weak.

Journal of the American Statistical Association 90(430) 443–450.

Bowden, Roger J, Darrell A Turkington. 1990. Instrumental variables. 8, Cambridge University Press.

Buckles, Kasey S, Daniel M Hungerman. 2013. Season of birth and later outcomes: Old questions, new

answers. Review of Economics and Statistics 95(3) 711–724.

Card, David. 1993. Using geographic variation in college proximity to estimate the return to schooling.

Card, David. 1999. The causal effect of education on earnings. Handbook of Labor Economics 3 1801–1863.

Chen, Rui, Sanjeeb Dash, Tian Gao. 2021. Integer programming for causal structure learning in the

presence of latent variables. International Conference on Machine Learning . PMLR, 1550–1560.

Claassen, Tom, Joris Mooij, Tom Heskes. 2013. Learning sparse causal models is not NP-hard. Proceedings

of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence .

Colombo, Diego, Marloes H Maathuis, Markus Kalisch, Thomas S Richardson. 2012. Learning

high-dimensional directed acyclic graphs with latent and selection variables. The Annals of Statistics

294–321.

Cussens, James. 2012. Bayesian network learning with cutting planes. Proceedings of the Twenty-Eigth

Conference on Uncertainty in Artificial Intelligence 153–160.

36

Eberhardt, Frederick. 2017. Introduction to the foundations of causal discovery. International Journal of

Data Science and Analytics 3(2) 81–91.

Efron, Bradley, Robert J Tibshirani. 1994. An introduction to the bootstrap. CRC press.

Evans, Robin J. 2016. Graphs for margins of bayesian networks. Scandinavian Journal of Statistics 43(3)

625–648.

Forré, Patrick, Joris M Mooij. 2018. Constraint-based causal discovery for non-linear structural causal

models with cycles and latent confounders. arXiv preprint arXiv:1807.03024 .

Garey, Michael R, David S Johnson. 1979. Computers and intractability: A guide to the theory of

NP-completeness .

Geiger, Dan, Judea Pearl. 1988. On the logic of influence diagrams. University of California (Los Angeles).

Computer Science Department.

Geiger, Dan, Thomas Verma, Judea Pearl. 1990. Identifying independence in bayesian networks. Networks

20(5) 507–534.

Heckman, James J, Edward Vytlacil. 2005. Structural equations, treatment effects, and econometric policy

evaluation 1. Econometrica 73(3) 669–738.

Hyttinen, Antti, Frederick Eberhardt, Patrik O Hoyer. 2012. Learning linear cyclic causal models with

latent variables. The Journal of Machine Learning Research 13(1) 3387–3439.

Hyttinen, Antti, Frederick Eberhardt, Matti Järvisalo. 2014. Constraint-based causal discovery: Conflict

resolution with answer set programming. Proceedings of the Thirtieth Conference on Uncertainty in

Artificial Intelligence. 340–349.

Hyttinen, Antti, Patrik O Hoyer, Frederick Eberhardt, Matti Järvisalo. 2013. Discovering cyclic causal

models with latent variables: a general SAT-based procedure. Proceedings of the Twenty-Ninth

Conference on Uncertainty in Artificial Intelligence. 301–310.

Hyttinen, Antti, Paul Saikko, Matti Järvisalo, et al. 2017. A core-guided approach to learning optimal

causal graphs. Proceedings of the 26th International Joint Conference on Artificial Intelligence

(IJCAI 2017). International Joint Conferences on Artificial Intelligence.

Imbens, Guido W, Paul R Rosenbaum. 2005. Robust, accurate confidence intervals with a weak

instrument: quarter of birth and education. Journal of the Royal Statistical Society: Series A

(Statistics in Society) 168(1) 109–126.

Jaakkola, Tommi, David Sontag, Amir Globerson, Marina Meila. 2010. Learning Bayesian network

structure using LP relaxations. Proceedings of the Thirteenth International Conference on Artificial

Intelligence and Statistics. 358–365.

Kédagni, Désiré, Ismael Mourifié. 2020. Generalized instrumental inequalities: testing the instrumental

variable independence assumption. Biometrika 107(3) 661–675.

37

Kestenbaum, Bert. 1987. Seasonality of birth: two findings from the decennial census. Social Biology

34(3-4) 244–248.

Kitagawa, Toru. 2015. A test for instrument validity. Econometrica 83(5) 2043–2063.

Kucukyavuz, Simge, Ali Shojaie, Hasan Manzour, Linchuan Wei, Hao-Hsiang Wu. 2020. Consistent

second-order conic integer programming for learning bayesian networks. arXiv preprint

arXiv:2005.14346 .

Lubbecke, Marco E, Jacques Desrosiers. 2005. Selected topics in column generation. Operations Research

53(6) 1007–1023.

Maathuis, Marloes H, Diego Colombo, Markus Kalisch, Peter Bühlmann. 2010. Predicting causal effects in

large-scale systems from observational data. Nature Methods 7(4) 247–248.

Magliacane, Sara, Tom Claassen, Joris M Mooij. 2016. Ancestral causal inference. Advances in Neural

Information Processing Systems 29 4466–4474.

Manzour, Hasan, Simge Küçükyavuz, Hao-Hsiang Wu, Ali Shojaie. 2021. Integer programming for learning

directed acyclic graphs from continuous data. Informs Journal on Optimization 3(1) 46–73.

Meek, C. 1995. Strong completeness and faithfulness in bayesian networks. Proceedings of the Eleventh

Conference on Uncertainty in Artificial Intelligence. 411–418.

Mourifié, Ismael, Yuanyuan Wan. 2017. Testing local average treatment effect assumptions. Review of

Economics and Statistics 99(2) 305–313.

Murray, Michael P. 2006. Avoiding invalid instruments and coping with weak instruments. Journal of

Economic Perspectives 20(4) 111–132.

Park, Young Woong, Diego Klabjan. 2017. Bayesian network learning via topological order. The Journal of

Machine Learning Research 18(1) 3451–3482.

Pearl, Judea. 2000. Causality: models, reasoning and inference. Cambridge, UK: Cambridge University

Press .

Rantanen, Kari, Antti Hyttinen, Matti Järvisalo. 2018. Learning optimal causal graphs with exact search.

International Conference on Probabilistic Graphical Models. PMLR, 344–355.

Rantanen, Kari, Antti Hyttinen, Matti Järvisalo. 2020. Discovering causal graphs with cycles and latent

confounders: an exact branch-and-bound approach. International Journal of Approximate Reasoning

117 29–49.

Richardson, Thomas. 1996. Feedback models: Interpretation and discovery. Ph.D. thesis, Carnegie Mellon.

Solus, L, Y Wang, C Uhler. 2021. Consistency guarantees for greedy permutation-based causal inference

algorithms. Biometrika 108(4).

Spirtes, Peter. 1995. Directed cyclic graphical representations of feedback models. Proceedings of the

Eleventh conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc.,

491–498.

38

Spirtes, Peter, Clark N Glymour, Richard Scheines, David Heckerman, Christopher Meek, Gregory Cooper,

Thomas Richardson. 2000. Causation, prediction, and search. MIT press.

Spirtes, Peter, Kun Zhang. 2016. Causal discovery and inference: concepts and recent methodological

advances. Applied informatics, vol. 3. SpringerOpen, 1–28.

Staiger, Douglas, James H Stock. 1997. Instrumental variables regression with weak instruments.

Econometrica: Journal of the Econometric Society 557–586.

Stock, James. 2002. Instrumental variables in economics and statistics. International Encyclopedia of the

Social Sciences .

Stock, James H, Jonathan H Wright, Motohiro Yogo. 2002. A survey of weak instruments and weak

identification in generalized method of moments. Journal of Business & Economic Statistics 20(4)

518–529.

Strobl, Eric V, Peter L Spirtes, Shyam Visweswaran. 2019. Estimating and controlling the false discovery

rate of the pc algorithm using edge-specific p-values. ACM Transactions on Intelligent Systems and

Technology (TIST) 10(5) 1–37.

Teramoto, Reiji, Chiaki Saito, Shin-ichi Funahashi. 2014. Estimating causal effects with a non-paranormal

method for the design of efficient intervention experiments. BMC Bioinformatics 15(1) 1–14.

Triantafillou, Sofia, Ioannis Tsamardinos. 2015. Constraint-based causal discovery from multiple

interventions over overlapping variable sets. The Journal of Machine Learning Research 16(1)

2147–2205.

Uhler, Caroline, Garvesh Raskutti, Peter Bühlmann, Bin Yu. 2013. Geometry of the faithfulness

assumption in causal inference. The Annals of Statistics 436–463.

Verma, Thomas, Judea Pearl. 1991. Equivalence and synthesis of causal models. UCLA, Computer Science

Department.

Zhalama, Jiji Zhang, Frederick Eberhardt, Wolfgang Mayer. 2017. SAT-based causal discovery under

weaker assumptions. Proceedings of the Thirty-Third Conference on Uncertainty in Artificial

Intelligence.

Zhang, Jiji, Peter Spirtes. 2002. Strong faithfulness and uniform consistency in causal inference.

Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence. 632–639.

39

Appendix

A. Formalization of Paths

A.1. Paths Without Cycles

We provide here a more complete definition of paths in directed mixed graphs, which may contain paths

with repeating nodes due to cycles. In the lemma that follows, we show that such paths can be eliminated

from consideration without altering d-separation relations between nodes. This result serves as justification

for the simplified path definition given in Definition 1.

Definition 7 (Path). Given a node set V , a set of edge-types T = {→,←,↔} and an edge set E of

triples (v1, t, v2) with v1, v2 ∈ V and t∈ T , we define a path p−ij between node i and node j with i, j ∈ V, i 6= j,

as a sequence of edges p−ij = (e1, . . . , e`) such that

(i) the edges in the path are in the edge set: ek ∈E for all 1≤ k≤ `,

(ii) the path starts with node i: e1 = (i, t, v) for some v ∈ V \ {i} and t∈ T ,

(iii) the path ends with node j: e` = (v, t, j) for some v ∈ V \ {j} and t∈ T ,

(iv) consecutive edges on the path are connected: for all ek, ek+1 = (v1, t, v2)(u1, t
′, u2) ∈ p−ij with 1≤ k < `,

we have v2 = u1.

A directed path from i to j is a path that only has edge-type T = {→}, i.e. all edges point away from i and

towards j along the path. So, a node j is a descendant of i if there is a directed path from i to j.

We say that an occurrence of a node v ∈ V \ {i, j} on a path pij or on an appendage is when v is the

endpoint of one edge and the starting point of the subsequent edge. In addition, i and j occur once at the

beginning and end of the path, respectively. A node repeats on a path (appendage) if it occurs more than

once on the path (appendage). In that case the path (appendage) is said to contain a cycle.

We now show that with respect to the d-separation and d-connection relations, we can ignore cycles on

a path. That is, if a path with a cycle is d-connecting, then there is a path without the cycle that is also

d-connecting.

Lemma 2. Let path pij be a path between nodes i, j ∈ V according to Definition 7. If path pij is unblocked

with respect to conditioning set C ⊆ V \ {i, j} in directed mixed graph G = (V,E) and has repeating nodes,

then there exists a path p∗ij without any repeating nodes in G that is also unblocked with respect to C.

Proof of Lemma 2. Suppose there is a path p with repeating nodes between variables i, j ∈ V in graph

G = (V,E) that is unblocked with respect to conditioning set C ⊆ V \ {i, j}. Following from Definition 2,

every collider k on the path p is in C or has a descendant in C, and no other nodes on the path are in C.

Note that since path p is unblocked with respect to C, Definition 2 implies that the same node cannot be a

collider and a noncollider at the same time on path p.

Now we show we can find a shorter path p∗ in G that is also unblocked with respect to C. Note that path

p includes the same node more than once by construction. Without loss of generality, let node l repeat on

path p more than once. Let l1 represent the first occurrence of node l on path p and let l2 represent the

last occurrence of node k on path p. Let pi−l1 represent the subpath between i and l1 on path p. Similarly,

40

let pl2−j represent the subpath between l2 and j on path p. Note that both the last node on path pi−l1 and

the first node on path pl2−j are node l. Hence, we can obtain a path p∗ where node l does not repeat by

combining pi−l1 and pl2−j together.

Next we show that path p∗ is unblocked with respect to C. To do so, we need to show every collider k on

the path p∗ is in C or has a descendant in C, and no other nodes on the path p∗ are in C by Definition 2.

Notice that if node k 6= l is a collider on path p∗, then it must be a collider on path p by construction. Since

path p is unblocked with respect to C, i.e. every collider k on the path p is in C or has a descendant in C,

it follows that every collider k 6= l on the path p∗ is in C or has a descendant in C. Similarly, if node k 6= l is

a noncollider on path p∗, then it is a noncollider on path p∗ by construction. Since path p is unblocked with

respect to C, i.e. none of the noncolliders on path p is in C, it follows that if node k 6= l is a noncollider on

path p∗, then k 6∈C.

Lastly, we need to consider node l. Note that node l is on path p∗ by construction. Case 1. Node l is a

collider on both path p and p∗. If node l is a collider on path p, then l is in C or has a descendant in C.

Therefore, having node l as a collider on path p∗ does not block path p∗. Case 2. Node l is a noncollider on

both path p and p∗. If node l is a noncollider on path p, then l is not in C. Therefore, having node l as a

noncollider on path p∗ does not block path p∗. Case 3. Node l is a collider on path p and a noncollider on path

p∗. If node l is a collider on path p, then path p must have the following form: i · · · ∗→ l←∗· · · ∗→ l←∗ . . . j,

where ∗ represents that an edge can have an arrow end or a tail end. This implies that path p∗ must have the

following form i · · · ∗→ l←∗ . . . j, hence l cannot be a noncollider on path p∗. Case 4. Node l is a noncollider

on path p and a collider on path p∗. Then path p must have the following form: i · · · ∗→ l→ · · · ∗← l←∗ . . . j.

This path must contain a collider between the instances of l. Let node c be this collider on path p. Note that

it follows that c is a descendant of l. Since node c is a collider on path p and since path p is unblocked with

respect to conditioning set C, then it follows either (i) c∈C or c has a descendant in C. Using this, we now

show p∗ is unblocked with respect to C. By construction, p∗ has the following forms: i · · · ∗→ l←∗ . . . j. Since

l is a collider on path p∗ and c is a descendant of l, following from (i) and (ii), C includes a descendant of l.

Therefore, having node l as a collider on path p∗ does not block path p∗. If there is more than one collider

between the instances of l in p, this reasoning can be repeated for each collider.

Similarly, we can repeat the above procedure until there are no repeating nodes. Hence it follows we can

construct a path p∗ without any repeating nodes between (i, j) in G such that p∗ is unblocked with respect

to C. �

A.2. Appendages Without Cycles

Here we describe how appendages without cycles are sufficient for capturing all possible d-connections

between variables.

Definition 8 (appendage). Given a path p from i to j defined according to Definition 1, let colpij store

the colliders on path pij . An appendage of pij is a directed path from a collider c ∈ colp to another node

k ∈ V \ {i, j, c}.

41

We only need to consider directed paths as appendages because the definition of blocked paths only

considers descendants of colliders. In order to capture d-connections due to conditioning on descendants of

a collider, we define the notion of an extended path.

Definition 9 (extended path). Let path p be a path generated according to Definition 1. The set of

extended paths of p contains p and all combinations of p with its appendages.

Using similar arguments to Lemma 2, one can easily show it is enough to consider appendages without

cycles. Let path p+
ij be an extended path between nodes i, j ∈ V according to Definition 9. Suppose extended

path p+
ij is unblocked with respect to conditioning set C ⊆ V \ {i, j} in directed mixed graph G = (V,E)

and one of its appendages has a cycle. Then there exists another unblocked extended p+∗

ij with appendages

without cycles in G. We formalize these observations that are rooted in Lemma 2 in Corollary 1 below (stated

without proof).

Corollary 1. Let Pij(E, |V | − 1) store all extended paths with acyclic appendages between variables i

and j generated according to Definition 9 over G = (V,E) with finite E. Then, Pij(E, |V | − 1) is finite, the

paths and extended paths it contains are of finite length, and it captures all possible d-connections between i

and j.

B. CausalIP Formulation

B.1. Continuous Relaxation of Error Variables z

Lemma 3. Let (x̃, ỹ, z̃) be an optimal solution to CausalIP(P(Ẽ, ζ)). Then z̃nij ∈ {0,1} for i, j ∈ V,n ∈
Nij.

Proof of Lemma 3. Notice variable z appears only on constraints (5) and (6) and the same variable znij
does not repeat in both constraints (5) and (6) as N I

ij ∩ND
ij = ∅. Let’s first focus on znij for i, j ∈ V,n ∈N I

ij

that appears on constraint (5). Since yp ∈ {0,1} and αnijp ∈ {0,1}, αnijpyp ∈ {0,1} for all i, j ∈ V,n ∈ N I
ij ,

p∈ Pij(Ẽ, ζ). Since CausalIP(P(Ẽ, ζ)) minimizes
∑

i,j∈V

∑
n∈Nij

ωnijz
n
ij and ω > 0, constraint (5) forces znij

to take value 0 if αnijpyp = 0 for all p∈ Pij(Ẽ, ζ), and to take value 1 if αnijpyp = 1 for at least one p∈ Pij(Ẽ, ζ).

Let’s now focus on znij for i, j ∈ V,n∈ND
ij that appears on constraint (6). Since yp ∈ {0,1} and αnijp ∈ {0,1},∑

p∈Pij(Ẽ,ζ)α
n
ijpyp will be an integer for all i, j ∈ V,n∈N I

ij . This implies that the left hand side of constraint

(6) is always an integer. Let’s now consider two scenarios where
∑

p∈Pij(Ẽ,ζ)α
n
ijpyp is (i) equal to zero or

(ii) greater than or equal to one. (i) If
∑

p∈Pij(Ẽ,ζ)α
n
ijpyp is equal to 0, then constraint (6) becomes znij ≥ 1.

When this combined with the objective function with ω > 0 will ensure znij = 1. (ii) If
∑

p∈Pij(Ẽ,ζ)α
n
ijpyp is

greater than or equal to 1, then constraint (6) becomes znij ≥ 1−K where K =
∑

p∈Pij(Ẽ,ζ)α
n
ijpyp ≥ 1. Hence

the constraint (6) combined with the objective function with ω> 0 will ensure znij = 0. �

B.2. Enforcing Acyclicity and Causal Sufficiency

Our main formulation presented in §3 assumes the presence of latent confounders and feedback cycles.

However, we can naturally assume causal sufficiency or exclude cycles within our modeling framework. Let

Es = {i← j, i→ j, ∀i, j ∈ V : i 6= j} be the set of all possible directed edges under the assumption of causal

42

sufficiency (i.e., no bi-directed edges). Then solving CausalIP(Es) ensures that unobserved confounders are

not allowed.

To exclude cycles, we follow the constraints provided in Cussens (2012) and Jaakkola et al. (2010). These

constraints are based on the observation that if cycles are not permitted, any subset of vertices in a graph

must contain at least one node that has no parent in that subset. Let Ri = {C | C ⊆ V \ i} be all possible

subsets of V that exclude i. Let Rki be the kth set in Ri, and let Ki index the sets in Ri. Note that exactly

one set in Ri must be the set of parent nodes of i. Accordingly, let τki be a binary decision variable where

τki = 1 if Rki ∈Ri is the parent set of node i, and τki = 0 otherwise. Next, let Ek
i be the set of all incoming

edges to i from nodes in Rki , and let ρki be the number of nodes in Rki . Then, we can eliminate cycles by

adding the following constraints to CausalIP:

τki ≤ xe, e∈Ek
i , k ∈Ki, i∈ V, (22a)

τki ≥
∑
e∈Ek

i

xe−
∑

e′∈E\Er
i

xe′ − ρki + 1, i∈ V, k ∈Ki, (22b)

∑
k∈Ki

τki = 1, i∈ V, (22c)∑
i∈C

∑
k∈Ki:

Rk
i ∩C=∅

τki ≥ 1, C ⊆ V. (22d)

Constraint (22a) ensures Rki can only be the parent set of i if the edge j→ i is present for each j ∈Rki .

Constraint (22b) ensures that if j→ i is present for all j ∈Rki and if j→ i is not present for all j such that

j 6∈Rki , then Rki must be the set of parents of node i. Constraint (22c) ensures that only one set in Ri can

be the parent set of node i∈ V . Constraint (22d) is the directed cycle elimination constraint, which ensures

that all subsets of V must contain at least one node who has no parent in that subset.

Our formulation also allows for integrating background knowledge; the presence or absence of specific

edges or paths can be easily encoded via constraints on the x variable. Furthermore, sparsity constraints,

such as maximum degree of nodes (see Claassen et al. (2013) for an example) can be easily incorporated

into the model. This flexibility may be especially useful in applications where significant domain knowledge

is available.

C. Graph Generation, Node Degree Distributions, and Weighting Scheme

Here we provide additional details regarding the experiments in §4.4 and §5.

C.1. Generation of Random Graphs

For each set of experiments in §4.4, we generate 25 directed mixed graphs. In each case, the graph over |V |

nodes is generated by assigning node degrees to each node in the graph uniformly from {1, . . . ,maxDegree}

and then randomly adding edges to the graph by selecting uniformly among all possible directed and bi-

directed edges in the graph until each node degree is satisfied while not exceeding maxDegree. If needed, the

node degree of one node that is not at maxDegree is increased by 1 to accommodate the last edge. Figure

8 shows the empirical distribution over node degree for the instances with |V | ∈ {5,10,15,20,30,40,50}.

43

C.2. Bayesian Information Criterion (BIC) Weighting Scheme

When the number of nodes or the sample size is large, the log-weights used in Hyttinen et al. (2014)

become computationally prohibitive to compute. A fast approximation used in the causal discovery literature,

including Hyttinen et al. (2014), is the Bayesian Information Criterion (BIC). We use BIC-based weights for

all instances in §4.4 where |V | ≥ 15 and for all experiments in §5 (due to the large sample size in Angrist

and Krueger (1991)).

For a linear model that predicts the variable i from covariates C, the BIC is given by

BIC =−2 ln(L̂) + ck ln(n),

where L̂ is the maximum likelihood of the model, k = |C| is the number of predictors, and n is the sample

size. The parameter c is an additional complexity parameter, where setting c= 1 recovers the classical BIC

score, and larger values of c correspond to stronger penalty on complexity. Thus, the BIC of a given model

is a composite score that balances model fit and complexity, with lower BIC values being preferred. In §5,

we examine how adjusting the parameter c influences our proposed procedure for investigating instrument

validity.

For each pair of variables (i, j) and conditioning set Cn
ij ∈ Aij , we use BIC scores to simultaneously

determine d-separation (i.e., whether i⊥ j|Cn
ij or i 6⊥ j|Cn

ij) and the associated weight ωnij . Specifically, given

variables (i, j) and covariates Cn
ij , we compute two BIC scores: one associated with predicting i from Cn

ij and

another from predicting i from {j ∪Cn
ij}. If the latter score is worse (i.e., higher), we conclude that i⊥ j|Cn

ij

and Cn
ij ∈ Iij ; otherwise, we conclude i 6⊥ j|Cn

ij and Cn
ij ∈Dij . The intuition is that a degradation in BIC after

adding j as a predictor suggests j carries little additional information about i that is not already carried by

Cn
ij . The weight ωnij is then given by the magnitude of the difference in the two BIC scores.

44

Figure 8 Empirical distributions of node degree for randomly generated graphs in §4.4.

45

D. Additional Results for §5

D.1. Instrument Validity and Markov Equivalence

In general, a failure to reject the null hypothesis in our path-based procedure does not imply validity of

the instrument. Figure 9 illustrates one such instance – graphs (a) and (b) are Markov equivalent, where

the instrument in graph (a) is valid, but the instrument in graph (b) is invalid as a result of violating the

exclusion restriction (condition (2) of Definition 5). Since our method returns a graph within the Markov

equivalence class of the data-generating graph, it may infer graph (a) when the true graph is (b).

Figure 9 Two Markov equivalent graphs. In (a) the instrument is valid, in (b) it is invalid.

D.2. Edge Frequency Tables

This section presents edge frequency tables corresponding to the graphs in Figures 6 and 7, separated into

directed and bi-directed edges. All frequencies are normalized so that 1 indicates that the edge appeared in

the output graph of all 50 bootstrap repetitions. Note that higher values of the BIC complexity penalty c

leads to sparser graphs, where c= c0.95 is the smallest penalty (that yields 5% fewer d-separation conditions

than c= c1) and c= c1.05 is the largest penalty (that yields 5% more d-separations than c= c1).

46

EDU WAGE MAR QOB RACE SMSA
EDU - 1 0.26 0 0 0.32
WAGE 0.54 - 0.34 0 0 0.3
MAR 0.3 0.6 - 0 0 0.56
QOB 0.64 0.18 0.06 - 0 0.04
RACE 0.4 0.54 0.6 0 - 0.6
SMSA 0.2 0.54 0.52 0 0 0

(a) Directed edge frequency (c= c0.95).

EDU WAGE MAR QOB RACE SMSA
EDU - 0.12 0 0.34 0.06 0.02
WAGE 0.12 - 0.04 0 0.10 0.04
MAR 0.00 0.04 - 0 0.06 0.02
QOB 0.34 0.00 0 - 0.68 0
RACE 0.06 0.10 0.06 0.68 - 0.04
SMSA 0.02 0.04 0.02 0 0.04 -

(b) Bi-directed edge frequency (c= c0.95).

EDU WAGE MAR QOB RACE SMSA
EDU - 1 0.22 0 0 0.2
WAGE 0.84 - 0.1 0 0 0.12
MAR 0.26 0.7 - 0 0 0.7
QOB 0.54 0.02 0 - 0 0
RACE 0.2 0.7 0.58 0 - 0.7
SMSA 0.3 0.74 0.56 0 0 -

(c) Directed edge frequency (c= c1).

EDU WAGE MAR QOB RACE SMSA
EDU - 0.2 0 0.3 0 0
WAGE 0.2 - 0 0 0 0
MAR 0 0 - 0 0 0
QOB 0.3 0 0 - 0 0
RACE 0 0 0 0 - 0
SMSA 0 0 0 0 0 -

(d) Bi-directed edge frequency (c= c1).

EDU WAGE MAR QOB RACE SMSA
EDU - 1 0.68 0 0 0.34
WAGE 0.38 - 0.24 0 0 0.28
MAR 0.78 0.22 - 0 0 0.66
QOB 0.1 0 0 - 0 0
RACE 0.78 0.26 0.54 0 - 0.22
SMSA 0.74 0.34 0.56 0 0 -

(e) Directed edge frequency (c= c1.05).

EDU WAGE MAR QOB RACE SMSA
EDU - 0.64 0 0.04 0 0
WAGE 0.64 - 0 0 0 0
MAR 0 0 - 0 0 0
QOB 0.04 0 0 - 0 0
RACE 0 0 0 0 - 0
SMSA 0 0 0 0 0 -

(f) Bi-directed edge frequency (c= c1.05).

Table 8. Normalized edge frequencies for Angrist and Krueger (1991) data.

47

PROX EDU SOUTH SMSA WAGE RACE
PROX - 0.8 0 0 0.04 0
EDU 0 - 0.04 0.02 1 0
SOUTH 0.46 0.02 - 0.32 0.32 0
SMSA 0.68 0.04 0.42 - 0.86 0
WAGE 0 0.22 0 0 - 0
RACE 0 0.3 0.62 0.1 0.14 -

(a) Directed edge frequency (c= c0.95).

PROX EDU SOUTH SMSA WAGE RACE
PROX - 0.08 0.28 0.54 0.04 0
EDU 0.08 - 0 0 0.16 0.24
SOUTH 0.28 0 - 0.26 0.12 0.48
SMSA 0.54 0 0.26 - 0.14 0.18
WAGE 0.04 0.16 0.12 0.14 - 0.08
RACE 0 0.24 0.48 0.18 0.08 -

(b) Bi-directed edge frequency (c= c0.95).

PROX EDU SOUTH SMSA WAGE RACE
PROX - 0.7 0 0 0.02 0
EDU 0 - 0.02 0.02 1 0
SOUTH 0.32 0 - 0.38 0.06 0
SMSA 0.56 0.02 0.38 - 0.82 0
WAGE 0 0.08 0 0 - 0
RACE 0 0.06 0.64 0 0.02 -

(c) Directed edge frequency for (c= c1).

PROX EDU SOUTH SMSA WAGE RACE
PROX - 0.12 0.42 0.7 0.02 0
EDU 0.12 - 0.02 0 0.08 0.06
SOUTH 0.42 0.02 - 0.24 0.1 0.64
SMSA 0.7 0 0.24 - 0.28 0
WAGE 0.02 0.08 0.1 0.28 - 0
RACE 0 0.06 0.64 0 0 -

(d) Bi-directed edge frequency (c= c1).

PROX EDU SOUTH SMSA WAGE RACE
PROX - 0.56 0 0 0 0
EDU 0 - 0.04 0.04 1 0
SOUTH 0.24 0 - 0.2 0.02 0
SMSA 0.68 0.02 0.34 - 0.88 0
WAGE 0 0.02 0 0 - 0
RACE 0 0 0.42 0 0 -

(e) Directed edge frequency (c= c1.05).

PROX EDU SOUTH SMSA WAGE RACE
PROX - 0.12 0.54 0.48 0 0
EDU 0.12 - 0.04 0.02 0 0
SOUTH 0.54 0.04 - 0.3 0.04 0.76
SMSA 0.48 0.02 0.3 - 0.12 0
WAGE 0 0 0.04 0.12 - 0
RACE 0 0 0.76 0 0 -

(f) Bi-directed edge frequency (c= c1.05).

Table 9. Normalized edge frequencies for Card (1993) data.

48

E. Proofs

Proposition 1. Let Gc be the graph returned by CausalIP
(
P(Ec, |V | − 1)

)
for some ω > 0. Then Gc ∈

argmin
G

L(G), i.e., Gc minimizes the loss function in (3).

Proof of Proposition 1. Let (x̃, ỹ, z̃) be an optimal solution to CausalIP(P(Ec, |V | − 1)) where ω > 0.

The proof proceeds in two steps. First, we show z̃nij = 1 if and only if 1(i⊥Gc j|Cn
ij) = 1 for i, j,∈ V,n ∈ND

ij .

Second, we show z̃nij = 1 if and only if 1(i 6⊥Gc j|Cn
ij) = 1 for i, j,∈ V,n∈N I

ij .

Step 1. We first show that z̃nij = 1 implies that 1(i ⊥Gc j|Cn
ij) = 1 for i, j,∈ V,n ∈ND

ij . Suppose z̃n
∗

i∗j∗ =

1 for some fixed i∗, j∗,∈ V,n∗ ∈ ND
ij . Note that the variable z̃n∗i∗j∗ only appears in constraint (6). Since

CausalIP(P(Ec, |V | − 1)) minimizes
∑

i,j∈V

∑
n∈Nij

ωnijz
n
ij , in order for z̃n∗i∗j∗ to take value 1, left hand-side

of constraint (6) must be equal to 0, i.e.
∑

p∈Pi∗j∗ (Ẽ,ζ)α
n∗

i∗j∗pyp = 0. Note yp = 1 if and only if p ∈ P(E,ζ)

by constraints (4a) (4b). By Corollary 1, it follows that there does not exist a path in Gc with αn∗i∗j∗p = 1.

Following from the definition of αn∗i∗j∗p, we must have 1(i∗ ⊥Gc j∗|Cn∗

i∗j∗) = 1. Next we show 1(i⊥Gc j|Cn
ij) = 1

implies that z̃nij = 1 for i, j,∈ V,n ∈ND
ij . Suppose 1(i∗ ⊥Gc j∗|Cn∗

i∗j∗) = 1 for some fixed i∗, j∗,∈ V,n∗ ∈ND
ij .

Then Gc does not include an unblocked path between i∗ and j∗ with respect to conditioning set Cn∗

i∗j∗ . This

implies
∑

p∈Pi∗j∗ (Ẽ,ζ)α
n∗

i∗j∗pyp = 0. By constraint (6), we mush have z̃n∗i∗j∗ = 1. Hence z̃nij = 1 if and only if

1(i⊥Gc j|Cn
ij) = 1 for i, j,∈ V,n∈ND

ij .

Step 2. Now we show z̃nij = 1 if and only if 1(i 6⊥Gc j|Cn
ij) = 1 for i, j,∈ V,n∈N I

ij . We first show that z̃nij = 1

implies that 1(i ⊥Gc j|Cn
ij) = 1 for i, j,∈ V,n ∈ N I

ij . Suppose z̃n
∗

i∗j∗ = 1 for some fixed i∗, j∗,∈ V,n∗ ∈ N I
ij .

Note that the variable z̃n∗i∗j∗ only appears in constraint (5). Since CausalIP(P(Ec, |V | − 1)) minimizes∑
i,j∈V

∑
n∈Nij

ωnijz
n
ij , in order for z̃n∗i∗j∗ to take value 1, left hand-side of constraint (6) must be equal to 1 for

at least one n ∈N I
ij , i.e. ∃n∗ ∈N I

i∗j∗ such that αni∗j∗pyp ≤ zn
∗

i∗j∗ . This implies that there exists an unblocked

path between i∗ and j∗ with respect to Cn∗

i∗j∗ in Gc. Hence we must have 1(i∗ 6⊥Gc j∗|Cn∗

i∗j∗) = 1. Next we

show 1(i 6⊥Gc j|Cn
ij) = 1 implies that z̃nij = 1 for i, j,∈ V,n ∈ N I

ij . Suppose 1(i∗ 6⊥Gc j∗|Cn∗

i∗j∗) = 1 for some

fixed i∗, j∗,∈ V,n∗ ∈N I
ij . Then Gc include an unblocked path between i∗ and j∗ with respect to conditioning

set Cn∗

i∗j∗ . Note yp = 1 if and only if p ∈ P(E,ζ) by constraints (4a) (4b). By Corollary 1, it follows that

there exists p∗ such that αn∗i∗j∗p∗y∗p = 1. By constraint (5), we mush have z̃n∗i∗j∗ = 1. Hence z̃nij = 1 if and only

if 1(i⊥Gc j|Cn
ij) = 1 for i, j,∈ V,n∈N I

ij . �

Lemma 4. Suppose Assumption 2 holds. Let (x̃, ỹ, z̃) be an optimal solution to CausalIP(P(Ec, |V |−1))

where ω> 0. Then we must have
∑

i,j∈V

∑
n∈Nij

z̃nij = 0.

Proof of Lemma 4. Our approach is to construct a solution (x̃, ỹ, z̃) such that the following three conditions

are satisfied: (i)
∑

i,j∈V

∑
n∈Nij

z̃nij = 0, (ii) (x̃, ỹ, z̃) is a feasible solution for CausalIP(P(Ec, |V |− 1)), and

(iii) all other solutions for CausalIP(P(Ec, |V | − 1)) where
∑

i,j∈V

∑
n∈Nij

z̃nij 6= 0 cannot be optimal. The

proof proceeds in two steps. First, we construct (x̃, ỹ, z̃). Second, we show it satisfies conditions (i), (ii), and

(iii) above.

Step 1. Let GT = (V,ET) be the true graph. First, construct x̃ so that for all e ∈Ec, x̃e = 1 if and only

if e ∈ ET . It follows that G(x̃) = GT . Next, it is straightforward to show that for any fixed x, there exists

49

a solution to the inequalities (4) over y that satisfies y ∈ {0,1}|P (Ec)|. Let ỹ be a solution to (4) under x̃.

Lastly, let z̃nij = 0 for all n∈Nij , i, j ∈ V .

Step 2. Note (x̃, ỹ, z̃) trivially satisfies condition (i) above. Now let’s show that (x̃, ỹ, z̃) is feasible to

CausalIP(P(Ec, |V | − 1)). By construction, (x̃, ỹ, z̃) satisfies the constraints (4) as well as the constraints

that ensure x, y and z are all binary-valued. It remains to show that (x̃, ỹ, z̃) satisfies constraints (5) and

(6). To see that (x̃, ỹ, z̃) satisfies (5), pick any n∈N I
ij , p∈ Pij(Ec, |V |−1) and i, j ∈ V . If p 6∈ Pij(ET , |V |−1),

then yp = 0 by constraints (4a) and (4b). Hence such (x̃, ỹ, z̃) satisfies (5). Now suppose p∈ Pij(ET , |V |−1).

Because n ∈N I
ij and Assumption 2 holds, we have i⊥ j|Cn

ij in graph GT . Because p is a path between i to

j in GT , i ⊥ j|Cn
ij implies that p must be blocked with respect to Cn

ij ∈ Iij (Definition 3). It follows that

αnijp = 0, which implies (x̃, ỹ, z̃) satisfies (5). Next, we show (x̃, ỹ, z̃) satisfies (6). Pick any n ∈ ND
ij and

i, j ∈ V . Note that by constraints (4a) and (4b), because G(x) = GT , for all p∈P(Ec, |V |−1), we have ỹp = 1

if and only if p ∈ P(ET , |V − 1|). It follows that the left hand side of constraint (6) can be re-written as∑
p∈Pij(Ec,|V |−1)α

n
ijpỹp =

∑
p∈Pij(ET ,|V |−1)α

n
ijp. Because znij = 0, it remains to show

∑
p∈Pij(ET ,|V |−1)α

n
ijp ≥ 1.

Because Assumption 2 holds, n ∈ND
ij implies that i 6⊥ j|Cn

ij in GT . It follows from Definition 3 that there

must exist at least one path between i and j that is unblocked with respect to Cn
ij . By definition of αnijp,

it follows that there exists at least one path p in GT such that αnijp = 1. By Lemma 2, we have each

path p in GT must satisfy p ∈ Pij(ET , |V | − 1), which then implies
∑

p∈Pij(ET ,|V |−1)α
n
ijp ≥ 1. With these

we prove (ii) holds. (iii) Suppose there exists an optimal solution to CausalIP(P(Ec, |V | − 1)) with∑
i,j∈V

∑
n∈Nij

z̃nij 6= 0. Since ω> 0, objective value corresponding to this solution must be positive. However,

since we showed in Step 2 that there exists feasible solutions where
∑

i,j∈V

∑
n∈Nij

z̃nij = 0 holds, and such

solutions would make the objective value equal to 0. Hence a solution with
∑

i,j∈V

∑
n∈Nij

z̃nij 6= 0 cannot be

optimal. �

Proposition 2. Let Gc be the graph returned by CausalIP
(
P(Ec, |V | − 1)

)
given Assumption 2. Then

Gc ∼GT (i.e., Gc and GT are Markov equivalent) for any ω> 0.

Proof of Proposition 2. Let (xc,yc,zc) be an optimal solution to CausalIP(P(Ec, |V | − 1)), where

Gc := (V,E) where E = {e|xce = 1}. Our approach will be to show that Gc satisfies the following two

conditions for all pairs (i, j) such that i 6= j: (a) for each C ∈Dij , the nodes i and j are d-connected with

respect to C in Gc, and (b) for each C ∈ Iij , nodes i and j are d-separated with respect to C in Gc. Note that
if these two conditions hold, then it follows immediately from Assumption 2 that Gc and GT are Markov

equivalent. Pick any (i, j), and let it be fixed in the remainder of the proof. We first prove condition (a)

holds. Note i and j are d-connected with respect to a conditioning set C if and only if there exists an

unblocked path from i to j with respect to C (Definition 3). Suppose by way of contradiction that there

exists a conditioning set C n̄
ij ∈Dij such that all paths between i and j in Gc are blocked with respect to C n̄

ij .

Then by definition, αn̄ijp = 0 for all p ∈ Pij(E, |V | − 1). It follows that
∑

p∈Pij(E,|V |−1)α
n̄
ijpy

c
p = 0. Next, note

n̄ ∈ ND
ij because C n̄

ij ∈ Dij . Because
∑

p∈Pij(E,|V |−1)α
n̄
ijpy

c
p = 0, it follows from constraint (6) that zn̄cij = 1,

and thus
∑

i,j∈V

∑
n∈Nij

zncij > 0. However, by Lemma 4, there exists a solution (x̃, ỹ, z̃) to CausalIP(Ec)

such that
∑

i,j∈V

∑
n∈Nij

z̃nij = 0, which yields a contradiction. We conclude that condition (a) holds. We now

50

prove condition (b) holds. Pick any conditioning set C n̄
ij ∈ Iij . It suffices to show that all paths between i and

j are blocked with respect to C n̄
ij in Gc. By definition, αn̄ijp = 1 for path p∈ Pij(E, |V | − 1) that is unblocked

with respect to C n̄
ij . Therefore, it remains to show αn̄ijpy

c
p = 0 for all p∈ Pij(E, |V |−1). Note n̄∈N I

ij because

C n̄
ij ∈ Iij . Because n̄ ∈ N I

ij , it follows from constraint (5) that αn̄ijpycp ≤ zn̄cij for all p ∈ Pij(E, |V | − 1). By

Lemma 4, there exists a solution (x̃, ỹ, z̃) to CausalIP(Ec) such that
∑

i,j∈V

∑
n∈Nij

z̃nij = 0. Lemma 4 and

constraint (5) imply αn̄ijpycp = 0 for all p∈ Pij(E, |V | − 1). It follows that every path between i and j in Gc is

blocked with respect to C n̄
ij , as desired. Because conditions (a) and (b) both hold, we conclude Gc ∼GT . �

Lemma 5. Suppose G ∼ GT and Assumption 2 holds. For each i, j ∈ V , if G contains an edge between (i, j),

then Iij = ∅.

Proof of Lemma 5. We show that if Iij 6= ∅, then G cannot contain an edge between (i, j). Suppose by

way of contradiction that it does. This edge is also a path – call it path p. Next, pick any conditioning set

C ∈ Iij . Because p does not contain any colliders or non-colliders, the path p is unblocked with respect to

C (Definition 2). Then by Definition 3, the path p is d-connected with respect to C. Because G ∈M and

the path p is d-connected with respect to C, it follows that i 6⊥⊥j|C (Remark 1). However, because C ∈ Iij ,

by definition of Iij we have i⊥⊥ j|C – a contradiction. The result follows. �

Lemma 1. Suppose Assumption 2 holds and consider a triple of nodes (i, j, k) in a graph G ∼ GT . Then

(i) If there exists a collider chain over (i, j, k) in G, then Iij = Ijk = ∅ and j 6∈C for all C ∈ Iik.

(ii) If there exists a non-collider chain over (i, j, k) in G, then Iij = Ijk = ∅ and j ∈C for all C ∈ Iik.

Proof of Lemma 1. We prove the statements in order. (i). If (i, j, k) forms a collider chain, then the

pairs (i, j) and (j, k) both contain an edge. It follows from Lemma 5 that Iij = Ijk = ∅. We now show that

if (i, j, k) form a collider chain, then j /∈ C for all C ∈ Iik. Suppose by way of contradiction that (i, j, k)

form a collider chain and there exists C ∈ Iik such that j ∈ C. Because node j is the only collider on the

chain, and j ∈C, the path from i to k is unblocked with respect to C (Definition 2), which implies i and k

are d-connected with respect to C (Definition 3). Because the chain is d-connected with respect to C, and

G ∼ GT , by Assumption 2 we have C ∈Dik. However, this is a contradiction because C ∈ Iik. (ii). The result

follows by parallel argument to (i), where (i, j, k) form a non-collider chain instead of a collider chain, and

j /∈C is used in place of j ∈C. �

Proposition 3. The integer programming problem NewEdgesIP is NP-hard.

Proof of Proposition 3. The proof proceeds in two steps. First, we show a reduction from the vertex cover

problem to NewEdgesIP. Then we verify that the instance of NewEdgesIP constructed by the reduction

can arise within the EdgeGen algorithm by appropriately constructing corresponding ground-truth graphs.

Step 1. We prove NewEdgesIP is NP-hard through a reduction from the vertex cover problem. The

vertex cover problem is an optimization problem defined on an undirected graph H = (W,F) with vertices

51

W and undirected edges F . The objective is to find a vertex cover W ′ ⊆W that has the minimum possible

size. A vertex cover is a subset of vertices such that every edge in F has at least one of its endpoints in W ′.

The vertex cover problem is NP-hard (Garey and Johnson 1979).

The integer programming formulation for this optimization problem is as follows:

minimize
a

∑
w∈W

aw (23a)

subject to aw + aw′ ≥ 1, (w w′)∈ F, (23b)

aw ∈ {0,1}, w ∈W. (23c)

In this formulation, aw is a binary variable associated with each vertex w ∈W , which takes on the value

1 if w is included in the vertex cover (i.e., w ∈W ′), and 0 otherwise.

We can construct an instance of NewEdgesIP for this vertex cover problem using Algorithm 5. Note

that this is a polynomial time reduction as we just iterate over all pairs of vertices in W .

Algorithm 5: Reduction from Vertex Cover.

Input: H = (W,F).
Output: V , S(z), S̄(z), λ.
Initialize: V = {1,2, . . . , |W |+ 1}, S(z) = ∅, S̄(z) = ∅, λ3

ij = 1, λtij = 0 for all i, j ∈ V, t∈ {1,2}.
for w,w′ ∈W :

if (w w′)∈ F :
Update S(z) = S(z)∪{(w, |V |,w′)}.

We now prove the reduction is correct. Suppose a′ is a solution to the vertex cover problem overH = (W,F)

with the objective value m. Define W ′ as the corresponding vertex cover where W ′ = {w|a′w = 1, w ∈W}.
Now let us construct a solution τ ′ to the version of NewEdgesIP constructed by Algorithm 5. We start by

initializing τ ′tij = 0 for all i, j ∈ V, t∈ {1,2,3}. Next, set τ ′2|V |,w = 1 and τ ′1w,|V | = 1 for w ∈W ′.

Next we show τ ′ is a solution to NewEdgesIP with the objective value m. Since S̄(z) = ∅, constraint
set (17) is satisfied trivially. Similarly, constraint set (18) is satisfied by the construction in the reduction

algorithm and by how we constructed τ ′. Constraint (16a) is satisfied because λ3
ij = 1 for all (i, j, k)∈ S(z) by

construction. Similarly, constraint (16b) is satisfied because λ3
jk = 1 for all (i, j, k)∈ S(z). Next, we consider

constraint (16c). Without loss of generality, consider a specific (i∗, j∗, k∗)∈ S(z). Note that we have j∗ = |V |
and (i∗ k∗)∈ F for all (i∗, j∗, k∗)∈ S(z) by the reduction algorithm. This implies we must have a′i∗+a′k∗ ≥ 1

by constraint (23b). Suppose a′i∗ = 1. This implies i∗ ∈W ′. Then, by construction τ ′1i∗,|V | = 1, and hence

constraint (17c) is satisfied for (i∗, j∗, k∗) ∈ S(z). Now suppose a′k∗ = 1. This implies k∗ ∈W ′. Then, by

construction τ ′1k∗,|V | = 1, and hence constraint (17c) is satisfied for (i∗, j∗, k∗) ∈ S(z). Lastly, since we have

τ ′1w,|V | = 1 and τ ′2|V |,w = 1 for w ∈W ′ only, and only one of τ ′1w,|V | and τ ′2|V |,w is included in
∑

i,j∈V :
j<i

∑
t∈{1,2,3} τ

t
ij =

m. Therefore, τ ′ is a solution to NewEdgesIP.

Conversely, suppose that τ ∗ is a solution with
∑

i,j∈V :
j<i

∑
t∈{1,2,3} τ

t
ij =m to the version of NewEdgesIP

constructed by Algorithm 5. We construct a solution a∗ for the vertex cover problem over (H,F). Let a∗w = 1

52

if τ∗1w,|V | = 1 and a∗w = 0 otherwise. In other words, let W ′ = {w : a∗w = 1, w ∈W} be a vertex cover of H.

We want to show a∗ is feasible for the vertex cover problem over H = (W,F). Without loss of generality,

let’s select an edge (w w′) in F . Then we must have (w, |V |,w′)∈ S(z) by the reduction algorithm. By the

reduction algorithm, λ3
ij = 1 for all i, j ∈ V . Hence by constraint (18a), τ∗3ij = 0 for all i, j ∈ V . Hence in order

to satisfy constraint (16c), we must have τ∗1w,|V | + τ∗2|V |,w ≥ 1 for (w, |V |,w′) ∈ S(z). Suppose τ∗1w,|V | = 1. This

implies a∗w = 1 by construction, i.e. w ∈W ′. Hence the edge (w w′) is covered by the end point w ∈W ′.

Similarly, suppose τ∗2|V |,w′ = 1. Note that by constraint (18b), we must have τ∗1w′,|V | = 1 whenever τ∗2|V |,w′ = 1.

This implies a∗w′ = 1 by construction, i.e. w′ ∈W ′. Hence the edge (w w′) is covered by the end point

w′ ∈W ′. Note that we have
∑

i,j∈V :
j<i

∑
t∈{1,2,3} τ

∗t
ij =m.Since a∗w = 1 if τ∗1|V |,w = 1, and a∗w = 0 otherwise, we

have
∑

w∈W aw = m. Therefore, we establish a∗ is a solution with objective value m to the vertex cover

problem of H = (W,F). With this, we have shown NewEdgesIP is NP-hard.

Step 2. Now we show the specific instances of S(z), S̄(z), and λ constructed using Algorithm 5 can

arise in NewEdgesIP when used within the EdgeGen algorithm in the causally sufficient setting.

We do so by constructing a true, causally sufficient, data-generating graph given an instance of the

vertex cover problem, stepping through the EdgeGen algorithm, and showing that the constructed

instance of NewEdgesIP is realized within the algorithm. Graph construction. Consider a vertex

cover problem over H = (W,F). Let G∗ = (V,E∗) be the corresponding data-generating graph with

vertices V = {1, . . . , |W | + 1} and edges E∗ =
{

(w → |W | + 1), (w′ → |W | + 1) for each (w,w′) ∈ F
}
.

Constructing oracle independence/dependence relations. Let us now consider the oracle setting (i.e., when

Assumption 2 holds) and construct the dependence and independence relations implied by this graph.

Since i→ |W | + 1← j is the only path between i and j, and node |W | + 1 is a collider on it, we have

Dij =
{
C ′ | C ′ = C ∪ {|W | + 1}, C ⊂ {1, . . . , |W |} \ {i, j}

}
and Iij =

{
C | C ⊂ {1, . . . , |W |} \ {i, j}

}
for

i, j ∈ {1, . . . , |W |}. Also, we have Di,|W |+1 =
{
C | C ⊂ {1, . . . , |W |+ 1} \ {i, |W |+ 1}

}
and Ii,|W |+1 = ∅ for

i∈ {1, . . . , |W |}. EdgeGen algorithm. EdgeGen takes five inputs V,S, S̄,ω, ζ. Let S∗ and S̄∗ be the corre-

sponding collider and non-collider chains implied by the established dependence structure over G∗ = (V,E∗).

By equations (10) and (11), we have S∗ = {(i, |W |+1, j) ∀i, j ∈ {1, . . . ,W}} and S̄∗ = ∅. Let ω be any weight

such that ω> 0 and initialize ζ = |W |, which is the longest simple path length over |W |+ 1 nodes. Since we

define the initial set of edges Ẽ0 as Ẽ0 = {i→ j, i← j, i↔ j | Iij = ∅,Dik =Djk = ∅ for all k ∈ V \ {i, j}}, we

have Ẽ0 = ∅. Let us also initialize Ẽ = Ẽ0, σ = ∅, and s= 1. Step 1 of EdgeGen. Note that Ẽ = ∅ implies

P−(Ẽ, ζ) = ∅. Hence when we solve CausalIP
(
P−(Ẽ, ζ)

)
in iteration s, we will get Gs = (V,Es) where

Es = ∅ and znij = 0 for all n ∈ N I
ij , i, j ∈ V and znij = 1 for all n ∈ ND

ij , i, j ∈ V . Step 2 of EdgeGen. Since

Es = ∅, we will have εnij = 1 for all n ∈ ND
ij and i, j ∈ V . Step 3 of EdgeGen. The condition ω>εs > 0 is

satisfied and UpdateEdges sub-algorithm is called in Step 3.1. UpdateEdges sub-algorithm. Since we

consider the causally sufficient setting, complete edge set doesn’t include bi-directed edges, i.e., Ec = {i←

j, i→ j, ∀i, j ∈ V : i 6= j}. UpdateEdges takes S(z), S̄(z), S, S̄, Ẽ, Ẽ0, ζ as inputs. The sets S∗(z) and S̄∗(z)

are then constructed following the steps in Section 4.1. We have Ei,|W |+1,j =
{
i→ |W |+ 1, |W |+ 1← j

}
for all (i, |W |+ 1, j) ∈ S∗ by equation (12a). Because εnij = 1 for all n ∈ ND

ij , we have ND
ij (z) = ND

ij for all

i, j ∈ V . This implies Ψ(z) = S∗ by equation (14a) and S∗(z) = S∗ by equation (15a). Lastly, note that

53

we have S̄∗(z) = ∅ by equation (15b) because S̄∗ = ∅. In summary, the sets S∗(z) and S̄∗(z) are equal

to those constructed through the steps of Algorithm 5 over H = (W,F). Step 1 of UpdateEdges. Since

S∗(z)∪ S̄∗(z) 6= ∅, we solve NewEdgesIP(S∗(z), S̄∗(z),λ). We construct λ∗ in the causally sufficient setting

as follows: λ∗tij = 1 if Ẽ contains a type t edge between nodes i and j for t∈ {1,2}, and λtij = 0 otherwise, and

λ∗3ij = 1 for all i and j pairs. This way we ensure bi-directed edges will never be selected in NewEdgesIP

because of the constraint (18a). Since we already showed we have S∗(z) = S(z) and S̄∗(z) = S̄(z), it remains

to show that λ∗ is equivalent to the λ constructed in Algorithm 5. Since Ẽ = ∅, we have λ∗1ij = 0 and λ∗2ij = 0

for all i, j ∈ V and we have λ∗3ij = 1 for all i, j ∈ V as a result of considering the causally sufficient setting.

Hence λ=λ∗. �

Lemma 6. NewEdgesIP is always feasible when called by UpdateEdges.

Proof of Lemma 6. The formulation NewEdgesIP is called in two cases: S(z)∪ S̄(z) 6= ∅ and S(z)∪ S̄(z) =

∅. The proofs for the second case is identical to the first, where R(z) and R̄(z) is used in place of S(z) and

S̄(z). We therefore focus on the case where S(z) ∪ S̄(z) 6= ∅. To prove the result, it suffices to construct

a solution w̃ that satisfies each constraint in NewEdgesIP. Accordingly, let τ̃ tij = 1− λtij for all i, j ∈ V

and t ∈ {1,2,3}. With a slight abuse of notation, let etij be the edge corresponding to the variable τ tij . The

proof proceeds in three steps. First, we show w̃ satisfies constraints (16a)–(16c); second, that it satisfies

(17a)–(17d); and third, (18a)–(18c).

Step 1. We first show that w̃ satisfies constraints (16a)–(16c). If S(z) = ∅, the result holds trivially.

Suppose S(z) 6= ∅. Note τ̃ tij + λtij = 1 for all t ∈ {1,2,3} by construction. It immediately follows that (16a)

and (16b) are satisfied for all (i, j, k) ∈ S(z). Next we show w̃ satisfies (16c). Pick any (i, j, k) ∈ S(z). Note

(i, j, k)∈ S(z) implies there exists e∈Eijk such that e /∈ Ẽ. By definition of Eijk, we must have either e= etij

for some t ∈ {1,3} or e= etjk for some t ∈ {2,3}. Suppose e= etij for some t ∈ {1,3}. Because e /∈ Ẽ, at least

one of λ1
ij = 0 or λ3

ij = 0 must hold. By construction of w̃, it follows that at least one of τ̃1
ij = 1 or τ̃3

ij = 1 must

hold. Therefore,
∑

t∈{1,3} τ
t
ij ≥ 1, which implies constraint (16c) is satisfied by w̃. The case where e= etjk for

some t∈ {2,3} follows by parallel argument.

Step 2. We now show w̃ satisfies constraints (17a)–(17d). If S̄(z) = ∅, the result holds trivially. Suppose

S̄(z) 6= ∅. It is straightforward to verify that constraints (17a)– (17c) are immediately satisfied because

τ tij +λtij = 1 for all i, j ∈ V and t∈ {1,2,3}. We now show w̃ satisfies constraint (17d). Pick any (i, j, k)∈ S̄(z).

By definition of S̄(z), (i, j, k) ∈ S̄(z) implies there exists e ∈ eijk such that e /∈ Ẽ. By definition of Ēijk, we

must have either e= etij or e= etjk for some t∈ {1,2,3}. Suppose e= etij for some t∈ {1,2,3}. Because e /∈ Ẽ,

at least one of λ1
ij = 0, λ2

ij = 0, or λ3
ij = 0 must hold. It follows that at least one of τ̃1

ij = 1, τ̃2
ij = 1, or τ̃3

ij = 1

must hold. Therefore,
∑

t∈{1,2,3} τ
t
ij ≥ 1, which implies constraint (17d) is satisfied by w̃. The case where

e= etjk for some t∈ {1,2,3} follows by parallel argument.

Step 3. Constraints (18a)–(18c) hold because τ̃ tij + λtij = 1 by construction of w̃, and λ1
ij = λ2

ji and

λ3
ij = λ3

ji by definition of λtij , for all i, j ∈ V and t∈ {1,2,3}. �

54

Lemma 7. CausalIP
(
P−(Ẽ, ζ)

)
is always feasible when called by EdgeGen.

Proof of Lemma 7. Our approach is to construct a feasible solution (x̃, ỹ, z̃) for CausalIP
(
P−(Ẽ, ζ)

)
when it is called by EdgeGen. First, let’s start with constructing a solution where xe = 0 for all e ∈ Ẽ.

Next, it is straightforward to show that for any fixed x, there exists a solution to the inequalities (4). When

x = 0, this solution is y = 0 by (4). Lastly, let z̃nij = 1 for all n ∈ ND
ij , i, j ∈ V and z̃nij = 0 for all n ∈ N I

ij ,

i, j ∈ V . It remains to show that (x̃, ỹ, z̃) satisfies constraints (5) and (6). To see that (x̃, ỹ, z̃) satisfies (5),

pick any n ∈ N I
ij , p ∈ Pij(Ẽ, |V | − 1) and i, j ∈ V . Since yp = 0, such (x̃, ỹ, z̃) satisfies (5). Next, we show

(x̃, ỹ, z̃) satisfies (6). Pick any n∈ND
ij and i, j ∈ V . Note that the left hand side of constraint (6) is equal to

0 as yp = 0 for all p∈P(Ẽ, |V |− 1). Then, constraint (6) can be written as znij ≥ 1 for all i, j ∈ V,n∈ND
ij . As

we set znij = 1 for all i, j ∈ V,n∈ND
ij , constraint (6) is satisfied. �

Lemma 8. Let Gs = (V,Es) be an input graph to G-Postprocess at iteration t and let ε be the output

constructed by G-Postprocess. Then (i) for each i, j ∈ V , n ∈N I
ij, εnij = 0 if and only if i⊥Gs j|Cn

ij, and

(ii) for each i, j ∈ V , n∈ND
ij , εnij = 0 if and only if i 6⊥Gs j|Cn

ij.

Proof of Lemma 8. By definition of ε in G-Postprocess, for each i, j ∈ V and n∈N I
ij , εnij = 0 if and only

if
∑

p∈Pij(Es,|V |−1)α
n
ijp = 0. By definition, αnijp = 0 if and only if the path p between i and j is blocked with

respect to Cn
ij ∈ Aij . Note Pij(Es, |V | − 1) is the complete set of paths (i.e., including appendages) up to

length |V |− 1 in graph Gs. Therefore, for each i, j ∈ V , n∈N I
ij , εnij = 0 if and only if all paths between i and

j are blocked with respect to Cn
ij ∈Aij in the graph Gs. It follows from Definition 3 that for i, j ∈ V , n∈N I

ij ,

εnij = 0 if and only if i and j are d-separated with respect to Cn
ij ∈Aij in Gs, or equivalently, i⊥Gs j|Cn

ij . By

a similar argument, for each i, j ∈ V , n ∈ND
ij , εnij = 0 if and only if

∑
p∈Pij(Es,|V |−1)α

n
ijp > 0, which implies

there exists at least one unblocked path between i and j. It follows that for i, j ∈ V , n ∈ND
ij , εnij = 0 if and

only if i and j are d-connected with respect to Cn
ij ∈Aij in Gs, or equivalently, i 6⊥Gs j|Cn

ij . �

Proposition 4. EdgeGen is guaranteed to terminate. Further, if Assumption 2 holds, the objective in (3)

is equal to zero at termination.

Proof of Proposition 4. We first prove that the algorithm terminates. We start by noting that EdgeGen

terminates if (i) ω>ε = 0 or (ii) Ẽ = Ec and ζ = |V | − 1 (by Step 3.3 of EdgeGen). Suppose condition

(i) never holds. We show that condition (ii) eventually holds. By Lemma 6 and Lemma 7, EdgeGen

returns a graph Gs = (V,Es) at each iteration t. At each iteration of Algorithm 1, either Ẽ or ζ strictly

increases. Because both Ec and |V | − 1 are finite, we arrive at the termination condition Ẽ = Ec and

ζ = |V | − 1 in a finite number of iterations. Therefore, if condition (i) never holds, condition (ii) eventually

holds and EdgeGen terminates. If condition (i) holds, the algorithm terminates by construction. Next

we prove L(Gs) = 0 at termination if Assumption 2 holds. First, suppose condition (i) holds, i.e., ω>ε= 0,

at termination. Then L(Gs) must be equal to zero by Lemma 8. Now suppose condition (ii) holds,

i.e., Ẽ = Ec and ζ = |V | − 1, at termination. This implies we have
∑

i,j∈V

∑
n∈Nij

z̃nij = 0 by Lemma 4.

Then L(Gs) = 0 as a result of the correspondence between the loss function in (3) and the objective of

55

CausalIP(P(Ec, |V | − 1)) we established in Proposition 1. �

Theorem 1. Let G∗ be the graph returned by EdgeGen for ω> 0.

(i) Gc ∈ argmin
G

L(G), i.e., Gc minimizes the objective in (3).

(ii) Further, if Assumption 2 holds, G∗ ∼GT (i.e., G∗ and GT are Markov equivalent).

Proof of Theorem 1. (i). By Proposition 4, EdgeGen is guaranteed to terminate. Note that EdgeGen

terminates only if (1) ω>ε = 0 or (2) Ẽ = Ec and ζ = |V | − 1 (by Step 3.3 of EdgeGen). Note that by

Lemma 8, ω>ε is equivalent to the loss function L(G) given in (3):

ω>ε=
∑
i,j∈V

∑
n∈ND

ij

ωnij ·1(i⊥G j|Cn
ij) +

∑
i,j∈V

∑
n∈NI

ij

ωnij ·1(i 6⊥G j|Cn
ij).

Note that the loss function is lower bounded by 0. Suppose condition (1) holds at iteration s∗ and EdgeGen

terminates. Because ω > 0, this implies σs > 0 for all s < s∗. Hence, by Step 4 of EdgeGen, the graph

returned is Gs∗ . Because ω>ε = 0 holds at iteration s∗, Gs∗ minimizes the loss function L(G). Suppose

condition (1) never holds. Then condition (2) must eventually hold at the termination iteration s∗. This

implies that EdgeGen solves CausalIP
(
P(Ec, |V | − 1)

)
at iteration s∗∗ and returns corresponding graph

Gs∗ . By Proposition 1, Gs∗ minimizes the loss function L(G).

(ii). Similar to part (i), at the termination iteration s∗ of EdgeGen, at least one of the following two

conditions must hold: (1) ω>ε= 0 or (2) Ẽ =Ec and ζ = |V |−1. First, suppose condition (1) holds at s∗ for

some ω > 0. Then by the proof of part (i), EdgeGen returns graph Gs∗ . Because condition (1) holds and

ω > 0, we have εnij = 0 for all i, j ∈ V and n ∈N I
ij ∪ND

ij . It follows from Assumption 2 and Lemma 8 that

Gs∗ must be Markov equivalent to the true graph GT . Now suppose condition (2) holds at the termination

iteration s∗. Then EdgeGen solves CausalIP
(
P(Ec, |V | − 1)

)
at iteration s∗, and let Gs∗ be the returned

graph. Because Assumption 2 holds, it follows from Proposition 2 that Gs∗ is Markov equivalent to GT . �

