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Abstract. Problem definition: Ride-hailing platforms, which are currently struggling with
profitability, view autonomous vehicles (AVs) as important to their long-term profitability
and prospects. Are competing platforms helped or harmed by platforms’ obtaining access
to AVs? Are the humans who participate on the platforms—driver-workers and
rider-consumers (hereafter, agents)—collectively helped or harmed by the platforms’ ac-
cess to AVs? How do the conditions under which access to AVs reduces platform profits,
agent welfare, and social welfare depend on the AV ownership structure (i.e., whether plat-
forms or individuals own AVs)? Academic/practical relevance: AVs have the potential to
transform the economics of ride-hailing, with welfare consequences for platforms, agents,
and society. Methodology: We employ a game-theoretic model that captures platforms’
price, wage, and AV fleet size decisions. Results: We characterize necessary and sufficient
conditions under which platforms’ access to AVs reduces platform profit, agent welfare,
and social welfare. The structural effect of access to AVs on agent welfare is robust regard-
less of AV ownership; agent welfare decreases if and only if the AV cost is high. In contrast,
the structural effect of access to AVs on platform profit depends on who owns AVs. The
necessary and sufficient condition under which access to AVs decreases platform profit is
high AV cost under platform-owned AVs and low AV cost under individually owned
AVs. Similarly, the structural effect of access to AVs on social welfare depends on who
owns AVs. Access to individually owned AVs increases social welfare; in contrast, access
to platform-owned AVs decreases social welfare—if and only if the AV cost is high.
Managerial implications: Our results provide guidance to platforms, labor and consumer
advocates, and governmental entities regarding regulatory and public policy decisions af-
fecting the ease with which platforms obtain access to AVs.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2021.1013.

Keywords: game theory • service operations

1. Introduction
Ride-hailing platforms Lyft and Uber, which are cur-
rently struggling with profitability, view autonomous
vehicles (AVs) as important to their long-term profit-
ability and prospects. Wage payments to drivers con-
stitute the largest expense for ride-hailing platforms.
With the specific purpose of eliminating the variable
cost of payments to drivers, Lyft and Uber have ag-
gressively pursued the development of AVs, with
each investing billions in their efforts (Siddiqui and
Bensinger 2019). Lyft and Uber comprise 98% of the
U.S. ride-hailing market (Bosa 2018). A central feature
of these ride-hailing platforms is that they simulta-
neously compete over a common pool of supply—
namely, independent driver-workers—and a common
pool of demand—namely, rider-consumers. Each plat-
form anticipates that after initially launching AVs, it
will, for a period, serve customers with a mix of AVs
and human-driven vehicles (Lyft 2019, Uber 2019).

Lyft and Uber each anticipate that its deployment
of AVs will be crucial in improving its profitability
and that its rival’s deployment of AVs will threaten its
profitability (Lyft 2019, Mims 2019, Uber 2019). When
considering industry-wide access to AVs, it is unclear
whether a platform’s own benefit from obtaining ac-
cess will be outweighed by the harm in facing a more
formidable rival. Do competing platforms benefit by both
obtaining access to AVs?

Platforms’ deployment of AVs will affect the humans
that participate on each side of the platform. It is natural
that driver-workers will be hurt by being displaced by
AVs and that rider-consumers will benefit through low-
er prices that result from the availability of a new supply
source for platforms. What is less clear is the net impact
on the human participants collectively (i.e., whether the
benefit to consumers offsets the harm to workers). Do
human participants collectively benefit by platforms’ access to
AVs? Does society benefit by platforms’ access to AVs?
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These questions are of interest to platforms, labor
and consumer advocates, and governmental entities.
The ease with which platforms obtain access to AVs
will depend on regulatory and public policy decisions:
the stringency of safety regulations governing ride-
hailing AVs, infrastructure that affects the ease of plat-
forms’ use of AVs (e.g., infrastructure integrating
ride-hailing AVs with public transit systems), and reg-
ulation that affects the ease of platforms’ use of AVs
(e.g., zoning for facilities that store, service, and
charge ride-hailing AVs) (Duvall et al. 2019). The eco-
nomic welfare consequences of platforms’ access to
AVs are one input to these decisions. To the extent
that the harm to workers outweighs the benefit to con-
sumers or the rest of society, labor advocates will be on
stronger ground in pushing for barriers to ride-hailing
AVs. The degree to which platforms push against such
barriers and the strength of their arguments will de-
pend on whether platforms and society benefit from
access to AVs.

Addressing these questions requires some specula-
tion regarding how AVs will be deployed and in par-
ticular, who will own the AVs used on each platform.
There is evidence that Uber and Lyft will each own
their AV fleets. Uber has said it intends to own and
operate its own AVs (Isaac 2017, Uber 2019). Uber ini-
tiated its AV efforts in 2015 and in late 2017, agreed to
purchase 24,000 AVs from Volvo, stating that
“everything we’re doing right now is about building
autonomous vehicles at scale” (Boston 2017, Isaac
2017, p. B6). Lyft has said it will “most likely” lease
AVs if it does not own them outright (Murphy 2016).
Lyft envisions that its AV offering will be “asset in-
tensive,” which is consistent with Lyft owning AVs
(Lyft 2019, p. 24). Lyft launched its in-house develop-
ment of AVs in 2017, devoting one-10th of its engi-
neers to the effort. The goal of Lyft’s AV efforts in
house and with industry partners (e.g., Waymo) is to
bring “hundreds of thousands” of AVs to its platform
(Bensinger 2017, p. B2).

Although Lyft’s and Uber’s in-house efforts are each
aimed at developing technology for the platform’s own
AVs, each platform has expressed an openness to al-
lowing AVs it does not wholly own on its network
(Murphy 2016, Isaac 2017). One possibility is that a
ride-hailing platform would partner with an outside
entity that would put AVs on the platform’s network.
A second possibility is that a platform would allow
AVs fully owned by external parties on its network.

Because it is difficult to capture all possible owner-
ship scenarios in a single model, to build understand-
ing we focus on two alternatives that represent
opposite ends of the ownership spectrum. Under the
platform-owned AVs ownership structure, each plat-
form determines its AV fleet size and incurs an associ-
ated cost. This is consistent with the platform owning

or leasing the AVs on its network. It is also consistent
with the partnership model, to the extent that the part-
ners make decisions with the objective of maximizing
their combined profit. To the extent that independent
AV fleet owners with market power seek to put their
AVs on a platform’s network, a different setup would
be required. Because examining this scenario would
require a significant level of speculation about how
the various entities (including the fleet owners, which
do not as yet exist) would interact, we defer its discus-
sion to Section 5.

Under the individually owned AVs ownership struc-
ture, third parties lacking market power own the AVs.
Although it is easiest to conceive of the owners as in-
dividuals, they could also be owners of small, inde-
pendent AV fleets. Either would be consistent with
the view of some analysts that question the viability
of large AV fleets, owned either by platforms or by
third parties (Motavalli 2020). A model in which a
ride-hailing platform exclusively employs individual-
ly owned AVs has been proposed by Tesla CEO Elon
Musk and could be adopted by ride-hailing incum-
bents that also use human drivers (Higgins 2019). (In
our base model, for consistency across both owner-
ship structures, we suppose each platform has access
to a pool of AVs that exclusively serve that platform’s
customers; we relax this assumption for individually
owned AVs in Section 4.3. We relax the assumption
that AVs are owned by only one type of entity—either
platforms or individuals—in Section 4.2.)

Although our work is primarily motivated by ride-
hailing, parallel issues arise for delivery platforms.
Delivery platforms, which are currently struggling
with profitability, view AVs as important to their
long-term profitability and prospects (Mims 2019).
Competing platforms, such as DoorDash and Post-
mates, are developing and testing AVs for delivery
(Luna 2020).

We characterize the impact of platforms’ access to
AVs on three performance measures: platform profit,
the welfare of the human participants collectively
(hereafter, agents), and social welfare (the sum of the
previous two quantities). Table 1, which states the nec-
essary and sufficient conditions under which access to
AVs decreases each performance measure, summa-
rizes our key findings. (We encourage the reader, at
this point, to skip over the gray text in Table 1, as the
results hold when that text is ignored.)

The structural effect of access to AVs on agent welfare
is robust regardless of AV ownership; agent welfare de-
creases if and only if the AV cost is high. In contrast, the
structural effect of access to AVs on platform profit de-
pends on who owns AVs. The necessary and sufficient
condition under which access to AVs decreases platform
profit is high AV cost under platform-owned AVs and
low AV cost under individually owned AVs. Similarly,
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the structural effect of access to AVs on social welfare
depends on who owns AVs. Access to individually
owned AVs increases social welfare; in contrast, ac-
cess to platform-owned AVs decreases social wel-
fare—if and only if the AV cost is high. We discuss the
prescriptions that follow for platforms and advocates
of human participants in Section 5.

This paper is primarily related to two streams of lit-
erature on competition: competition between ride-
hailing platforms and the impact of changes in cost
structure on competing firms. Ride-hailing platforms
have been widely studied in the operations manage-
ment literature. A large share of this work has focused
on pricing, including dynamic pricing (Banerjee et al.
2016, Cachon et al. 2017, Bai et al. 2018, Hu et al. 2021),
spatial pricing (Bimpikis et al. 2019, Besbes et al.
2021), and the impact of uncertainty (Taylor 2018). Oth-
er dimensions of ride-hailing platforms that have re-
ceived attention are labor and staffing considerations
(Afeche et al. 2018, Allon et al. 2019, Gurvich et al. 2019,
Hu and Zhou 2019, Benjaafar et al. 2021) and matching
mechanisms (Benjaafar et al. 2019, Ozkan and Ward
2020). Chen et al. (2020) examines research opportuni-
ties in ride-hailing and other contexts.

Within the ride-hailing literature, our work is most
closely related to papers that investigate the impact of
competition on platform profit and the welfare of
workers and consumers. With respect to platform prof-
it, Cohen and Zhang (2017) examines profit-sharing
contracts between duopolist ride-hailing platforms and
characterizes conditions under which such agreements
benefit both platforms. Bai and Tang (2020) focuses on
the factors that determine whether competing plat-
forms earn strictly positive profit. Wu et al. (2020) con-
siders how the timing of worker and consumer deci-
sions affect the market share of each platform in
equilibrium. Liu et al. (2019) examines the impact of
different worker bonus schemes on platform profit.
With respect to welfare, Bernstein et al. (2020) consid-
ers how equilibrium outcomes in a duopoly depend on
whether drivers work for one or both platforms and
show that both consumers and workers may be worse
off when drivers work for both platforms. Nikzad

(2018) and Benjaafar et al. (2020a) show consumers
may be worse off under competition. Lin et al. (2018)
shows that mergers between competing platforms can
be beneficial for both consumers and workers. Our
work differs from these papers in that we focus on the
impact of access AVs on welfare and profit.

This paper also extends previous work on how
changes in sourcing options or supply costs affect
equilibrium outcomes. Using a general model of firm
competition, Seade (1985) shows that industry-wide
cost increases (e.g., taxes) can increase equilibrium
profits. Salop and Scheffman (1987) shows that it can
be advantageous for a firm to “overbuy” an input, so
as to raise costs for a competitor. More recently, pa-
pers in the supply chain literature have examined set-
tings where the change in cost structure can be either
symmetric or asymmetric (i.e., can apply to one or
both firms). In an asymmetric setting, Arya et al.
(2008) shows that a firm may benefit from paying a
premium to outsource production to a common sup-
plier because of the resulting increase in its rival’s
costs. Chen and Guo (2014) shows that for firms that
compete over a single supplier, one firm’s access to a
second supplier can increase a competitor’s profits be-
cause of a softening of supply-side competition. In a
symmetric setting, Wu and Zhang (2014) shows that,
in the context of outsourcing, higher supply costs for
all firms can lift profits, again because of a softening
of competition. Our work differs from these papers in
that we focus on the impact of access to AVs under
two distinct AV-ownership structures and consider
consumer and worker welfare, as well as profit.

2. Model
Platforms compete simultaneously over consumers in
a demand market (by setting prices) and workers in a
labor market (by setting wages). Platforms can serve
demand with worker-drivers or with AVs. We focus
on two ownership structures for AVs. In the first set-
ting, each platform obtains its own AV fleet; in the
second, each platform recruits AVs owned by individ-
uals. Next, we present a model for the consumer and

Table 1. Necessary and Sufficient Conditions for Access to AVs to Decrease Platform Profit, Agent Welfare, or Social
Welfare—Under Platform-Owned AVs or Individually Owned AVs

Platform-owned AVs Individually Owned AVs

Platform
profit

AV cost is high
and relative price sensitivity of demand is greater than
relative wage sensitivity of labor γ=β > gl=bl

AV cost is low
and relative price sensitivity of demand is high γ/β > η,
where η > gl=bl

Agent
welfare

AV cost is high
and relative price sensitivity of demand is less than relative wage sensitivity of labor γ=β < gl=bl

Social
welfare

AV cost is high
and relative price sensitivity of demand is greater
than relative wage sensitivity of labor γ=β > gl=bl

None
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labor markets, platform-owned AVs, and individually
owned AVs. Then, we characterize platform profit,
consumer surplus, and labor welfare.

2.1. Consumer and Labor Markets
Let pi and wl,i denote the price offered to rider-
consumers and wage offered to driver-workers by
platform i ∈ {1, 2}. Platform i’s demand under prices
p � (p1,p2) is

Di(p) � α− βpi + γpj, (1)

where β > γ ≥ 0 for i≠ j. Platform i’s labor supply un-
der wageswl � (wl,1,wl,2) is

Li(wl) � blwl,i − glwl,j, (2)

where bl > gl ≥ 0. Note that γ is the crossprice sensitiv-
ity of demand and β is the own-price sensitivity of de-
mand; accordingly, γ=β represents the relative price
sensitivity of demand. Similarly, gl is the crosswage sen-
sitivity of labor supply, and bl is the own-wage sensitiv-
ity of labor supply; accordingly, gl=bl represents the rel-
ative wage sensitivity of labor. Note that gl � 0 and γ � 0
indicate an absence of competition in the labor and con-
sumer markets, respectively. The assumption that labor
supply is linear in wages has been used in the labor eco-
nomics literature (e.g., Hamilton et al. 2000, Bhaskar
et al. 2002) and parallels the commonly used assump-
tion that demand is linear in prices.

2.2. Platform-Owned AVs
In the setting where platforms own AVs, fleet size de-
cisions are made over a longer-term horizon than
price and wage decisions. As such, we divide the time
horizon into two periods. In the first period, platform
i ∈ {1, 2} chooses the size of its AV fleet Ki, incurring
cost θck(Ki), where θ > 0. We refer to θ as the plat-
forms’ AV cost and to ck(Ki) as the AV cost function. In
the second period (spot market), each platform i ∈
{1, 2} observes the AV fleet of its rival platform Kj,
j≠ i, before making price and wage decisions. In the
base model, we suppose the AV cost function is linear
ck(Ki) � Ki; we relax this assumption in Section 4.1.

2.3. Individually Owned AVs
In the setting where individuals own AVs, platform i ∈
{1, 2} offers wage wv,i to individual AV owners in ex-
change for the deployment of their vehicle on the plat-
form. In contrast to platform-owned AVs, sourcing
individually owned AVs is a short-term decision. Anal-
ogous to labor supply, platform i’s AV supply under
wageswv � (wv,1,wv,2) is Vi(wv) � bvwv,i − gvwv,j, where
bv > gv ≥ 0.

2.4. Platform Profit
A unit of demand can be fulfilled by a unit of AV or
labor. Accordingly, we restrict attention to the natural

parameter range (p,wl,wv) wherein platform i balan-
ces total supply and demand: Di(p) � Ki + Li(wl)
+Vi(wv). Under AV fleets K � (K1,K2), platform i
chooses its price and wages (pi,wl,i,wv,i) to maximize
its second-period contribution

ui(p,wl,wv) � piDi(p) −wl,iLi(wl) −wv,iVi(wv): (3)

Let p∗(K) � (p∗1(K),p∗2(K)), w∗
l (K) � (w∗

l,1(K),w∗
l,2(K)),

and w∗
v(K) � (w∗

v,1(K),w∗
v,2(K)) denote equilibrium

prices and wages under AV fleets K. Platform i’s
second-period contribution under AV fleets K and
equilibrium prices and wages (p∗(K),w∗

l (K),w∗
v(K)) is

ri(K) � ui(p∗(K),w∗
l (K),w∗

v(K)):
Platform i chooses its AV fleet Ki to maximize its
(first-period) profit

Πi(K) � ri(K) −θck(Ki): (4)

In the base model, we consider two ownership
structures for AVs. Under platform-owned AVs, each
platform acquires its own AV fleet, and individuals
do not own AVs, which corresponds to the special
case bv � gv � 0 and θ <∞: Under individually owned
AVs, each platform recruits AVs owned by individu-
als, and platforms do not own AVs, which corre-
sponds to the special case bv > gv ≥ 0 and θ �∞: We
relax the assumption that AVs are owned by plat-
forms or individuals—but not both—in Section 4.2.

2.5. Consumer Surplus and Labor Welfare
Dixit (1986) shows that the demand in Equation (1)
emerges under the following consumer utility model.
A representative consumer facing prices (p1,p2) pays
p1D1 + p2D2 for consuming (D1,D2) units. The con-
sumer has quadratic utility from consumption τD1
+τD2 − (χD2

1 + 2μD1D2 +χD2
2)=2, where τ > 0 and

χ > μ > 0. This utility function exhibits two features:
decreasing marginal utility from consumption and
utility from variety. The latter is natural if the con-
sumer has different types of service needs (e.g., trips
originating in different geographic areas) and per-
ceives the platforms to be differentiated in their ability
to meet these needs. The consumer chooses (D1,D2) to
maximize her net utility. With a suitable mapping
between (τ,χ,μ) and (α,β,γ), demand is given by
Equation (1), and consumer surplus under symmetric
equilibrium prices p∗ is CS �Di(p∗)2=(β− γ); see On-
line Appendix E for the derivations.

A parallel model of worker utility results in the la-
bor supply in Equation (2). A representative worker
facing wages (wl,1,wl,2) receives payment wl,1L1 +
wl,2L2 for providing (L1,L2) units of labor supply. The
worker experiences quadratic disutility from provid-
ing labor (xL21 + 2mL1L2 + xL22)=2, where x >m > 0.
This disutility function exhibits two features: in-
creasing marginal disutility from providing labor and
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utility for variety. The latter is natural if the worker’s
utility varies by the type of service it provides (e.g.,
trips originating in different geographic areas) and
perceives the platforms to be differentiated in their
ability to offer these service opportunities. The worker
chooses (L1,L2) to maximize her net utility. With a
suitable mapping between (x, m) and (bl,gl), labor
supply is given by Equation (2), and labor welfare un-
der symmetric equilibrium wages w∗

l is LW �
Li(w∗

l )2=(bl − gl); see Online Appendix E for the deriva-
tions. We refer to the sum of consumer surplus and la-
bor welfare as agent welfare and the sum of agent
welfare and both platforms’ profits as social welfare.

3. Results
3.1. Platform-Owned AVs
This section examines the setting in which platforms,
rather than individuals, own AVs. Because individu-
als do not own AVs, there is no market for such AVs:
bv � gv � 0: Lemma 1 characterizes the existence and
uniqueness of equilibria. All proofs for this section are
in the Appendix, and all proofs for subsequent sec-
tions are in the Online Appendix.

Lemma 1. Suppose bv � gv � 0. Under any platform-
owned AV fleets K, the equilibrium prices and wages
(p∗(K),w∗

l (K)) are unique. Further, there exists g̃l > 0
such that if gl < g̃l, then exactly one symmetric equilibrium
AV fleet size, K∗

1 � K∗
2 � K∗, exists.

Define θm � limK1↓0limK2↓0(∂=∂K1)r1(K). It is
straightforward to show that the symmetric equilibri-
um AV fleet K∗ > 0 if and only if the AV cost θ < θm.
We say that platforms have access to platform-owned
AVs when the AV cost θ ∈ (0,θm): In the remainder of
this section, we restrict attention to symmetric equilib-
ria in AV fleet size, and for analytical tractability, we
assume that gl < g̃l. To assess the restrictiveness of this
assumption, we conducted a numerical study. Let Set
A denote the approximately 300,000 combinations of
parameters β ∈ {0:2, 0:4, : : : , 1}, γ � ϑβ, where ϑ ∈ {0,
0:1, : : : , 0:9, 0:99}, bl ∈ {0:2, 0:4, : : : , 1}, gl � ςbl, where
ς ∈ {0, 0:1, : : : , 0:9, 0:99}, and θ ∈ {0:05,0:10, : : : , 5}. For
each combination of parameters, we observed that ex-
actly one symmetric equilibrium AV fleet size exists
and that the results are consistent with the proposi-
tions in this section.

By symmetry, equilibrium platform profit under ac-
cess to platform-owned AVs is ΠP �Πi(K∗), where
K∗ � (K∗,K∗) is the symmetric equilibrium AV fleets,
and equilibrium platform profit under no access to
AVs is Π0 �Πi(0, 0) � ri(0, 0) for i ∈ {1, 2}: Proposition
1 characterizes the impact of access to platform-
owned AVs on equilibrium platform profit. Proposi-
tion 1 reveals that whether such access decreases
platform profit depends in part on whether the relative

price sensitivity of demand γ=β is greater than the rel-
ative wage sensitivity of labor gl=bl: For concreteness,
if platform 1 decreases its price by one dollar, the rel-
ative price sensitivity of demand is the fraction of a
dollar by which platform 2 must decrease her price to
restore her demand to its level prior to platform 1’s
price reduction. Similarly, the relative wage sensitivi-
ty of labor is the fraction of a dollar by which plat-
form 2 must increase her wage to restore her labor
supply to its level prior to platform 1’s increasing its
wage by one dollar. Accordingly, these ratios are a
measure of the intensity of competition in the consum-
er market and the labor market. In this sense, the rela-
tive price sensitivity of demand is greater than the rel-
ative wage sensitivity of labor when the intensity of
competition is greater in the consumer market than the
labor market.

Proportion 1. There exists θ̄ ≥ 0 such that access to
platform-owned AVs decreases platform profit ΠP <Π0 if
and only if the AV cost is high θ ∈ (θ̄,θm). Further, θ̄ <
θm if and only if the relative price sensitivity of demand is
greater than the relative wage sensitivity of labor

γ=β > gl=bl: (5)

Access to platform-owned AVs decreases platform
profit if and only if the AV cost θ is high and the rela-
tive price sensitivity of demand is greater than the rel-
ative wage sensitivity of labor. The platforms obtain
access to AVs when the AV cost decreases such that it
is no longer prohibitively costly θ < θm. Hence, to un-
derstand the conditions under which access to
platform-owned AVs decreases platform profit, it is
useful to consider the effect of a reduction in the AV
cost θ on platform i’s profit:

dΠi

dθ
�
[
∂Revenuei(K∗)

∂Kj︸�������︷︷�������︸
< 0

consumermarket effect

−∂LaborCosti(K∗)
∂Kj

]
︸��������︷︷��������︸

< 0
labormarket effect

× dK∗
j

dθ︸︷︷︸
< 0

− ck(K∗
i )︸︷︷︸ ,

> 0
AVsourcingcost effect

(6)

where under AV fleets K, platform i’s equilibrium
revenue is Revenuei(K) � p∗i (K)Di(p∗(K)) and equilibri-
um labor cost is LaborCosti(K) � w∗

i,l(K)Li(w∗
l (K)):

Reducing the AV cost has a direct beneficial AV
sourcing cost effect; reducing θ reduces platform i’s
AV sourcing cost θck(K∗

i ): In addition, reducing the
AV cost has two indirect (and opposing) effects that
come through its impact on platform j’s AV fleet size:
a harmful consumer market effect and a beneficial labor
market effect. Platform j responds to a reduction in the
AV cost by expanding its AV fleet. This commits platform
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j to compete more aggressively on price in the consumer
market (the consumer market effect), hurting platform i.
An increase in platform j’s AV fleet reduces platform j’s
marginal value of labor, so platform j competes less
aggressively on wage in the labor market (the labor
market effect), benefiting platform i. Which effect
dominates depends on a simple comparison of the
relative price sensitivity of demand γ=β (which
drives the magnitude of the consumer market effect)
with the relative wage sensitivity of labor gl=bl
(which drives the magnitude of the labor market
effect).

To understand the impact of access to AVs on plat-
form profit when the AV cost is high, consider the ef-
fect of decreasing the AV cost from the prohibitively
costly threshold θ � θm: Because the AV cost is high,
platform i’s equilibrium AV fleet K∗

i is very small, and
the AV sourcing cost effect is negligible. Hence, the
harmful consumer market effect dominates the benefi-
cial labor market effect, such that access to AVs de-
creases platform i’s profit, if and only if the relative
price sensitivity of demand is greater than the relative
wage sensitivity of labor, Inequality (5).

If the relative price sensitivity of demand is less than
the relative wage sensitivity of labor (Inequality (5) is
violated), then the beneficial labor market effect domi-
nates the harmful consumer market effect. Hence, both
the indirect and direct effects of access to AVs are ben-
eficial; access to AVs increases platform i’s profit.

If the AV cost is small θ < θ̄, then platform i’s equi-
librium AV fleet K∗

i is large, and the beneficial AV
sourcing cost effect dominates; access to AVs increases
platform i’s profit.

It can be shown analytically that the AV cost thresh-
old θ̄ > 0 if γ=β < gl=bl + ρ for some ρ ∈ (0, 1). In a nu-
merical study of the parameters in Set A, we observed
results consistent with the previous sentence, where
“if” is replaced by “if and only if.” This suggests that
if the relative price sensitivity of demand is sufficient-
ly larger than the relative wage sensitivity of labor
γ=β ≥ gl=bl + ρ, then access to platform-owned AVs
decreases platform profit regardless of the AV cost. In-
tuitively, the harmful consumer market effect is so
strong that it dominates the beneficial combined labor
cost and AV sourcing cost effects.

Next, we consider the impact of AVs on the welfare
of the human participants on the platform, namely con-
sumers and workers. Naturally, access to platform-
owned AVs decreases labor welfare (because AVs
displace workers) and increases consumer surplus
(because AVs provide platforms with an additional
supply source). What is less clear is the net impact on
the human participants collectively. That is, does the
harm to workers offset the benefit to consumers?

We refer to the welfare of the human partici-
pants (that is, the sum of consumer surplus and labor

welfare) as agent welfare AW(K) � CS(K) + LW(K),
where consumer surplus CS(K) �Di(p∗(K))2=(β− γ)
and labor welfare LW(K) � Li(w∗

l (K))2=(bl − gl). Equi-
librium agent welfare under access to platform-
owned AVs is AWP � AW(K∗); equilibrium agent
welfare under no access to AVs is AW0 � AW(0, 0):
Proposition 2 characterizes the impact of access to
platform-owned AVs on equilibrium agent welfare.

Proportion 2. There exists θ̃ ≥ 0 such that access to
platform-owned AVs decreases agent welfare AWP < AW0

if and only if the AV cost is high θ ∈ (θ̃,θm). Further, θ̃ <
θm if and only if the relative price sensitivity of demand is
less than the relative wage sensitivity of labor

γ=β < gl=bl: (7)

Access to platform-owned AVs decreases agent
welfare if and only if the AV cost θ is high and the
relative price sensitivity of demand is less than the
relative wage sensitivity of labor. The platforms ob-
tain access to AVs when the AV cost decreases such
that it is no longer prohibitively costly θ < θm. Hence,
to understand the conditions under which access to
platform-owned AVs decreases agent utility, it is use-
ful consider the effect of a reduction in the AV cost θ
on agent welfare:

dAWP

dθ
�
[
−D∗

T(K∗)∂p
∗(K∗)
∂K︸���������︷︷���������︸

dCS
dK

> 0

consumer surplus effect

+L∗T(K∗)∂w
∗(K∗)
∂K

]
︸�������︷︷�������︸

dLW
dK

< 0

labor welfare effect

dK∗

dθ︸︷︷︸
< 0

,

(8)

where D∗
T(K∗) �D∗

1(K∗) +D∗
2(K∗) is total equilibrium

demand and L∗T(K∗) � L∗1(p∗(K∗),w∗(K∗)) + L∗2(p∗(K∗),
w∗(K∗)) is total equilibrium labor supply. The plat-
forms respond to a reduction in the AV cost by ex-
panding their AV fleets, which has two opposing
effects on agent utility: a beneficial consumer surplus
effect and a harmful labor welfare effect. The expansion
in AV fleets prompts the platforms to compete more
aggressively on price in the consumer market
(∂p∗(K∗)=∂K < 0), increasing consumer surplus. The
expansion in AV fleets prompts the platforms to com-
pete less aggressively on wage in the labor market
(∂w∗(K∗)=∂K < 0), decreasing labor welfare.

To understand the impact of access to AVs on agent
welfare when the AV cost is high, consider the effect
of decreasing the AV cost from the prohibitively cost-
ly threshold θ � θm: Because the AV cost is high, the
platforms’ equilibrium AV fleets K∗ are very small, so
that the numbers of consumers receiving service and
workers providing service are comparable: D∗

T(K∗) ≈
L∗T(K∗): In the limit, as the AV cost approaches the lev-
el at which AVs are prohibitively costly θ→ θm, the
net of the consumer surplus and labor welfare effects
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(i.e., the quantity in square brackets in Equation (8)) is
strictly negative if and only if the platform’s equilibri-
um margin increases in the fleet size

∂[p∗(K∗) −w∗(K∗)]
∂K

> 0, (9)

which occurs if and only if the relative price sensitivi-
ty of demand is less than the relative wage sensitivity
of labor, Inequality (7). When the relative price sensi-
tivity of demand is less than the relative wage sensi-
tivity of labor, the expansion of AV fleets prompts
each platform to reduce its wage more aggressively
than its price. Hence, each worker is hurt more than
each consumer is helped. Because the numbers of con-
sumers and workers are comparable, D∗

T(K∗) ≈ L∗T(K∗),
the harmful labor welfare effect outweighs the benefi-
cial consumer surplus effect, with the net result that
agent welfare decreases.

If the AV cost is small θ < θ̄, then the platforms’
equilibrium AV fleets K∗ are large, and consequently,
the number of consumers is significantly larger than
the number of workers D∗

T(K∗) 
 L∗T(K∗): Because
many consumers benefit from the price reduction and
few workers are hurt by the wage reduction, the bene-
ficial consumer surplus effect outweighs the harmful
labor welfare effect, and the net result is that agent
welfare increases.

Similarly, if the relative price sensitivity of demand
is greater than the relative wage sensitivity of labor
(Inequality (7) is reversed), then Inequality (9) is re-
versed; each consumer benefits more than each work-
er is hurt. Because the number of affected consumers
is greater than the number of affected workers, the
beneficial consumer surplus effect outweighs the
harmful labor welfare effect, and the net result is that
agent welfare increases.

Propositions 1 and 2 characterize the impact of ac-
cess to platform-owned AVs on each of the two
groups—platforms and human participants—sepa-
rately. Taking these propositions together answers the
question of how access to platform-owned AVs jointly
affects these two groups. The answer is formalized in
the following corollary, which shows that at least one
group benefits. Let θ

^ �min{θ̄, θ̃}: Note that it may be
that θ

^ � 0; further, θ
^

< θm if and only if γ=β≠ gl=bl:

Corollary 1. If AV cost is low θ ∈ (0,θ^ ), then access to
platform-owned AVs increases platform profit and agent
welfare. If the AV cost is high θ ∈ (θ^ ,θm), then access to
platform-owned AVs either increases platform profit and
decreases agent welfare or decreases platform profit and in-
creases agent welfare. The former occurs if γ=β < gl=bl, and
the latter occurs if γ=β > gl=bl:

If the AV cost is low, both groups benefit from plat-
forms’ access to platform-owned AVs. If the AV cost
is high, then one group benefits, and the other group

is hurt; which group benefits is determined by a sim-
ple comparison between relative price sensitivity of
demand and the relative wage sensitivity of labor.

We refer to the sum of agent welfare and the plat-
forms’ profits as social welfare SW(K) � AW(K)
+Π1(K) +Π2(K). Equilibrium social welfare under
access to platform-owned AVs is SWP � SW(K∗); equi-
librium social welfare under no access to AVs is
SW0 � SW(0, 0):
An immediately implication of Corollary 1 is that

access to platform-owned AVs increases social welfare
if the AV cost is low θ ∈ (0,θ^ ). When the AV cost is
high, θ ∈ (θ^ ,θm), one group is hurt, and the other
group benefits, which prompts the following question.
Will the harm to the first group outweigh the benefit
to the second group? The next proposition gives a
sharp answer.

Proportion 3. There exists θ̂ ≥ 0 such that access to
platform-owned AVs decreases social welfare SWP < SW0

if and only if the AV cost is high θ ∈ (θ̂,θm). Further, θ̂ <
θm if and only if the relative price sensitivity of demand
is greater than the relative wage sensitivity of labor, In-
equality (5).

Access to platform-owned AVs decreases social
welfare if and only if the AV cost θ is high and the rel-
ative price sensitivity of demand is greater than the
relative wage sensitivity of labor.

The set of participants that is most obviously
harmed by AVs is workers, as a portion of them is dis-
placed by AVs. Accordingly, it might be natural to
conjecture that if access to AVs was to reduce social
welfare, it would do so because the harm to workers
offsets the benefit to consumers and platforms. Propo-
sition 3 reveals that this never occurs. Rather, a reduc-
tion in social welfare, when it occurs, is driven by the
harm to platforms offsetting the benefit to human
participants. To see this, observe that a necessary con-
dition for platform-owned AVs to decrease social wel-
fare is that the relative price sensitivity of demand is
greater than the relative wage sensitivity of labor,
Inequality (5). Under this condition, the benefit to
consumers outweighs the harm to workers such that
agent welfare increases (by Proposition 2).

We conclude by noting that Propositions 1–3 reveal
that the impact of access to platform-owned AVs on
each the three groups has a common structure; access
to AVs decreases platform profit, agent welfare, and
social welfare if and only if the AV cost is high. The
next section reveals that this common structure no
longer holds when individuals, rather than platforms,
own AVs.

3.2. Individually Owned AVs
This section examines the setting in which individu-
als, rather than platforms, own AVs. The setting in
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which platforms do not own AVs is captured in our
model by the cost of platform-owned AVs being pro-
hibitive θ �∞: Lemma 2 characterizes the existence
and uniqueness of the equilibrium.

Lemma 2. Suppose bv > gv ≥ 0 and the AV cost θ �∞.
There exists a unique equilibrium in prices and wages, and it
is symmetric: p∗1 � p∗2 � p∗, w∗

l,1 � w∗
l,2 � w∗

l , and w∗
v,1 � w∗

v,2 � w∗
v.

We say that platforms have access to individually
owned AVs when bv > 0. (This parallels our definition
of access to platform-owned AVs in that each platform
sources individually owned AVs, Vi(w∗

v) > 0, if and
only if bv > 0.) In the study in Section 3.1 of platform-
owned AVs, each platform has access to a pool of AVs
that exclusively serve that platform’s customers. For
consistency and to isolate the effect of AV ownership,
in this section’s study of individually owned AVs, we
consider the parallel setting in which each platform
has access to a pool of AVs that exclusively serve that
platform’s customers. That is, there is no competition
in the individually owned AV market gv � 0:

For an individually owned AV to serve a platform’s
customers, the AV must possess technology that al-
lows it to interface with the platform and its custom-
ers. Conceivably, this technology would be developed
by the platform and made available to AV owners
(either at the time when the AV is manufactured or
subsequently), under conditions imposed by the plat-
form. A platform may find it attractive to impose re-
strictions to limit competition. The setting we consider
in this section, gv � 0, corresponds to the case where
each platform imposes the condition on individual
owners that an AV can only use the platform’s propri-
etary technology on the condition that the AV exclu-
sively serves that platform’s customers (Tesla CEO
Elon Musk has proposed such a model for exclusive
use of individually owned AVs (Higgins 2019)). How-
ever, for completeness, in Section 4.3, we consider the
setting where there is competition in the AV market
gv > 0:

Let η � [(2bl − gl)β− 2( 												
bl(bl + β)√ − bl)(bl − gl)]=

[(2bl − gl) β− ( 												
bl(bl + β)√ − bl)(bl − gl)] and η̄ � 2[2bl(bl

−gl)(2bl + gl) + (2bl − gl)2β]=[2bl(bl − gl)(6bl − gl) + 2(2bl
−gl)2β]: Note that max (gl=bl, 2=3) < η <min (η̄, 1), and
η̄ < 1 if and only if gl=bl < 2=3: Let φ � 1=bv; we refer
to φ as the AV cost, in the setting with individually
owned AVs. We define equilibrium platform profit
ΠI, agent welfare AWI, and social welfare SWI under
access to individually owned AVs analogously to that
under platform-owned AVs; for completeness, formal
definitions are in Online Appendix C.

Proportion 4. There exists φ̄ ≥ 0 such that access to indi-
vidually owned AVs decreases platform profit ΠI <Π0 if
and only if the AV cost is low φ < φ̄: Further, if the relative

price sensitivity of demand is low γ=β ≤ η, then φ̄ � 0; if
γ=β ∈ (η, η̄), then 0 < φ̄ <∞; and if γ=β ≥ η̄, then φ̄ �∞:

Access to individually owned AVs decreases equi-
librium profits if and only if the AV cost is low φ < φ̄
and the relative price sensitivity of demand is high
γ=β > η. The platforms obtain access to AVs when the
AV cost decreases such that it is no longer prohibitive-
ly costly φ <∞. Hence, to understand the conditions
under which access to individually owned AVs de-
creases platform profit, it is useful to consider the ef-
fect of a reduction in the AV cost φ on platform i’s
profit. To cleanly delineate the mechanisms by which
a reduction in the AV cost affects platform i’s profit, it
is useful to consider the case where labor is prohibi-
tively costly bl � 0: Because there is no competition in
the autonomous vehicle market gv � 0, platform i’s
AV sourcing cost is φcv(Vi), where cv(Vi) � V2

i : The ef-
fect of reducing the AV cost φ on platform i’s profit is

dΠi

dφ
� ∂p∗j

∂φ

γ

β
Di(p∗)︸����︷︷����︸
> 0

competitor price effect

− cv(Vi(w∗
v))︸���︷︷���︸ :

> 0
AV sourcing cost effect

Reducing the AV cost φ has a direct beneficial AV
sourcing cost effect; reducing φ reduces platform i’s AV
sourcing cost φcv(Vi(w∗

v)): In addition, reducing the
AV cost has an indirect harmful competitor price effect;
platform j responds to a reduction in the AV cost by
reducing its price, which hurts platform i by reducing
its demand. Intuitively, the magnitude of this impact
is increasing in the relative price sensitivity of demand
γ=β: If the relative price sensitivity of demand is low,
γ=β ≤ η, then the competitor price effect is small, and
the beneficial AV sourcing cost effect dominates. In
contrast, if the relative price sensitivity of demand is
high, γ=β ≥ η̄, then the harmful competitor price effect
dominates. If the relative price sensitivity of demand
is moderate, γ=β ∈ (η, η̄), then the harmful competitor
price effect dominates if and only if platform j’s price
is quite sensitive to the AV cost. The sensitivity of
platform j’s price to the AV cost decreases in the AV
cost. (The intuition is that as the AV cost φ decreases,
the equilibrium AV supply V∗ increases, which
implies that c′v(V∗) increases (because the AV cost
function cv(·) is strictly convex). Hence, platform j’s
marginal cost of supply φc′v(V∗), and hence, platform
j’s price, becomes more sensitive to the AV cost φ.)
Consequently, the harmful competitor price effect
dominates if and only if the AV cost is low. The obser-
vation that the harmful competitor price effect domi-
nates when the AV cost is low is not driven by our
assumption that the AV sourcing cost is quadratic; the
result holds for any strictly convex cv(·) (see Online
Appendix C). We are not the first to observe that con-
vexity in the sourcing cost can drive competitors to be
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harmed by a reduction in the sourcing cost; see Fuess
and Loewenstein (1991).

This logic continues to hold when labor is not
prohibitively costly bl > 0. The primary effect of the
platforms obtaining access to high-cost (φ ≥ φ̄) individ-
ually owned AVs is to reduce each platform’s sourcing
cost to the benefit of both platforms. The primary effect
of the platforms obtaining access to low-cost (φ < φ̄) in-
dividually owned AVs is to trigger aggressive price
competition to the detriment of both platforms.

Strikingly, the structure of this result is reversed
when platforms rather than individuals own AVs, as
can be seen by comparing Propositions 1 and 4. Ac-
cess to individually owned AVs harms platforms if
and only if the AV cost is low, whereas access to
platform-owned AVs harms platforms if and only if
the AV cost is high. Across the two ownership struc-
tures, the effect of access to AVs is to reduce the plat-
forms’ marginal cost of supply at the point in time
when the platforms compete in prices and wages (pe-
riod 2). The critical difference between the ownership
structures is that under platform-owned AVs, each
platform commits ex ante (by incurring a cost) to re-
duce its marginal cost ex post, whereas under individ-
ually owned AVs, there is no such commitment. This
difference in commitment drives the difference in
structural conditions under which platforms are
harmed by access to AVs. (For evidence that this dif-
ference in structural conditions is not driven by the as-
sumed form of the platform-owned AV cost function,
see Proposition 7 in Section 4.1. Although we have not
explicitly modeled the utility of individual owners, in
a representative owner model paralleling that of Sec-
tion 2’s representative worker model, with increasing
marginal disutility from providing supply, the result-
ing AV cost function cv(·) is convex. Such increasing
marginal disutility is natural in that as the owner pro-
vides more supply, the AV is less available for her
personal use, and the owner’s personal use naturally
exhibits decreasing marginal utility.)

Because the structural conditions under which plat-
forms are harmed by access to AVs depend on the
ownership structure of AVs, one might conjecture that
the structural conditions under which agents are
harmed by access to AVs would also depend on the
ownership structure. Proposition 5 reveals that this
conjecture is false.

Proportion 5. There exists φ̃ ≥ 0 such that access to indi-
vidually owned AVs decreases agent welfare AWI < AW0

if and only if the AV cost is high φ > φ̃. Further, φ̃ <∞ if
and only if the relative price sensitivity of demand is less
than the relative wage sensitivity of labor, Inequality (7).

Just as in the case with platform-owned AVs, under
individually owned AVs, access to AVs decreases
agent welfare if and only if the AV cost is high and the

relative price sensitivity of demand is less than the rela-
tive wage sensitivity of labor. The intuition under
individually owned AVs parallels that under platform-
owned AVs. Across both ownership structures, the effect
of access to AVs is to displace workers to their detriment
and to the benefit of consumers. Although the nature of
competition is different under the two ownership struc-
tures because of the commitment involved in platform
ownership, the nature of how consumers and workers
are affected by AVs is not affected by the ownership
structure.

Propositions 4 and 5 reveal that who benefits from
platform access to individually owned AVs depends
on the AV cost. When the AV cost is low, agents bene-
fit, and the platforms are harmed. When the AV cost
is high, the platforms benefit, and agents are harmed.
This prompts the following question. Across all pa-
rameter regimes, will the harm caused by access to
AVs outweigh the benefit? It might be natural to con-
jecture that, at least in some parameter regime, the an-
swer is “yes.” The next proposition reveals that when
individuals own AVs, the answer is always “no.”

Proportion 6. Platform access to individually owned AVs
increases social welfare SWI > SW0.

Thus, the insight from the study in Proposition 3 of
platform-owned AVs that access to AVs can decrease
social welfare is reversed when individuals own AVs.

For consistency with our treatment of social welfare
under platform-owned AVs, we have defined social
welfare to be the sum of the utility of three groups:
platforms, consumers, and workers. Individual own-
ership of AVs introduces a fourth group: individual
owners. Naturally, individuals would not choose to
own AVs if doing so reduced their utility. (For sim-
plicity, we have not modeled individual owners’ utili-
ty and AV acquisition decisions.) Hence, taking into
account utility of AV-owning individuals would pre-
sumably strengthen the conclusion of Proposition 6.

Table 1 in Section 1 summarizes our key analytical
results: Propositions 1–6. The structural effect of ac-
cess to AVs on agent welfare does not depend on who
owns AVs. In contrast, the structural effect of access
to AVs on platform profit and social welfare does de-
pend on AV ownership. Nonetheless, a common
theme that cuts across both ownership structures is
that if the relative price sensitivity of demand is less
than the relative wage sensitivity of labor, then access
to AVs increases platform profit and social welfare.
Even if the AV cost is high, such that access to AVs
harms agents, this harm is outweighed by the benefit
to platforms. A second theme that cuts across both
ownership structures is that if the AV cost is low, then
access to AVs increases social welfare. These themes
and results are illustrated in Figure 1, which depicts
the parameter regions in which access to AVs increases
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or decreases platform profit, agent welfare, and social
welfare.

4. Extensions
4.1. Nonlinear Platform AV Cost
This section extends the study in Section 3.1 of
platform-owned AVs by allowing the platform’s cost
of its AV fleet to be nonlinear in the fleet size. (Under
no access to AVs, platforms do not incur AV costs;
consequently, platform profit is Π0 � ri(0, 0) for
i ∈ {1, 2}:) Section 3.1 shows that access to platform-
owned AVs decreases platform profit, agent welfare,
and social welfare if the AV cost θ is high. This section
shows that this result is robust to the assumption that
the AV cost function is linear ck(Ki) � Ki. In particular,
similar results to Propositions 1–3 hold when the AV
cost function has a general form, provided that two
conditions hold. There exists a single symmetric equi-
librium AV fleet size K∗, and the equilibrium AV fleet
size K∗ decreases in the AV cost θ. The latter restric-
tion is mild, as it reflects the natural relationship be-
tween marginal cost and investment. The former is a
common requirement in symmetric settings for analy-
sis to proceed. These two conditions are formalized in
Assumption 1.

Assumption 1. There exists exactly one symmetric equi-
librium AV fleet size, K∗

i � K∗
j � K∗. Further, if K∗ > 0, then

(d=dθ)K∗ < 0.

Note that Assumption 1 allows for ck(0) > 0, which
can be interpreted as the fixed cost incurred by the
platform in developing AV technology and produc-
tion capability. (A platform might incur minimal fixed
costs if it was to lease or purchase AVs from a third
party that bore the fixed technology development and
production costs.)

Next, we present a result that shows that Assump-
tion 1 is not especially onerous. Let ¯̄Ki �max{Ki :

Di(p∗(K)) ≥ Ki}. Note ¯̄Ki depends on Kj where j≠ i; a
closed form expression is given immediately before
Lemma A.4 in the appendix. We generalize the defini-
tion θm � limK1↓0limK2↓0[(∂=∂K1)r1(K)=(∂=∂K1)ck(K1)]
to reflect the generalized AV cost function ck(·); note
that K∗ > 0 if and only if θ < θm.

Lemma 3. Suppose the AV cost function ck(K) is strictly
increasing and twice differentiable, with (∂=∂K)ck(K)|K�0 > 0.
Then, Assumption 1 holds if (i) ck(K) is weakly convex or

(ii) ck(K) is concave and for any Kj ≥ 0 and Ki ∈ (0, ¯̄Ki),
ck(K) satisfies

(∂2=∂K2
i )ck(Ki)=[(∂=∂Ki)ck(Ki)|Ki�0]

> [(∂2=∂K2
i )ri(K)-(∂2=∂Ki∂Kj)ri(K)]=[(∂=∂Ki)ri(K)|(Ki,Kj)�(0,0)]:

(10)

Inequality (10) can be interpreted as requiring the AV
cost function to not be “too concave.”

Proposition 7 establishes that notable structural re-
sults regarding the impact of access to platform-
owned AVs continue to hold when the assumption
that the AV cost function is linear is replaced with
Assumption 1.

Proposition 7. Suppose Assumption 1 holds. There exist
θ̄ ≥ 0, θ̃ ≥ 0, andθ̂ ≥ 0 such that access to platform-owned
AVs

i. decreases platform profit ΠP <Π0 if the AV cost is high
θ ∈ (θ̄,θm);

ii. decreases agent welfare AWP < AW0 if and only if the
AV cost is high θ ∈ (θ̃,θm); and

iii. decreases social welfare SWP < SW0 if the AV cost is
high θ ∈ (θ̂,θm).

Figure 1. Impact of Access to AVs on Platform Profit, AgentWelfare, and Social Welfare

Notes. Each performance measure increases unless stated otherwise (for example, in the region marked “Agent welfare decreases,” platform
profit and social welfare increase). The left panel depicts the impact of access to platform-owned AVs, and the right panel depicts the impact of
access to individually owned AVs. Parameters are α � β � bl � 1 and gl � 0:5. Hence, the relative wage sensitivity of labor gl=bl � 0:5.
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Further, both θ̄ < θm and θ̂ < θm if γ=β > gl=bl, and
θ̃ < θm if and only if γ=β < gl=bl.

Regarding the impact of access to platform-owned
AVs on agent welfare, Proposition 7(ii) shows that
Proposition 2 extends without modification when the
assumption that the AV cost function is linear is re-
laxed. Regarding platform profit, Proposition 7(i)
shows that Proposition 1’s sufficient condition for ac-
cess to AVs to reduce platform profit continues to
hold. Consequently, the divergence in results across
ownership structures persists; if the AV cost is high
(more precisely, the platform-owned AV cost θ ∈
(θ̄,θm) and the individually owned AV cost φ > φ̄),
then access to platform-owned AVs decreases plat-
form profit, but access to individually owned AVs in-
creases platform profit. Similarly, regarding social
welfare, Proposition 7(iii) shows that Proposition 3’s
sufficient condition for access to AVs to reduce social
welfare continues to hold. Consequently, the diver-
gence in results across ownership structures persists;
access to high-cost platform-owned AVs decreases so-
cial welfare, whereas access to individually owned
AVs increases social welfare.

4.2. Platform-Owned and Individually Owned AVs
This section extends Section 3.1’s study of platform-
owned AVs and Section 3.2’s study of individually
owned AVs by considering the setting in which AVs
are owned by platforms and individuals. More pre-
cisely, we consider the impact of access to platform-
owned and individually owned AVs on equilibrium
platform profit, agent welfare, and social welfare. For
the first two of these performance measures, Sections
3.1 and 3.2 provide conditions under which access to
AVs owned by one type of entity (platforms or indi-
viduals) decreases that performance measure. This
section shows that those conditions are sufficient for
access to AVs owned by both types of entities to de-
crease that performance measure. Further, this section
shows that the conditions for platform-owned AVs to
decrease social welfare, when suitably adapted, are
sufficient for access to AVs owned by both types of
entities to decrease social welfare.

It is straightforward to generalize the argument in
Section 3.1 to establish that for each individually owned
AV cost φ <∞, there exists a unique, symmetric equilib-
rium AV fleet K∗ and a threshold θm(φ) such that K∗ > 0
if and only if the platform-owned AV cost θ < θm(φ).
We say that platforms have access to platform-owned and
individually owned AVs when the individually owned
AV cost φ <∞ and the platform-owned AV cost θ ∈
[0,θm(φ)): Let ΠM, AWM, and SWM denote the equilib-
rium platform profit, agent welfare, and social welfare
under access to platform-owned and individually owned
AVs.

Proposition 8. There exist φ̄ ≥ 0, φ̃ ≥ 0, and φ̂ ≥ 0 such
that

i. for each φ < φ̄, there exists θ̄ < θm(φ) such that access
to platform-owned and individually owned AVs decreases
platform profit ΠM <Π0 if and only if the platform-owned
AV cost is high θ ∈ (θ̄,θm(φ));

ii. for each φ > φ̃, there exists θ̄ < θm(φ) such that access
to platform-owned and individually owned AVs decreases
agent welfare AWM < AW0 if and only if the platform-
owned AV cost is high θ ∈ (θ̄,θm(φ)); and

iii. for each φ > φ̂, there exist θ < θm(φ) and θ̄ > θ such
that access to platform-owned and individually owned AVs
decreases social welfare SWM < SW0 if and only if the
platform-owned AV cost is moderate θ ∈ (θ, θ̄).

Further, φ̄ > 0 if γ=β > η, φ̃ <∞ if γ=β < gl=bl, and
φ̂ <∞ if γ=β > gl=bl.

Proposition 1 shows that access to platform-owned
AVs decreases platform profit if the platform-owned
AV cost θ is high, and Proposition 4 shows that access
to individually owned AVs decreases platform profit
if the individually owned AV cost φ is low. Proposi-
tion 8(i) shows that access to platform-owned and in-
dividually owned AVs decreases platform profit if
both of the aforementioned cost conditions hold.

Proposition 2 shows that access to platform-owned
AVs decreases agent welfare if the platform-owned
AV cost is high, and Proposition 5 shows that access
to individually owned AVs decreases agent welfare if
the individually owned AV cost is high. Proposition
8(ii) shows that access to platform-owned and indi-
vidually owned AVs decreases agent welfare if both
of the aforementioned cost conditions hold.

Proposition 3 shows that access to platform-owned
AVs decreases social welfare if and only if the
platform-owned AV cost is high. Proposition 8(iii)
shows that the necessary and sufficient condition for
access to platform-owned and individually owned
AVs to decrease social welfare is similar, provided
that the individually owned AV cost is high. The con-
dition differs in that when the platform-owned AV
cost is very high θ > θ̄, access to platform-owned and
individually owned AVs increases social welfare. The
intuition behind this divergence stems from Proposi-
tion 6, which shows that access to individually owned
AVs increases social welfare. It follows that when the
platform-owned AV cost is very high, the presence of
individually owned AVs (and their positive impact on
social welfare) dominates.

4.3. Competition over Individually Owned AVs
For consistency, Sections 3.1 and 3.2 both consider a
common structure for the AV supply market; each
platform has access to a pool of AVs that exclusively
serves that platform’s customers. Hence, comparing
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the results in the two sections illuminates how the
structure of AV ownership affects the impact of access to
AVs on platforms and agents.

This section extends Section 3.2’s study of individu-
ally owned AVs by considering an alternative market
structure: competition over AVs. Such competition
occurs when individually owned AVs possess the
technology to interface with each platform and its cus-
tomers. This section shows that the structure of how
access to AVs affects agent welfare is unaffected by
this alternative market structure. In contrast, the struc-
ture of how access to AVs affects platform profit, and
social welfare is sensitive to the structure of the AV
supply market.

Competition in the individually owned AV market
corresponds to gv > 0: Because the AV cost φ � 1=bv,
the restriction that bv > gv implies that φ < φm, where
φm � 1=gv: In other words, parallel to the setting with
platform-owned AVs, the platforms have access to in-
dividually owned AVs if and only if the AV cost φ ∈
(0,φm): (In Section 3.2’s setting with no competition
over AVs (gv � 0), φm �∞:)

Proposition 9. Suppose there is competition in the indi-
vidually owned AV market gv > 0. There exist φ̄ ≥ 0,
φ̃ ≥ 0, and φ̂ ≥ 0 such that access to individually owned
AVs

i. decreases platform profit ΠI <Π0 if the AV cost is high
φ ∈ (φ̄,φm);

ii. decreases agent welfare AWI < AW0 if and only if the
AV cost is high φ ∈ (φ̃,φm); and

iii. decreases social welfare SWI < SW0 if the AV cost is
high φ ∈ (φ̂,φm).

Further, both φ̄ < φm and φ̂ < φm if γ=β > gl=bl, and
φ̃ < φm if and only if γ=β < gl=bl.

Regarding the impact of access to AVs on agent
welfare, Proposition 9(ii) shows that Proposition 5 ex-
tends without modification when the assumption that
there is no competition in the individually owned AV
market is relaxed. Across both AV market structures,
the effect of access to AVs is to displace workers to
their detriment and to the benefit of consumers. Al-
though the nature of competition over supply is dif-
ferent under the two market structures, the nature of
how consumers and workers are affected by AVs is
not affected by the AV market structure.

In contrast, Proposition 9, (i) and (iii) contrasts with
Propositions 4 and 6; the structural conditions under
which access to individually owned AVs decrease
platform profit and social welfare are sensitive to the
presence of competition in the individually owned
AV market. Competition in the individually owned
AV market drives up the marginal cost of supply, di-
rectly and adversely affecting the platforms. This ex-
pands the parameter regime where platform profit

(and hence, social welfare) is pushed down by access
to AVs.

5. Discussion
This paper characterizes the conditions under which
ride-hailing platforms’ access to AVs benefits or
harms the most affected constituencies: platforms and
the humans who participate on the platform—rider-
consumers and driver-workers. These conditions de-
pend almost exclusively on three key quantities: the
AV cost, the relative price sensitivity of demand, and
the relative wage sensitivity of labor (see Table 1).
These results suggest prescriptions for platforms and
advocates concerned for humans who participate on
the platforms, prescriptions that will become more ac-
tionable after aspects of AV technology (e.g., its cost)
come into clearer view.

Suppose the relative price sensitivity of demand is
less than relative wage sensitivity of labor. Then, ac-
cess to AVs (1) increases platform profit and social
welfare and (2) increases agent welfare if and only if
the AV cost is low. The first result suggests platforms
should push regulators to make decisions that ease
platforms’ access to AVs and that they could argue
that such access benefits society as whole. The impli-
cation of the second result for advocates concerned for
humans that participate on the platform is more sub-
tle. If the AV cost is low, these advocates should en-
courage regulators to make decisions that ease access
to AVs. If the AV cost is high, these advocates could
lobby regulators to block platforms’ access to AVs. If
the advocates deem such efforts unlikely to succeed,
they could take the opposite tack, lobbying regulators
to take actions that would reduce the cost of AVs.
These prescriptions do not depend on the AV owner-
ship structure.

This last conclusion is reversed if the relative price
sensitivity of demand is notably greater than relative
wage sensitivity of labor. In that case, (1) access to
platform-owned AVs increases platform profit and so-
cial welfare if and only if the AV cost is low, and (2)
access to individually owned AVs increases platform
profit if and only if the AV cost is high and increases
social welfare. Thus, if the AV cost is high, platforms
should act in opposite ways depending on who owns
AVs. If it appears that platforms would own AVs,
they should push regulators to block platforms’ access
to AVs, and they could argue that doing so benefits
society as a whole. If it appears that individuals
would own AVs, platforms should do the opposite,
pushing regulators to make decisions that ease plat-
forms’ access to AVs, again arguing that this benefits
society. The AV cost being low reverses these pre-
scriptions for platforms. If the AV cost is low, plat-
forms may benefit by lobbying regulators to take
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actions that would increase the cost of individually
owned AVs. What drives the divergence in results
across the two ownership structures is that platform
ownership requires the platform to make a costly
commit ex ante to reduce its marginal cost ex post,
whereas under individually owned AVs, there is no
such commitment.

It is natural to expect that as technological innova-
tion advances, the AV cost will decrease over time.
Our static model suggests that the attitudes of
platforms and advocates concerned for human partici-
pants, accordingly, may change over time. For exam-
ple, if the relative price sensitivity of demand is less
than relative wage sensitivity of labor, then advocates
for human participants that oppose platforms’ access
to AVs when the initial cost of AVs is high would shift
to favoring AVs when the AV cost drops sufficiently.
Platform’s attitudes toward access to platform-owned
AVs would undergo a parallel evolution as the AV
cost decreases over time. In contrast, if the relative
price sensitivity of demand is notably greater than rel-
ative wage sensitivity of labor, then platforms that fa-
vor access to individually owned AVs when the initial
cost of AVs is high would shift to opposing AVs when
the AV cost drops sufficiently.

We have assumed that consumers are indifferent to
whether their transportation is provided by a human
driver or an AV. To the extent that consumers develop
strong preferences between these transportation modes
(e.g., because of perceived health or safety risks), it
may be fruitful to incorporate these preferences.

We have assumed that the platforms are powerful
in that in deploying AVs, either the platform decides
the size of its AV fleet (under platform ownership) or
engages with AV owners that lack market power (un-
der individual ownership). However, a platform
might negotiate with owners of large AV fleets to put
their AVs on the platform’s network. In contrast to the
relatively simple arms-length financial transactions
between a ride-hailing platform and an individual AV
owner, the structure of the financial arrangement be-
tween a platform and an owner of a large fleet might
be quite complex, specifying when and how many
AVs the fleet owner would make available, how the
platform would allocate consumer requests to the fleet
owner’s AVs versus other vehicles, fixed payments,
revenue-dependent payments, etc. As AV technology
develops and the manner in which AVs integrate with
and/or compete against ride-hailing platforms comes
into sharper focus, future research opportunities should
abound.

Appendix A. Proof of Lemma 1
Before proving Lemma 1, we establish several supporting
results. Lemmas A.1 and A.2 provide the best response

and equilibrium prices and wages for both platforms un-
der any AV fleets K � (K1,K2), respectively; Lemmas
A.3–A.5 are technical results; and Lemmas A.6 establishes
that only one symmetric equilibrium exists in the more
general case where platform i’s cost of AV fleet Ki is
θck(Ki) for i ∈ {1, 2}, where ck(·) is weakly convex and
strictly increasing. The proof of Lemma 1 follows immedi-
ately after Lemma A.6.
We begin by considering the platforms’ price and wage

decisions, for a given platform of AV fleets K. Note that
bv � gv � 0 and wv,i � 0 for i ∈ {1, 2} when platforms own
AV; for brevity, we drop the last argument from
ui(p,wl,wv) and the subscript l from bl, gl, wl,1, and wl,2.
We say that a platform i sources labor if Li(w) > 0: If plat-
form i’s price is low pi < (α+ γpj −Ki)=β, then its demand
exceeds its AV fleet Di(p) > Ki, which implies the platform
sources labor to satisfy the demand unmet by its AV fleet
Li(w) �Di(p) −Ki > 0; this implies the platform’s wage
wi � [Di(p) −Ki + gwj]=b: In this case, platform i’s second-
period contribution is

ul(p,wj) � piDi(p) − [(Di(p) −Ki + gwj)=b][Di(p) −Ki]:
If platform 1’s price is high pi ≥ (α+ γpj −Ki)=β, then
Di(p) ≤ Ki, and the platform does not source labor Li(w) � 0.
In this case, platform i’s second-period contribution is

us(p) � piDi(p):
Thus, platform i’s second-period contribution is

ui(p,wj) � ul(p,wj) if pi < (α+ γpj −Ki)=β
us(p) if pi ≥ (α+ γpj −Ki)=β,

{
(A.1)

where the argument wi is eliminated. Next, let p̃li(Ki) � [(α+
γpj)(2β+ b) − 2βKi + βgwj]=[2β(β+ b)], p̃ei (Ki) � (α+ γpj −Ki)=
β, p̃si (Ki) � (α+ γpj)=(2β), w̃l

i(Ki) � [(α+ γpj − 2Ki)b+ (β+ 2b)
gwj]=[2(β+ b)b], w̃e

i (Ki) � w̃s
i (Ki) � gwj=b. The superscript l is

mnemonic for sourcing labor, s for slack AV capacity, and e
for equating AV fleet with demand.

Lemma A.1. Under AV fleet Ki, platform i’s best response
price and wage to platform j’s price and wage (pj,wj) is
(p̃i(Ki), w̃i(Ki))

�
(p̃li(Ki), w̃l

i(Ki)) if Ki < (α+γpj − gβwj=b)=2,
(p̃ei (Ki), w̃e

i (Ki)) if Ki ∈ [(α+γpj − gβwj=b)=2, (α+γpj)=2],
(p̃si (Ki), w̃s

i (Ki)) if Ki > (α+γpj)=2:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Further, Ki <Di(p̃i(Ki),pj) if and only if Ki < (α+ γpj −
gβwj=b)=2; Ki �Di(p̃i(Ki),pj) if and only if Ki ∈ [(α+ γpj −
gβwj=b)=2, (α+ γpj)=2]; and Ki >Di(p̃i(Ki),pj) if and only if
Ki > (α+ γpj)=2:

Proof of Lemma A.1. It is straightforward to show that
platform i’s second-period contribution ui(p,wj), as given
in (A.1), is strictly concave in pj: Further, limpi↑p̃e

i (Ki) (∂=∂pi)
ui(p,wj) > limpi↓p̃e

i (Ki)(∂=∂pi)ui(p,wj): If Ki < (α+ γpj −gβwj=

b)=2, then limpi↑p̃e
i (Ki)(∂=∂pi)ui(p,wj) < 0, and platform i’s

best response price is the unique solution to the first-order
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condition (∂=∂pi)ul(p,wj) � 0, namely pi � p̃li(Ki); further,
Ki <Di(p̃li(Ki),pj). If Ki ∈ [(α+ γpj − gβwj=b)=2, (α+ γpj)=2],
then limpi↓p̃e

i (Ki)(∂=∂pi)ui(p,wj) < 0 < limpi↑p̃e
i (Ki)(∂=∂pi)ui(p,wj)

and platform i’s best response price pi � p̃ei (Ki); further,
Ki �Di(p̃ei (Ki),pj): If Ki > (α+ γpj)=2, then limpi↓p̃ e

i (Ki)(∂=
∂pi)ui(p,wj) > 0, and platform i’s best response price is the
unique solution to the first-order condition (∂=∂pi)us
(p,wj) � 0, namely pi � p̃si (Ki); further, Ki >Di(p̃si (Ki),pj). If
Ki < (α+ γpj − gβwj=b)=2, then platform i’s best response
price is sufficiently small that the platform sources labor
Li(w) > 0; thus, platform i’s best response wage is wi �
[Di(p̃li(Ki),pj) −Ki + gwj]=b � w̃l

i(Ki): If Ki ≥ (α+ γpj − gβwj=
b)=2, then platform i’s best response price is sufficiently
large that the platform does not source labor Li(w) � 0;
thus, platform i’s best response wage wi � gwj=b � w̃s

i (Ki) �
w̃e

i (Ki). w

Let (puv1 (K1),wuv
1 (K1),puv2 (K2),wuv

2 (K2)) denote the unique
solution to puv1 (K1) � p̃u1(K1), w̃uv

1 (K1) � w̃u
1(K1), puv2 (K2) � p̃v2

(K2) and w̃uv
2 (K2) � w̃v

2(K2), where {u,v} ∈ {e,l,s}2: Further, let
ψl
L �

(2βb+ γg)(γb− βg)
[β(β+ γ)(2b+ g) + b(2β+ γ)(b+ g)](b− g)

ψl
H � (4β2 − γ2)b(b2 − g2) + β(2β2 − γ2)(2b2 − g2) − β2γbg

β[β(β+ γ)(2b+ g) + b(2β+ γ)(b+ g)](b− g)
ψs
L �

βγ(2b2 − g2)
β(β+ γ)(2b2 − g2) + (2β+ γ)b(b2 − g2)

ψs
H � (4β2 − γ2)b(b2 − g2) + β(2β2 − γ2)(2b2 − g2)

β[β(β+ γ)(2b2 − g2) + b(2β+ γ)(b2 − g2)] :

In Lemma A.2(i), we assume, without loss of generality, that
K1 ≤ K2. This restriction implies that (2− γ=β)K1 ≤ ψs

LK1+
ψs
HK2 ≤ ψl

LK1 +ψl
HK2, where the inequalities are strict if and

only if K1 < K2. For use in Lemmas A.2 and A.4 and the
proof of Lemma A.6, define Ki � (α−ψl

HKj)=ψl
L if g=b > γ=β

and Ki � −∞ if g=b ≤ γ=β.

Lemma A.2. (i) Assume K1 ≤ K2. Under AV fleets K, the
equilibrium prices and wages are unique and given by
(p∗(K),w∗(K))

�

(pss1 (K1),pss2 (K2),wss
1 (K1),wss

2 (K2)) if α < (2−γ=β)K1,
(pes1 (K1),pes2 (K2),wes

1 (K1),wes
2 (K2)) if α � (2−γ=β)K1 andK1 < K2,

(pee1 (K1),pee2 (K2),wee
1 (K1),wee

2 (K2)) if α � (2−γ=β)K1 � (2− γ=β)K2,
(pls1 (K1),pls2 (K2),wls

1 (K1),wls
2 (K2)) if α ∈ ((2−γ=β)K1,ψs

LK1 +ψs
HK2),

(ple1 (K1),ple2 (K2),wle
1 (K1),wle

2 (K2)) if α ∈ [ψs
LK1 +ψs

HK2,ψl
LK1 +ψl

HK2],
(pll1(K1),pll2(K2),wll

1(K1),wll
2(K2)) if α > ψl

LK1 +ψl
HK2:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(ii) If K2 < α=(2− γ=β), then
(p∗(K),w∗(K))

�

(psl1 (K1),psl2 (K2),wsl
1 (K1),wsl

2 (K2)) if K1 > (α−ψs
LK2)=ψs

H

(pel1 (K1),pel2 (K2),wel
1 (K1),wel

2 (K2)) if (α−ψl
LK2)=ψl

H ≤ K1 ≤ (α−ψs
LK2)=ψs

H,

(pll1(K1),pll2(K2),wll
1(K1),wll

2(K2)) if K1 < K1 < (α-ψl
LK2)=ψl

H,

(ple1 (K1),ple2 (K2),wle
1 (K1),wle

2 (K2)) if K1 ≤ K1:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
If K2 � α=(2− γ=β), then
(p∗(K),w∗(K))

�
(pse1 (K1),pse2 (K2),wse

1 (K1),wse
2 (K2)) if K1 > α=(2− γ=β),

(pee1 (K1),pee2 (K2),wee
1 (K1),wee

2 (K2)) if K1 � α=(2− γ=β),
(plv1 (K1),plv2 (K2),wlv

1 (K1),wlv
2 (K2)) if K1 < α=(2-γ=β),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
where v � e if g=b ≥ γ=β and v � l if g=b < γ=β:

Proof of Lemma A.2. (i) Lemma A.1 implies that under
AV fleets K, prices and wages (p,w) � (pss(K),wss(K)) are
an equilibrium if and only if Ki >Di(pss(K)) for i ∈ {1, 2};
(p,w) � (pes(K),wes(K)) is an equilibrium if and only if
K1 �D1(pes(K)) and K2 >D2(pes(K)); (p,w) � (pee(K),
wee(K)) is an equilibrium if and only if Ki �Di(pee(K)) for
i ∈ {1, 2}; (p,w) � (pls(K),wls(K)) is an equilibrium if and
only if K1 <D1(pls(K)) and K2 >D2(pls(K)); (p,w) � (ple(K),
wle(K)) is an equilibrium if and only if K1 <D1(ple(K)) and
K2 �D2(ple(K)); and (p,w) � (pll(K),wll(K)) is an equilibri-
um if and only if Ki <Di(pll(K)) for i ∈ {1,2}. Further, it is
straightforward to verify Ki >Di(pss(K)), i ∈ {1,2} if and
only if α < (2− γ=β)K1; K1 �D1(pes(K)) and K2 >D2(pes(K))
if and only if α � (2− γ=β)K1 and K1 < K2; Ki �Di(pee(K))
for i ∈ {1,2} if and only if α � (2− γ=β)K1 � (2− γ=β)K2;
K1 <D1(pls(K)) and K2 >D2(pls(K)) if and only if α ∈ ((2
−γ=β)K1,ψs

LK1 +ψs
HK2); K1 <D1(ple(K)) and K2 �D2(ple(K))

if and only if α ∈ [ψs
LK1 +ψs

HK2,ψl
LK1 +ψl

HK2]; and Ki <

Di(pll(K)), i ∈ {1,2} if and only if α > ψl
LK1 +ψl

HK2. (ii) By
interchanging indices in part (i), it is straightforward to
write (p∗(K),w∗(K)) in closed form for the case where K1 ≥
K2; we refer to this, along with part (i), as the extended
part (i). If K2 � α=(2− γ=β), then α � (ψu

L +ψu
H)K2 for u ∈

{l, s}; the result follows from the extended part (i). For the
remainder of the proof, suppose K2 < α=(2− γ=β): This im-
plies K2 < (α−ψs

uK2)=ψs
u for u ∈ {L,H}: If g=b > γ=β, then

ψl
L < 0 and (α−ψl

HK2)=ψl
L < K2 < (α−ψl

LK2)=ψl
H; the result

follows from the extended part (i). If g=b ≤ γ=β, then ψl
L ≥ 0.

Therefore, if K1 ≤ K2, then ψl
LK1 +ψl

HK2 ≤ (ψl
L +ψl

H) K2 < α,
where the last inequality holds because K2 < α=(2− γ=β): The
result follows from the extended part (i). w

Lemma A.3. If Di(p∗(K)) ≥ Ki and ri(K) is differentiable in
Ki at K, then (∂2=∂K2

i )ri(K) < (∂2=∂Ki∂Kj)ri(K) ≤ 0. If
Di(p∗(K)) < Ki, then (∂2=∂K2

i )ri(K) � (∂2=∂Ki∂Kj)ri(K) � 0:

Proof of Lemma A.3. Let i � 1 without loss of generality.
We prove the statements in order. First, if Di(p∗(K)) ≥ Ki,
then the price and wage equilibrium must be one of six
types: es, ee, el, ls, le, or ll. Using the expressions for the
equilibrium prices and wages (p∗(K),w∗(K)) in Lemma
A.2, ri(K) can be written in closed form for each of these
equilibrium types. For equilibrium types es, ee, el, ls, and
le, it can be verified algebraically that (∂2=∂K2

i )ri(K) <
(∂2=∂Ki∂Kj)ri(K) and (∂2=∂Ki∂Kj)ri(K) ≤ 0. For the ll-type
equilibrium, it is straightforward to verify algebraically
that (∂2=∂K2

i )ri(K) < (∂2=∂Ki∂Kj)ri(K), limγ→0(∂2=∂Ki∂Kj)
ri(K) < 0, and (∂3=∂Ki∂Kj∂γ)ri(K) < 0 for all γ ∈ [0,β); the
latter two imply that (∂2=∂Ki∂Kj)ri(K) ≤ 0: Second, if
Di(p∗(K)) < Ki, then the price and wage equilibrium must
be one of three types: ss, se, or sl. For each of these equi-
librium types, (∂=∂Ki)ri(K) � 0, which implies (∂2=∂K2

i )
ri(K) � (∂2=∂Ki∂Kj)ri(K) � 0: w

Let ¯̄Ki � (α−ψs
LKj)=ψs

H if Kj < α=(2− γ=β) and ¯̄Ki �
α=(2− γ=β) if Kj � α=(2− γ=β): Note ¯̄Ki ∈ (0,∞): In Lemmas
A.4–A.6, we consider a more general formulation where
platform i’s cost of AV fleet Ki is θck(Ki) for i ∈ {1, 2}; in
Section 2, ck(Ki) � Ki:
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Lemma A.4. Suppose the AV cost function ck(K) is weakly
convex and strictly increasing, and Kj ∈ [0,α=(2− γ=β)]. Then,
there exists g̃ > 0 such that the following statements hold for
g ∈ [0, g̃). Platform i’s profit Πi(K) is continuous and strictly
quasiconcave in Ki on Ki ∈ [0,∞); platform i’s best response
AV fleet to platform j’s AV fleet, K̃i(Kj), is unique; K̃i(Kj) ∈
[0, ¯̄Ki]; and K̃i(Kj)≠ Ki: Further, if γ � 0, then g̃ � b.

Proof of Lemma A.4. Because ck(Ki) is weakly convex
and strictly increasing, to establish that Πi(K) is con-
tinuous and strictly quasiconcave in Ki, it is sufficient

to show that ri(K) is strictly quasiconcave in Ki on Ki ∈
(0, ¯̄Ki), invariant to Ki on Ki ∈ [ ¯̄Ki,∞) and continuous in
Ki on Ki ∈ [0,∞): It is straightforward to verify the latter
two properties algebraically using the expressions for
(p∗,w∗) given in Lemma A.2(i). It remains to show that
there exists g̃ > 0 such that ri(K) is strictly quasiconcave

in Ki on Ki ∈ [0, ¯̄Ki): Let i � 1 without loss of generality.
First, suppose Kj � α=(2− γ=β): Using the expressions for
(p∗,w∗) given in Lemma A.2(ii), it is straightforward to

show that ri(K) is differentiable in Ki for Ki ∈ [0, ¯̄Ki):
Hence, (∂2=∂K2

i )ri(K) < 0 for Ki ∈ [0, ¯̄Ki) (by Lemma A.3).
Second, suppose Kj < α=(2− γ=β): By parallel argument,

(∂2=∂K2
i )ri(K) < 0 for Ki ∈ [0,max {0,Ki})⋃(max {0,Ki}, (α−

ψl
LKj)=ψl

H)
⋃(α−ψl

LKj)= Hl
ψ , ¯̄Ki): Using the expressions for

(p∗,w∗) given in Lemma A.2(ii), it is straightforward to
show the following: limg→0limKi↑(α−ψl

LKj)=ψl
H
(∂=∂Ki)ri(K) >

limg→0limKi↓(α−ψl
LKj)=ψl

H
(∂=∂Ki)ri(K); if g=b > γ=β, then

limg→0limKi↑Ki (∂=∂Ki)ri(K) < 0 and limg→0limKi↓Ki (∂=∂Ki)
ri(K) < 0: The former implies that there exists g̃x > 0 such

that ri(K) is strictly quasiconcave in Ki for Ki ∈
(max (0,Ki), ¯̄Ki) for g ∈ [0, g̃x): The latter implies that if
g=b > γ=β, then there exists g̃y > 0 such that
limKi↑Ki (∂=∂Ki)ri(K) < 0 and limKi↓Ki (∂=∂Ki)ri(K) < 0 for g ∈
[0, g̃y): This implies that ri(K) is strictly quasiconcave in
Ki for Ki ∈ (0,α−ψl

LKj)=ψl
H) and K̃i(Kj)≠ Ki for g ∈ [0, g̃y):

Thus, ri(K) is strictly quasiconcave in Ki on Ki ∈ (0, ¯̄Ki) for
g ∈ [0, g̃), where g̃ �min {g̃x, g̃y}: In the special case where
γ � 0, it is straightforward to show by parallel argument
to that shown here that g̃x � g̃y � g̃ � b. Uniqueness of the
best response K̃i(Kj) follows from strict quasiconcavity of
Πi(K) in Ki on Ki ∈ [0,∞). Because ri(K) is invariant to Ki

on Ki ∈ [ ¯̄Ki,∞), Πi(K) is strictly decreasing in Ki on Ki ∈
[ ¯̄Ki,∞): This implies K̃i(Kj) ∈ [0, ¯̄Ki]: w

Lemma A.5. Suppose the AV cost function ck(K) is strictly
increasing. If K∗

1 � K∗
2 � K∗ is a symmetric equilibrium, then

K∗ < α=(2− γ=β) and (p∗,w∗) � (pll(K∗,K∗),wll(K∗,K∗)).
Proof of Lemma A.5. Let K

◦
i (Kj) �max {K : K̃i(Kj) � K},

where K̃i(Kj) denotes platform i’s best response AV fleet
to platform j’s AV fleet; in words, K

◦
i (Kj) denotes platform

i’s largest best response. To establish that a symmetric
equilibrium cannot have K∗ ≥ α=(2− γ=β), it is sufficient to
show that K

◦
i (Kj) < Kj when Kj ≥ α=(2− γ=β): Suppose Kj ≥

α=(2− γ=β): Using the expressions for (p∗,w∗) given in

Lemma A.2(i), it is straightforward to verify that ri(K) is
invariant to Ki on Ki ∈ [α=(2− γ=β),∞): Therefore, because
ck(Ki) is strictly increasing, Πi(K) is strictly decreasing in
Ki on Ki ∈ [α=(2− γ=β),∞): Therefore, K

◦
i (Kj) ≤ α=(2− γ=β).

Hence, if Kj > α=(2− γ=β), K
◦
i (Kj) < Kj: Suppose instead

that Kj � α=(2− γ=β): Using the expressions for (p∗,w∗)
given in Lemma A.2(ii), it is straightforward to verify that
limKi↑α=(2−γ=β)(∂=∂Ki)ri(K) ≤ 0. Because θ > 0 and ck(Ki) is
strictly increasing, limKi↑α=(2−γ=β)(∂=∂Ki)Πi(K) < 0: Conse-
quently, it cannot be that K̃i(Kj) � α=(2− γ=β) is a best re-
sponse for platform i. Hence, K

◦
i (Kj) < Kj when Kj ≥

α=(2− γ=β): Because ψl
L +ψl

H � 2− γ=β, K∗
i < α=(2− γ=β) for

i ∈ {1, 2} implies α > ψl
LK

∗
1 +ψl

HK
∗
2, which by Lemma A.2(i),

implies (p∗,w∗) � (pll(K∗,K∗),wll(K∗,K∗)). w

Lemma A.6. Suppose the AV cost function ck(K) is weakly
convex and strictly increasing. There exists g̃ > 0 such that if
g < g̃, then only one symmetric equilibrium, K∗

1 � K∗
2 � K∗,

exists.

Proof of Lemma A.6. We refer to Ki ∈ [0,α=(2− γ=β)] for
i ∈ {1, 2} as the truncated strategy space and Ki ∈ [0,∞) for
i ∈ {1, 2} as the full strategy space. The proof proceeds in
three steps. First, we show that there exists only one equi-
librium on the truncated strategy space and that it is
symmetric. We denote this equilibrium by Kt

1 � Kt
2 � Kt.

Second, we show that Kt is also an equilibrium on the full
strategy space. Third, we show that Kt is the only sym-
metric equilibrium on the full strategy space.

Step 1. Because the game is symmetric, the truncated strate-
gy space Ki ∈ [0,α=(2− γ=β)] is compact and convex for
i ∈ {1, 2}, and the profit functions Πi(K) are continuous and
quasiconcave in Ki on Ki ∈ [0,α=(2− γ=β)] for i ∈ {1, 2} (from
Lemma A.4), there exists at least one symmetric equilibrium,
Kt, on the truncated strategy space (Cachon and Netessine
2004). Next, we show that Kt is the only equilibrium on the
truncated strategy space. By Lemma A.4, K̃i(Kj) is unique for
Kj ∈ [0,α=(2− γ=β)]. It follows from Berge’s maximum theo-
rem that the best response K̃i(Kj) is continuous in Kj on Kj ∈
[0,α=(2− γ=β)] for i ∈ {1, 2}. Because an equilibrium exists on
the truncated strategy space, to prove uniqueness, it suffices
to show that the magnitudes of the slopes of the best response
functions are strictly less than one everywhere on the truncat-
ed strategy space (Cachon and Netessine 2004). Because the
platforms are symmetric and because K̃i(Kj) is continuous in
Kj on Kj ∈ [0,α=(2− γ=β)], it is sufficient to show that |
(d=dKj)K̃i(Kj) |< 1 for Kj ∈ (0,α=(2− γ=β)). First, consider the
case where (∂2=∂Ki∂Kj)Πi(K) exists at K � (K̃i(Kj),Kj). Note
that if (∂=∂Ki)Πi(K)|Ki�α=(2−γ=β) > 0, then by quasiconcavity of
Πi(K) in Ki, the best response on the truncated strategy space
is K̃i(Kj) � α=(2− γ=β). In this case, (d=dKj)K̃i(Kj) � 0, and
thus, | (d=dKj)K̃i(Kj) |< 1 holds immediately. If (∂=∂Ki)
Πi(K)|Ki�α=(2−γ=β) ≤ 0, then the best response K̃i(Kj) on Ki ∈
[0,α=(2− γ=β)] is given by the solution to (∂=∂Ki)Πi(K) � 0.
Because K̃i(Kj) is continuous and K̃i(Kj) is the solution to
(∂=∂Ki)Πi(K) � 0, we may apply the implicit function theo-
rem to obtain | (d=dKj)K̃i(Kj) |�| [(∂2=∂Ki∂Kj)ri(K)]= [(∂2=∂K2

i )
ri(K) −θ(∂2=∂K2

i )ck (Ki)]Ki�K̃ i(Kj) |. Next, because θ > 0, note
that Di(p∗(K̃i(Kj),Kj)) < K̃i(Kj) cannot hold at a best response
K̃i(Kj). It follows that Di(p∗(K̃i(Kj),Kj)) ≥ K̃i(Kj): Therefore,

Siddiq and Taylor: Ride-Hailing Platforms: Competition and Autonomous Vehicles
Manufacturing & Service Operations Management, 2022, vol. 24, no. 3, pp. 1511–1528, © 2022 INFORMS 1525



| (d=dKj)K̃i(Kj) |≤| [(∂2=∂Ki∂Kj)ri(K)]=[(∂2= ∂K2
i )ri(K)]Ki�K̃ i(Kj) |

< 1, where the first inequality follows because ck(·) is weakly
convex, and the second inequality follows from Lemma A.3
because the existence of (∂2=∂Ki∂Kj)Πi(K) at K � (K̃i(Kj),Kj)
implies ri(K) is differentiable in Ki at K � (K̃i(Kj),Kj) and
because Di(p∗(K̃i(Kj),Kj)) ≥ K̃i(Kj). Therefore, if (∂2=∂Ki∂Kj)
Πi(K) exists at K � (K̃i(Kj),Kj), | (d=dKj)K̃i(Kj) |< 1: Second,
consider the case where (∂2=∂Ki∂Kj)Πi(K) does not exist at
K � (K̃i(Kj),Kj). By Lemma A.2(ii), this can only occur if
K̃i(Kj) � (α−ψu

LKj)=ψu
H for u ∈ {s, l} or if K̃i(Kj) � Ki. By Lem-

ma A.4, K̃i(Kj)≠ Ki: If K̃i(Kj) � (α−ψu
LKj)=ψu

H, then |
(d=dKj)K̃i(Kj) |� ψu

L=ψ
u
H < 1 for u ∈ {s, l}, where the inequality

follows by straightforward algebra. It follows that Kt
1 � Kt

2 �
Kt is the unique equilibrium on the truncated strategy space.

Step 2. By definition, Kt � argmaxKi∈[0,α=(2−γ=β))Πi(K)|Kj�Kt

for i ∈ {1, 2}. By Lemma A.4, Πi(K) is quasiconcave in Ki on
Ki ∈ [0,∞) for Kj ∈ [0,α=(2− γ=β)] and i ∈ {1, 2}. Because
Kt ∈ [0,α=(2− γ=β)], it follows that Kt � argmaxKi∈[0,∞)
Πi(K)|Kj�Kt for i ∈ {1,2}, which implies K̃i(Kt) � Kt for
i ∈ {1, 2}. Therefore, Kt

1 � Kt
2 � Kt is also an equilibrium on the

full strategy space.
Step 3. Suppose that in addition to Kt, there exists a second

symmetric equilibrium on the full strategy space, Ka
1 � Ka

2
� Ka. By Lemma A.5, it must be that Ka ∈ [0,α=(2− γ=β)).
However, this contradicts the result in the first step of this
proof that Kt is the unique equilibrium on the truncated strat-
egy space Ki ∈ [0,α=(2− γ=β)] for i ∈ {1, 2}. We conclude that
K∗ � Kt is the only symmetric equilibrium on the full strategy
space. w

Proof of Lemma 1. Lemma A.2 establishes uniqueness of
the equilibrium price and wage for any K � (K1,K2). By
Lemma A.6, for any weakly convex and strictly increasing
ck(K), there exists g̃ > 0 such that if g < g̃, then exactly one
symmetric equilibrium exists. The result follows because
the AV cost function ck(K) � K. w

Appendix B. Proofs for Platform-Owned AVs
Lemma B.1 deals with the general formulation where
platform i’s cost of AV fleet Ki is θck(Ki) for i ∈ {1, 2}; in
Section 2, ck(Ki) � Ki: We generalize the definition θm �
limK1↓0limK2↓0[(∂=∂K1)r1(K)=(∂=∂K1)ck(K1)] to reflect the
generalized AV cost function ck(·); note that K∗ > 0 if
and only if θ < θm. The proofs of Lemma B.2 and Prop-
ositions 1 and 3 are stated in terms of ck(K), where
ck(K) � K:

Lemma B.1. Suppose the AV cost function ck(K) is weakly con-
vex and strictly increasing. If K∗ > 0, then (d=dθ)K∗ < 0. Further,
if AV cost function is linear, ck(K) � K, then (d2=dθ2) K∗ � 0.

Proof of Lemma B.1. First, suppose ck(K) is weakly con-
vex and strictly increasing; we will show that (d=dθ)K∗ <
0: Let A(Ki,Kj) � (∂2=∂Kj∂θ)Πj(∂2=∂Ki∂Kj)Πi − (∂2=∂Ki∂θ)
Πi(∂2=∂K2

j )Πj and B(Ki,Kj) � (∂2=∂K2
i )Πi(∂2=∂K2

j )Πj −(∂2=
∂Ki∂Kj)Πj(∂2=∂Kj∂Ki)Πi: It follows immediately from the
analysis in Dixit (1986) that (d=dθ)K∗

i �A(K∗
i ,K

∗
j )= B(K∗

i ,K
∗
j ).

It suffices to show that B(K∗
i ,K

∗
j ) > 0 and A(K∗

i ,K
∗
j ) < 0. It

follows from Lemma A.3 that B(K∗
i ,K

∗
j ) > 0. Next, we show

A(K∗
i ,K

∗
j ) < 0. By symmetry, (∂2=∂Ki∂θ)Πi � (∂2= ∂Kj∂θ)Πj,

(∂2=∂K2
i )Πi � (∂2=∂K2

j )Πj, and (∂2=∂Ki∂Kj)Πi � (∂2= ∂Ki∂Kj)
Πj. Then, through straightforward substitution and factor-
ing, A(K∗

i ,K
∗
j ) � (∂=∂Kj∂θ)[(∂2=∂Ki∂Kj)Πi − (∂2=∂K2

j ) Πj] and
B(K∗

i ,K
∗
j ) � [(∂2=∂K2

j )Πj + (∂2=∂Ki∂Kj) Πi] · [(∂2=∂K2
j )Πj − (∂2=

∂Ki∂Kj)Πi]. Therefore, (d=dθ)K∗ �A(K∗,K∗)= B(K∗,K∗) �
−[(∂2=∂Kj∂θ) Πj]=[(∂2=∂K2

j )Πj + (∂2=∂Ki∂Kj)Πi]. Note (∂2=
∂Kj∂θ)Πj � −(∂=∂Kj)ck(Kj) < 0 because ck(Kj) is strictly in-
creasing, and (∂2=∂K2

j )Πj + (∂2=∂Ki∂Kj) Πi < 0 by Lemma
A.3. Therefore, (d=dθ)K∗ < 0. Second, suppose ck(K) � K;
we will show (d2=dθ2)K∗ � 0: Note ck(K) � K implies
(∂2=∂K2)ck(K) � 0. Therefore, A(K∗

i ,K
∗
j ) and B(K∗

i ,K
∗
j ) are

both invariant to θ. It follows that (d=dθ)K∗ is invariant to
θ, and thus, (d2=dθ2)K∗ � 0. w

For use in Lemma B.2 and the proofs of Propositions 1
and 3, let π(θ) �Π1(K∗(θ),K∗(θ)) and sw(θ) � SW(K∗(θ),
K∗(θ)) be equilibrium platform profit and social welfare,
respectively, under AV cost θ.

Lemma B.2. (i) Equilibrium profit π(θ) is strictly convex in
θ on θ ∈ (0,θm). (ii) Equilibrium social welfare sw(θ) is strictly
convex in θ on θ ∈ (0,θm).

Proof of Lemma B.2. (i) We denote the AV cost function
as ck(K), where ck(K) � K: Note (d2=dθ2)π(θ) � (d2=dθ2)
K∗(θ)(∂=∂K)Π1(K,K) + (d=dθ)K∗(θ)[(d=dθ)K∗(θ)(∂2=∂K2) Π1

(K,K) + 2(∂2=∂K∂θ)Π1(K,K)] + (∂2=∂θ2)Π1(K,K). Note (∂2=
∂θ2)Π1(K,K) � 0 and (∂2=∂K∂θ)Π1(K,K) � −(∂=∂K)ck(K).
Further, because ck(K) � K, (d2=dθ2)K∗(θ) � 0 (by Lemma
B.1). By simplifying, (d2=dθ2)π(θ) � (d=dθ)K∗(θ)[(d=dθ)
K∗(θ)(∂2=∂K2)Π1(K,K) − 2(∂=∂K)ck(K)]. Because (d=dθ)K∗(θ)
< 0 (by Lemma B.1), it suffices to show (d=dθ)K∗(θ)
(∂2=∂K2)Π1(K,K) − 2(∂=∂K)ck(K) < 0: Note (d=dθ)K∗(θ) �
(∂=∂K)ck(K)=[(∂2=∂K2

1)Π1(K) + (∂2=∂K1∂K2)Π1(K)] from the
proof of Lemma B.1. Substituting this expression for
(d=dθ)K∗(θ) into the preceding inequality and simplifying,
it remains to show that (∂2=∂K2)Π1(K,K)=[(∂2=∂K2

1)Π1(K)
+(∂2=∂K1∂K2)Π1(K)] < 2. Note

(∂2=∂K2)Π1(K,K)={(∂2=∂K2
1)Π1(K) + (∂2=∂K1∂K2)Π1(K)}

� (∂2=∂K2)[r1(K,K) −θck(K)]={(∂2=∂K2
1)[r1(K) −θck(K1)]

+ (∂2=∂K1∂K2)r1(K)}
� (∂2=∂K2)r1(K,K)={(∂2=∂K2

1)r1(K) + (∂2=∂K1∂K2)r1(K)}
< 2,

where the second equality follows from (∂2=∂K2)ck(K) � 0,
and the inequality can be verified algebraically.
(ii) Because sw(θ) � 2π(θ) +AW(K∗(θ),K∗(θ)) and

(d2=dθ2)π(θ) > 0 (by part (i)), it suffices to show (d2=dθ2)
AW(K∗(θ),K∗(θ)) > 0 for θ ∈ (0,θm). Note (d2=dθ2)
AW(K∗(θ),K∗(θ)) � (d2=dθ2)K∗(θ)(∂=∂K)AW(K,K) + [(d=dθ)
K∗(θ)]2(∂2=∂K2)AW(K,K) � [(d=dθ)K∗(θ)]2(∂2=∂K2)AW(K,K),
where the second equality follows because (d2=dθ2)K∗(θ) �
0 (by Lemma B.1). It can be shown algebraically that
(∂2=∂K2)AW(K,K) > 0. The result follows because (d=dθ)
K∗(θ) < 0 for θ ∈ (0,θm) (by Lemma B.1). w
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Proof of Proposition 1. The proof proceeds in two steps.
First, we show that limθ↑θm (d=dθ)π(θ) > 0 if and only if
γ=β > gl=bl. Second, we prove the main result.

Step 1. We denote the AV cost function as ck(K), where
ck(K) � K: Note limθ↑θm (d=dθ)π(θ) � limθ↑θm [(∂=∂K)Π1

(K∗,K∗)(d=dθ)K∗(θ) +(∂=∂θ)π(θ)]. Because (d=dθ)K∗(θ) < 0
(by Lemma B.1) and limθ↑θm (∂=∂θ)π(θ) � −ck(K)|K�0 �
0, limθ↑θm (d=dθ)π(θ) > 0 if and only if limθ↑θm (∂=∂K)
Π1(K∗,K∗) < 0. Further, because limθ↑θmK

∗ � 0, limθ↑θm (∂=∂K)
Π1(K∗,K∗) � limK↓0(∂=∂K)[r1(K,K) −θmck(K)]. Sub-
stituting θm � limK1↓0limK2↓0[(∂=∂K1)Π1(K)=(∂=∂K1)ck(K1)], it
follows that limθ↑θm (∂=∂K)Π1(K∗,K∗) < 0 if and only if
limK↓0(∂=∂K) r1(K,K) − limK1↓0limK2↓0(∂=∂K1)r1(K) < 0. Next,
it can be shown that limK↓0(∂=∂K)r1(K,K) − limK1↓0 limK2↓0(∂=
∂K1)r1(K) � ξ(β,γ,bl,gl)=ζ(α,β,γ,bl,gl) for some functions
ξ(β,γ,bl,gl) and ζ(α,β,γ,bl,gl), where ζ(α,β,γ,bl,gl) > 0 for
γ < β and gl < bl, and ξ(β,γ,bl,gl) < 0 if and only if
γ=β > gl=bl. It follows that limθ↑θm (d=dθ)π(θ) > 0 if and only
if γ=β > gl=bl.

Step 2. Suppose γ=β > gl=bl. Note that ΠP � π(θ) where θ ∈
(0,θm): Because π(θ) is continuous in θ, π(θm) �Π0, and
limθ↑θm (d=dθ)π(θ) > 0, there exists θ̄ < θm such that π(θ) <
Π0 for all θ ∈ (θ̄,θm). Further, because π(θ) is strictly convex
on θ ∈ (0,θm) (by Lemma B.2(i)), π(θ) >Π0 for all θ < θ̄.
Next, suppose γ=β ≤ gl=bl. It follows from the first step of the
proof that limθ↑θm (d=dθ)π(θ) ≤ 0. Because limθ↑θm (d=dθ)π
(θ) ≤ 0, π(θm) �Π0 and π(θ) is strictly convex in θ, it follows
that π(θ) >Π0 for all θ ∈ (0,θm). w

Proof of Proposition 2. The proof proceeds in two steps.
First, we show that limK→0(∂=∂K)AW(K,K) < 0 if and only
if γ=β < gl=bl. Second, we prove the main result.

Step 1. It can be shown algebraically that limK→0(∂=∂K)
AW(K,K) � (γbl − βgl)ξ(β,γ,gl,bl), where ξ(β,γ,gl,bl) � 2bl
(bl − gl)αβ=[(2bl − gl) β(β− γ) + (bl − gl)(2β− γ)]2. Note ξ(β,γ,
gl,bl) > 0. It follows that limK→0(∂=∂K)AW(K,K) < 0 if and
only if γ=β < gl=bl.

Step 2. We consider two cases: γ=β ≥ gl=bl and γ=β < gl=bl.
Case 1. γ=β ≥ gl=bl. It suffices to show AW(K,K) ≥ AW(0, 0)
for all K ≥ 0. From the first step, γ=β ≥ gl=bl implies
limK→0(∂=∂K)AW(K,K) ≥ 0. Next, it can be verified algebrai-
cally that (∂2=∂K2)AW(K,K) > 0 for all K ≥ 0. Because
limK→0(∂=∂K)AW(K,K) ≥ 0 and (∂2=∂K2)AW(K,K) > 0 for all
K ≥ 0, (∂=∂K)AW(K,K) ≥ 0 for all K ≥ 0. This, together with
the fact that limK→0AW(K,K) � AW(0,0), implies that
AW(K,K) ≥ AW(0,0) for all K ≥ 0. Case 2. γ=β < gl=bl. We first
show that there exists K̄ > 0 such that AW(K,K) < AW(0, 0)
for all K ∈ (0, K̄). From the first step, γ=β < gl=bl implies
limK→0(∂=∂K)AW(K,K) < 0. This, together with the facts that
(∂2=∂K2)AW(K,K) > 0 for all K ≥ 0 and limK→0AW(K,K) �
AW(0, 0), implies that there exists K̄ > 0 such that AW(K,K) <
AW(0, 0) if and only if K ∈ (0, K̄). Next, note that because
K∗(θm) � 0, K∗(0) > 0, and K∗(θ) is strictly decreasing in θ on
θ ∈ (0,θm) (by Lemma B.1), there exists θ̃ ∈ (0,θm) such that
K∗(θ) ∈ (0, K̄) if and only if θ ∈ (θ̃,θm). It follows that
AW(K∗,K∗) < AW(0, 0) if and only if θ ∈ (θ̃,θm). w

Proof of Proposition 3. The proof proceeds in two steps.
First, we show that limθ↑θm (d=dθ)sw(θ) > 0 if and only if
γ=β > gl=bl. Second, we prove the main result.

Step 1. Note limθ↑θm (d=dθ)sw(θ) � limθ↑θm [(∂=∂K)
SW(K∗,K∗) (d=dθ)K∗(θ) + (∂=∂θ)sw(θ)]. Because (d=dθ)
K∗(θ) < 0 (by Lemma B.1) and limθ↑θm (∂=∂θ)sw(θ)|θ�θm

�
−2ck(K)|K�0 � 0, limθ↑θm (d=dθ)sw(θ) > 0 if and only if
limθ↑θm (∂=∂K)SW(K∗,K∗) < 0. Further, because limθ↑θmK

∗ � 0,
limθ↑θm (∂=∂K)SW(K∗,K∗) � limK↓0(∂=∂K) [2r1(K,K) −2θm

ck(K) +AW(K,K)]. Substituting θm � limK1↓0limK2↓0[(∂=∂K1)
Π1(K)=(∂=∂K1)ck(K1)], it follows that limθ↑θm (∂=∂K)
SW(K∗,K∗) < 0 if and only if limK↓0(∂=∂K)[r1(K,K) +
AW(K,K)=2] −limK1↓0limK2↓0(∂= ∂K1)r1(K) < 0. Next, it can be
shown that limK↓0(∂=∂K)[r1(K,K) +AW(K,K)=2] − limK1↓0
limK2↓0(∂=∂K1)r1(K) � (γbl − βgl)ξ(α,β,γ,bl,gl) for some func-
tion ξ(β,γ,bl,gl). It can be verified that ξ(β,γ,bl,gl) > 0 for γ <
β and gl < bl. It follows that limθ↑θm (d=dθ)sw(θ) > 0 if and
only if γ=β > gl=bl.

Step 2. Note that SWP � sw(θ) where θ ∈ (0,θm): To prove
the main result, we show that there exists θ̂ ≥ 0 such that
sw(θ) < SW0 if and only if θ ∈ (θ̂,θm), where θ̂ < θm if and
only if γ=β > gl=bl. First, suppose γ=β > gl=bl. Because sw(θ)
is continuous in θ, sw(θm) � SW0, and limθ↑θm (d=dθ)sw(θ) >
0 (by Step 1), there exists θ̂ < θm such that sw(θ) < SW0 for all
θ ∈ (θ̂,θm). Further, because (d2=dθ2)sw(θ) > 0 for θ ∈ (0,θm)
(by Lemma B.2(ii)), sw(θ) > SW0 for all θ < θ̂. Next, suppose
γ=β ≤ gl=bl. It follows from Step 1 that limθ↑θm (d=dθ)
sw(θ) < 0. Because limθ↑θm (d=dθ)sw(θ) < 0, sw(θm) � SW0

and (d2=dθ2)sw(θ) > 0, it follows that sw(θ) > SW0 for all
θ ∈ (0,θm). Hence θ̂ ≥ θm. w

References
Afeche P, Liu Z, Maglaras C (2018) Ride-hailing networks with stra-

tegic drivers: The impact of platform control capabilities on per-
formance. Working paper, University of Toronto, Toronto,
Canada.

Allon G, Cohen M, Sinchaisri P (2019) The impact of behavioral and
economic drivers on gig economy workers. Working paper,
University of Pennsylvania, Philadelphia.

Arya A, Mittendorf B, Sappington D (2008) The make-or-buy deci-
sion in the presence of a rival: Strategic outsourcing to a com-
mon supplier. Management Sci. 54(10):1747–1758.

Bai J, Tang CS (2020) Can two competing on-demand service plat-
forms be both profitable? Working paper, State University of
New York at Binghamton, Binghamton, NY.

Bai J, So KC, Tang CS, Chen XM, Wang H (2018) Coordinating sup-
ply and demand on an on-demand platform: Price, wage, and
payout ratio. Manufacturing Service Oper. Management 21(3):556–
570.

Banerjee S, Johari R, Riquelme C (2016) Pricing in ride-sharing plat-
forms: A queueing-theoretic approach. Working paper, Cornell
University, Ithaca, NY.

Benjaafar S, Xiao S, Yang X (2020a) Do workers and customers bene-
fit from competition between on-demand service platforms?
Working paper, University of Minnesota, Minneapolis.

Benjaafar S, Ding J-Y, Kong G, Taylor T (2021) Labor welfare in
on-demand service platforms. Manufacturing Service Oper. Man-
agement, ePub ahead of print April 6, https://doi.org/10.1287/
msom.2020.0964.

Benjaafar S, Kong G, Li X, Courcoubetis C (2019) Peer-to-peer prod-
uct sharing: Implications for ownership, usage and social wel-
fare in the sharing economy. Management Sci. 65(2):477–493.

Bensinger G (2017) Lyft jumps into driverless. Wall Street Journal
(July 22), B2.

Siddiq and Taylor: Ride-Hailing Platforms: Competition and Autonomous Vehicles
Manufacturing & Service Operations Management, 2022, vol. 24, no. 3, pp. 1511–1528, © 2022 INFORMS 1527

https://doi.org/10.1287/msom.2020.0964
https://doi.org/10.1287/msom.2020.0964


Bernstein F, DeCroix G, Keskin B (2020) Competition between two-
sided platforms under demand and supply congestion effects.
Manufacturing Service Oper. Management, ePub ahead of print
October 1, https://doi.org/10.1287/msom.2020.0866.

Besbes O, Castro F, Lobel I (2021) Surge pricing and its spatial sup-
ply response. Management Sci. 67(3):1350–1367.

Bhaskar V, Manning A, To T (2002) Oligopsony and monopsonistic
competition in labor markets. J. Econom. Perspect. 16(2):155–174.

Bimpikis K, Candogan O, Saban D (2019) Spatial pricing in ride-
hailing networks. Oper. Res. 67(3):744–769.

Bosa D (2018) Lyft claims it now has more than one-third of the US
ride-sharing market. CNBC Online (May 14), https://www.cnbc.
com/2018/05/14/lyft-market-share-051418-bosa-sf.html.

Boston W (2017) Uber in pact for self-driving Volvos. Wall Street
Journal (November 21), B1.

Cachon G, Netessine S (2004) Game theory in supply chain analysis.
Simchi-Levi D, Wu SD, Shen ZM, eds. Handbook of Quantitative
Supply Chain Analysis: Modeling in the eBusiness Era (Springer,
New York), 13–66.

Cachon G, Daniels K, Lobel R (2017) The role of surge pricing on a
service platform with self-scheduling capacity. Manufacturing
Service Oper. Management 19(3):368–384.

Chen J, Guo Z (2014) Strategic sourcing in the presence of uncertain
supply and retail competition. Production Oper. Management 23
(10):1748–1760.

Chen Y, Dai T, Korpeoglu C, Korpeoglu E, Sahin O, Tang C, Xiao S
(2020) Innovative online platforms: Research opportunities.
Manufacturing Service Oper. Management 22(3):430–445.

Cohen M, Zhang R (2017) Coopetition and profit sharing for ride-
sharing platforms. Working paper, New York University, New
York.

Dixit A (1986) Comparative statics for oligopoly. Internat. Econom.
Rev. 27(1):107–122.

Duvall T, Hannon E, Katseff J, Safran J, Wallace T (2019) A new
look at autonomous-vehicle infrastructure. McKinsey Insights
(May 22) https://www.mckinsey.com/industries/capital-projects-
and-infrastructure/our-insights/a-new-look-at-autonomous-
vehicle-infrastructure.

Fuess SM Jr., Lowenstein MA (1991) On strategic cost increases in a
duopoly. Internat. J. Indust. Organ. 9(3):389–395.

Gurvich I, Lariviere M, Moreno A (2019) Operations in the on-demand
economy: Staffing services with self-scheduling capacity. Hu M,
ed. Sharing Economy: Making Supply Meet Demand (Springer, New
York), 249–278.

Hamilton J, Thisse JF, Zenou Y (2000) Wage competition with het-
erogeneous workers and firms. J. Labor Econom. 18(3):453–472.

Higgins T (2019) Tesla plans self-driving taxi fleet. Wall Street Journal
(April 23), B3.

Hu B, Hu M, Zhu H (2021) Surge pricing and two-sided
temporal responses in ride-hailing. Manufacturing Service Oper.

Management, ePub ahead of print February 3, https://doi.org/
10.1287/msom.2020.0960.

Hu M, Zhou Y (2019) Price, wage and fixed commission in
on-demand matching. Working paper, University of Toronto,
Toronto, Canada.

Isaac M (2017) Uber in deal with Volvo to buy self-driving cars for
its future network. New York Times (November 21), B6.

Lin X, Lu T, Wang X (2018) Mergers between on-demand service
platforms: The impact on consumer surplus and labor welfare.
Working paper, South China University of Technology, Guang-
zhou, China.

Liu X, Cui Y, Chen L (2019) Bonus competition in the gig economy.
Working paper, Cornell University, Ithaca, NY.

Luna N (2020) Report: After GrubHub snub, Uber looks to buy
Postmates. Nation’s Restaurant News (June 30), https://www.
nrn.com/delivery-takeout-solutions/report-after-grubhub-snub-
uber-looks-buy-postmates.

Lyft (2019) Form S-1. Accessed May 1, 2019, https://www.sec.gov/
Archives/edgar/data/1759509/000119312519059849/d633517ds1
.htm.

Mims C (2019) Exchange - technology - keywords: In a strong job
market, the gig is up. Wall Street Journal (May 4), B5.

Motavalli J (2020) Will driverless cars also be riderless? New York
Times (May 29), B7.

Murphy M (2016) Lyft’s cofounder has his own vision for a self-
driving taxi fleet. Quartz (October 27), https://qz.com/819335/
lyft-cofounder-john-zimmer-has-his-own-vision-for-a-self-driving-
taxi-fleet-to-take-on-uber-and-tesla-tsla/.

Nikzad A (2018) Thickness and competition in ride-sharing markets.
Working paper, University of Southern California, Los Angeles,
California.

Ozkan E, Ward A (2020) Dynamic matching for real-time rideshar-
ing. Stochastic Systems 10(1):29–70.

Salop S, Scheffman DT (1987) Cost-raising strategies. J. Indust.
Econom. 36(1):19–34.

Seade J (1985) Profitable cost increases and the shifting of taxation:
Equilibrium responses of markets in oligopoly. Technical re-
port, University of Warwick, Coventry, United Kingdom.

Siddiqui F, Bensinger G (2019) Uber, Lyft bet on the driverless
dream. Washington Post (March 31), A1.

Taylor T (2018) On-demand service platforms. Manufacturing Service
Oper. Management 20(4):704–720.

Uber (2019) Form S-1. Accessed May 1, 2019, https://www.sec.gov/
Archives/edgar/data/1543151/000119312519103850/d647752ds1
.htm.

Wu S, Xiao S, Benjaafar S (2020) Two-sided competition between
on-demand service platforms. Working paper, University of
Minnesota, Minneapolis.

Wu X, Zhang F (2014) Home or overseas? An analysis of sourcing
strategies under competition. Management Sci. 60(5):1223–1240.

Siddiq and Taylor: Ride-Hailing Platforms: Competition and Autonomous Vehicles
1528 Manufacturing & Service Operations Management, 2022, vol. 24, no. 3, pp. 1511–1528, © 2022 INFORMS

https://doi.org/10.1287/msom.2020.0866
https://www.cnbc.com/2018/05/14/lyft-market-share-051418-bosa-sf.html
https://www.cnbc.com/2018/05/14/lyft-market-share-051418-bosa-sf.html
https://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/a-new-look-at-autonomous-vehicle-infrastructure
https://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/a-new-look-at-autonomous-vehicle-infrastructure
https://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/a-new-look-at-autonomous-vehicle-infrastructure
https://doi.org/10.1287/msom.2020.0960
https://doi.org/10.1287/msom.2020.0960
https://www.nrn.com/delivery-takeout-solutions/report-after-grubhub-snub-uber-looks-buy-postmates
https://www.nrn.com/delivery-takeout-solutions/report-after-grubhub-snub-uber-looks-buy-postmates
https://www.nrn.com/delivery-takeout-solutions/report-after-grubhub-snub-uber-looks-buy-postmates
https://www.sec.gov/Archives/edgar/data/1759509/000119312519059849/d633517ds1.htm
https://www.sec.gov/Archives/edgar/data/1759509/000119312519059849/d633517ds1.htm
https://www.sec.gov/Archives/edgar/data/1759509/000119312519059849/d633517ds1.htm
https://qz.com/819335/lyft-cofounder-john-zimmer-has-his-own-vision-for-a-self-driving-taxi-fleet-to-take-on-uber-and-tesla-tsla/
https://qz.com/819335/lyft-cofounder-john-zimmer-has-his-own-vision-for-a-self-driving-taxi-fleet-to-take-on-uber-and-tesla-tsla/
https://qz.com/819335/lyft-cofounder-john-zimmer-has-his-own-vision-for-a-self-driving-taxi-fleet-to-take-on-uber-and-tesla-tsla/
https://www.sec.gov/Archives/edgar/data/1543151/000119312519103850/d647752ds1.htm
https://www.sec.gov/Archives/edgar/data/1543151/000119312519103850/d647752ds1.htm
https://www.sec.gov/Archives/edgar/data/1543151/000119312519103850/d647752ds1.htm


Ride-hailing Platforms: Competition and Autonomous Vehicles

Online Supplement

This online supplement contains Appendices C, D and E.

Appendix C: Proofs for Individually-Owned AVs
Proof of Lemma 2: We begin by characterizing platform i’s best response prices and wages

(pi, wl,i, wv,i) to platform j prices and wages (pj , wl,j , wv,j). Because platform i’s best response price

and wages satisfy Di(p) = Li(wl)+Vi(wv) and because Di(p) ≤ α+γpj , in characterizing platform

i’s best response, we can restrict attention to wl,i and wv,i such that Li(wl) + Vi(wv) ≤ α + γpj .

Let p̂i(pj ,wl,wv) be the solution to Di(p̂i, pj) = Li(wl) + Vi(wv); that is, let p̂i(pj ,wl,wv) =

[α + γpj − Li(wl) − Vi(wv)]/β. Because Di(p) = Li(wl) + Vi(wv), platform i’s second-period

contribution (equation (3)) can be rewritten as

ui(pj ,wl,wv) = [p̂i(pj ,wl,wv)− wl,i]Li(wl) + [p̂i(pj ,wl,wv)− wv,i]Vi(wv),

where the argument pi is eliminated. Next, define p̃i = [(bl + bv)(α+ γpj) + β(2α+ 2γpj + glwl,j +

gvwv,j)]/[2β(bl + bv + β)], w̃l,i = [glwl,j(bv + β) + bl(α+ γpj + 2glwl,j + gvwv,j)]/[2bl(bl + bv + β)],

w̃v,i = [gvwv,j(bl+β)+bv(α+γpj+glwl,j+2gvwv,j)]/[2bv(bl+bv+β)]. Let (p∗1, w
∗
l,1, w

∗
v,1, p

∗
2, w

∗
l,2, w

∗
v,2)

be the unique solution to p1 = p̃1, wl,1 = w̃l,1, wv,1 = w̃v,1, p2 = p̃2, wl,2 = w̃l,2 and wv,2 = w̃v,2.

Note platform i’s best response wages are attained at a maximizer of ui(pj ,wl,wv). Note also

that platform i’s best response price must satisfy pi = p̂i(pj ,wl,wv), because p̂i(pj ,wl,wv) solves

Di(p) = Li(wl) + Vi(wv), which must hold at a best response price. It follows that platform i’s

best response prices and wages (pi, wl,i, wv,i) to platform j prices and wages (pj , wl,j , wv,j) must

satisfy
pi = p̂i(pj ,wl,wv), (∂/∂wl,i)ui(pj ,wl,wv) = 0, (∂/∂wv,i)ui(pj ,wl,wv) = 0.

It can be shown algebraically that (p̃i, w̃l,i, w̃v,i) is the unique maximizer of ui(pj ,wl,wv); hence

(p̃i, w̃l,i, w̃v,i) is platform i’s best response. The result follows because (p∗1, w
∗
l,1, w

∗
v,1, p

∗
2, w

∗
l,2, w

∗
v,2)

is by definition the intersection of the best responses functions; that is, (p∗1, w
∗
l,1, w

∗
v,1, p

∗
2, w

∗
l,2, w

∗
v,2)

is the unique solution to p1 = p̃1, wl,1 = w̃l,1, wv,1 = w̃v,1, p2 = p̃2, wl,2 = w̃l,2 and wv,2 = w̃v,2.

Further, by symmetry, p∗1 = p∗2, w
∗
l,1 = w∗l,2 and w∗v,1 = w∗v,2. �

Note that platform i’s equilibrium profit is given by taking the equilibrium prices and wages

(p∗1, w
∗
l,1, w

∗
v,1, p

∗
2, w

∗
l,2, w

∗
v,2) into the profit function Πi(K) (given in equation (4)), where K = (0, 0)

because θ =∞.

In the remainder of this appendix, unless explicitly stated otherwise, we suppose there is no

competition in the AV market gv = 0. Lemma 1 is useful in the proof of Proposition 4. For use

in the proofs of Lemma 1 and Proposition 4, let ΠI denote equilibrium platform profit under own-

wage sensitivity of AV supply bv > 0; that is, ΠI represents equilibrium profit under access to AVs.

Let Π = limbv→∞ΠI . Let Π0 denote equilibrium platform profit under bv = gv = 0; that is, Π0

represents equilibrium profit under no access to AVs.

Lemma 1 Suppose there is no competition in the AV market gv = 0. (i) If γ/β ≤ 2/3, then ΠI

weakly increases in bv on bv > 0. (ii) If γ/β ∈ (2/3, η̄), then there exists bv > 0 such that ΠI

1



strictly increases in bv on bv ∈ (0, bv) and strictly decreases in bv on bv ∈ (bv,∞). If γ/β ∈ (2/3, η],

then ΠI ≥ Π0 for bv > 0. If γ/β ∈ (η, η̄), then there exists b̄v ∈ (bv,∞) such that ΠI < Π0 if and

only if b > b̄v. (iii) If γ/β ≥ η̄, then ΠI strictly decreases in bv on bv > 0.

Proof of Lemma 1: Let ψ(bv) = 2β[2bl(bl − gl)(2bl + gl) + (2bl − gl)2(bv + β)]/[2bl(bl − gl)(6bl −
gl) + (2bl − gl)2(3bv + 2β)]. The proof proceeds in four steps. First, we establish that: for bv > 0,

ψ(bv) strictly decreases in bv and ψ(bv) ∈ (2β/3, η̄β); and (d/dbv)Π
I has the same sign as ψ(bv)−γ.

Second, we establish part (i); third, part (iii); and fourth, part (ii).

Step 1: Note (∂/∂bv)ψ(bv) = −2(2bl− gl)2β[4bl(bl− gl)(2gl +β) + g2l β)]/[(3bv + 2β)(2bl− gl)2 +

2bl(6b
2
l − 7blgl + g2l )]

2 < 0, limbv→0 ψ(bv) = η̄β and limbv→∞ ψ(b) = 2β/3. Hence, for bv > 0, ψ(bv)

strictly decreases in bv and ψ(bv) ∈ (2β/3, η̄β). It can be shown algebraically that (d/dbv)Π
I has

the same sign as ψ(bv) − γ; that is, (d/dbv)Π
I < 0 if and only if ψ(bv) < γ, and (d/dbv)Π

I > 0 if

and only if ψ(bv) > γ.

Step 2: Suppose γ/β ≤ 2/3. It follows from Step 1 that: γ ≤ 2β/3 < ψ(bv) for bv > 0; and

ψ(bv) ≥ γ implies (d/dbv)Π
I ≥ 0 for bv > 0. That is, part (i) holds.

Step 3: Suppose γ/β ≥ η̄. It follows by step 1 that: ψ(bv) < η̄β ≤ γ for bv > 0; and ψ(bv) < γ

implies (d/dbv)Π
I < 0 for bv > 0. That is, part (iii) holds.

Step 4: Suppose γ ∈ (2β/3, η̄β). Because ψ(bv) strictly decreases in bv on bv > 0 and ψ(bv) ∈
(2β/3, η̄β) (by step 1), there exists a unique solution on bv > 0 to ψ(bv) = γ, which we denote

as bv; note bv > 0. It follows that ψ(bv) > γ if and only if bv ∈ (g, bv), and ψ(bv) < γ if and

only if bv ∈ (bv,∞). By step 1, this implies (d/dbv)Π
I > 0 if and only if bv ∈ (0, bv). Note Π =

limbv→∞ΠI = α2β/(2β−γ)2 and Π0 = α2βbl(bl−gl)2(bl+β)/[(2bl−gl)β(β−γ)+bl(bl−gl)(2β−γ)]2.

It is straightforward to show algebraically that Π > Π0 if and only if γ/β < η. Next, suppose

γ/β ∈ (2/3, η]; we will show this implies ΠI ≥ Π0 for bv > 0. For bv ∈ (0, bv), that ΠI strictly

increases in bv implies ΠI > Π0. For bv ∈ (bv,∞), ΠI ≥ Π ≥ Π0, where the first inequality follows

because ΠI strictly decreases in bv, and the second inequality follows because γ/β ≤ η. Finally,

suppose γ/β ∈ (η, η̄). We will show that there exists b̄v ∈ (bv,∞) such that ΠI < Π0 if and only

if b > b̄v. For bv ∈ (0, bv), that ΠI strictly increases in bv implies ΠI > Π0. Because ΠI strictly

decreases in bv on bv ∈ (bv,∞) and ΠI |bv=bv > Π0 > Π = limbv→∞ΠI , it follows that there exists

b̄v ∈ (bv,∞) such that ΠI < Π0 if and only if b > b̄v. �

Proof of Proposition 4: If γ/β < η, then ΠI ≥ Π0 (by Lemma 1(i)). If γ/β ≥ η̄, then ΠI < Π0

(by Lemma 1(ii)-(iii)). If γ/β ∈ (η, η̄), then there exists b̄v ∈ (bv,∞), where bv > 0, such that

ΠI < Π0 if and only if bv > b̄v (by Lemma 1(ii). We can state the preceding results as follows:

There exists b̄v ≥ 0 such that access to individually-owned AVs decreases equilibrium profit ΠI < Π0

if and only if bv > b̄v; further, if γ/β ≤ η, then b̄v = ∞; if γ/β ∈ (η, η̄), then bv < b̄v < ∞; and if

γ/β ≥ η̄, then b̄v = 0. Let φ̄ = 1/b̄v, and recall φ = 1/bv. The result follows. �

Lemma 2 Suppose there is no competition in the labor market or the AV market gl = gv = 0 and

platform i’s labor sourcing cost is cl(Li) and AV sourcing cost is φcv(Vi), where cl(·) and cv(·) are

strictly convex with cl(0) = cv(0) = 0. There exist φ̆ > 0 and η̆ < 1 such that if the relative price

sensitivity of demand is high γ/β > η̆, platform profit under access to individually owned AVs ΠI

increases in the AV cost φ on φ ∈ (0, φ̆).
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Proof of Lemma 2: Platform i’s profit under prices p, AV supply Vi ∈ [0, Di(p)], labor sourcing

cost cl(Li) and AV sourcing cost φcv(Vi) can be written as Πi(p,Vi) = piDi(p)− cl(Di(p)− Vi)−
φcv(Vi). With some abuse of notation, let Vi(p) denote platform i’s profit-maximizing AV supply

under prices p. We use c′v(Vi) to denote (d/dVi)cv(Vi) and c′′v(Vi) to denote (d2/d2Vi)cv(Vi); c
′
l(·)

is defined similarly. Because platform i’s profit maximizing price pi and AV supply Vi satisfy the

first order conditions (∂/∂pi)Πi(p,Vi) = Di(p)− β[pi − c′l(Di(p)− Vi)] = 0 and (∂/∂Vi)Πi(p,Vi) =

c′l(Di(p) − Vi) − φc′v(Vi) = 0, the equilibrium prices p∗ satisfy Di(p
∗) − β[p∗i − φc′v(Vi(p∗))] = 0.

Because the equilibrium prices are symmetric p∗1 = p∗2 = p∗, as are the equilibrium AV sup-

plies V ∗1 = V ∗2 = V ∗ = Vi(p
∗), the equilibrium price and AV supply (p∗, V ∗) satisfy Di(p

∗, p∗) −
β[p∗ − φc′v(V ∗)] = 0. Applying the implicit function theorem yields ∂p∗/∂φ = βc′v(V

∗)/[2β − γ −
βφc′′v(V

∗)(∂V ∗/∂p∗)]. Further, (d/dφ)Πi(p
∗, Vi(p

∗)) = (∂p∗j/∂φ)(γ/β)Di(p
∗) − cv(Vi(p

∗)). This,

together with the previous expression for ∂p∗/∂φ and the observations that ∂p∗j/∂φ = ∂p∗/∂φ and

ΠI = Πi(p
∗, Vi(p

∗)), implies limφ→0(d/dφ)ΠI = αβγc′v(αβ/(2β− γ))/(2β− γ)2− cv(αβ/(2β− γ)).

Further, limγ→β limφ→0(d/dφ)ΠI = αc′v(α)−cv(α). Because cv(·) is strictly convex, [cv(α)−cv(0)]/α

strictly increases in α for α > 0; therefore, cv(0) = 0 implies cv(α)/α strictly increases in α, which

implies αc′v(α)−cv(α) > 0. Because (d/dφ)ΠI is continuous in γ and φ, limγ→β limφ→0(d/dφ)ΠI > 0

implies that there exist γ̆ < β and φ̆ > 0 such that (d/dφ)ΠI > 0 for φ < φ̆ and γ > γ̆. It follows

that the result holds with η̆ = γ̆/β.�

Let AW I denote equilibrium agent welfare under own-wage sensitivity of AV supply bv > 0;

that is, AW I denotes equilibrium agent welfare under access to individually-owned AVs. Although

Proposition 5 addresses the case where gv = 0, the proof establishes the result for the more general

case where gv ∈ [0, bv). Let AW 0 denote equilibrium platform profit under bv = gv = 0; that is,

AW 0 denotes equilibrium agent welfare under no access to AVs.

Proof of Proposition 5: At the outset, note that it is straightforward to verify that limbv→gv AW
I =

AW 0 for any gv ≥ 0, and define φ̃ = 1/b̃v. It suffices to show: if γ/β ≥ gl/bl, then AW I ≥
limbv→gv AW

I for any gv ≥ 0 and bv ∈ (gv,∞); and if γ/β < gl/bl, then there exists b̃v > gv such

that AW I < limbv→gv AW
I if and only if bv ∈ (gv, b̃v). Note (∂/∂bv)AW

I = 2α2β2(2bl − gl)[(bv −
gv)

2 + b2v]ξ(bv, gv)/ζ(bv, gv)
3 for some functions ξ and ζ, where ξ(bv, gv) = βbv(2bl − gl)2(bv − gv) +

bl(bl− gl)(2bv− gv)(γbl−βgl). It is straightforward to verify algebraically that ζ(bv, gv) > 0 for any

bv ∈ (gv,∞); thus (∂/∂bv)AW
I < 0 if and only if ξ(bv, gv) < 0. We consider two cases: γ/β ≥ gl/bl

and γ/β < gl/bl. Case 1: γ/β ≥ gl/bl. It is straightforward to verify that γ/β ≥ gl/bl implies

ξ(bv, gv) > 0 for any gv ≥ 0 and bv ∈ (gv,∞). Hence γ/β ≥ gl/bl implies (∂/∂bv)AW
I > 0 for any

gv ≥ 0 and bv ∈ (gv,∞). It follows that limbv→gv AW
I < AW I for any gv ≥ 0 and bv ∈ (gv,∞).

Case 2: γ/β < gl/bl. Note limbv→gv ξ(bv, gv) = blgv(bl−gl)(γbl−βgl) < 0, where the inequality holds

because γ/β < gl/bl. Further, limbv→∞ ξ(bv, gv) =∞ > 0 and (d2/db2v)ξ(bv, gv) = 2(2bl−gl)2β > 0.

It follows that there exists b̂v > gv such that ξ(bv, gv) < 0 if and only if bv ∈ (gv, b̂v), and thus

(d/dbv)AW
I < 0 if and only if bv ∈ (gv, b̂v). It follows that there exists b̃v > gv such that

AW I < limbv→gv AW
I = AW 0 if and only if bv ∈ (gv, b̃v).�

Let SW I denote equilibrium social welfare under bv > 0; that is, SW I denotes equilibrium social

welfare under access to individually-owned AVs. Let SW 0 denote equilibrium platform profit under

bv = gv = 0; that is, SW 0 denotes equilibrium social welfare under no access to AVs.
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Proof of Proposition 6: Note that (d/dbv)SW = 2α2β2(2bl−gl)ϑ/{2(2bl−gl)β(β−γ)+[2bl(bl−
gl)+bv(2bl−gl)](2β−γ)}3, where ϑ = 2β[4b2l (bl−gl)+(2bl−gl)2(2bv+β)]−γ[(2bl−gl)2(3bv+2β)+

2bl(bl−gl)(4bl−gl)]. Note ϑ is strictly decreasing in γ and limγ→β ϑ = β[bvg
2
l +2bl(bl−gl)(2bv+gl)] >

0. The result follows. �

Appendix D: Proofs for Extensions: Non-Linear Platform AV Cost, Platform-
and Individually-Owned AVs, and Competition over Individually-Owned AV
Proof of Lemma 3: (i) Because the AV cost function ck(K) is weakly convex and strictly increas-

ing, uniqueness of the symmetric equilibrium follows by Lemma 9, and (d/dθ)K∗ < 0 for K∗ > 0

follows by Lemma 10.

(ii). Similar to Lemma 9, we refer to Ki ∈ [0, α/(2−γ/β)] for i ∈ {1, 2} as the truncated strategy

space and Ki ∈ [0,∞) for i ∈ {1, 2} as the full strategy space. The proof proceeds in three steps.

First, we first show that for any Kj ≥ 0 and θ ∈ (0, θm), the profit function Πi(K) is strictly quasi-

concave in Ki on Ki ∈ [0,∞), for i 6= j. Second, we show that there exists a symmetric equilibrium

on the truncated strategy space. Third, we show that this is the only symmetric equilibrium on

the full strategy space.

Step 1: Fix Kj ≥ 0 and θ ∈ (0, θm). We consider two cases: Ki ∈ [0, ¯̄Ki) and Ki ∈ [ ¯̄Ki,∞).

Suppose Ki ∈ [0, ¯̄Ki). Then

(∂2/∂K2
i )Πi(K) = (∂2/∂K2

i )ri(K)− θ(∂2/∂K2
i )ck(Ki)

< (∂2/∂K2
i )ri(K)− θm(∂2/∂K2

i )ck(Ki)

= (∂2/∂K2
i )ri(K)− [(∂/∂Ki)ri(K)/(∂/∂Ki)ck(Ki)]|Ki=Kj=0(∂

2/∂K2
i )ck(Ki)

< (∂2/∂Ki∂Kj)ri(K)

≤ 0.

The first line follows by definition of Πi(K). The second line follows because θ < θm and

(∂2/∂K2
i )ck(Ki) < 0. The third line follows by definition of θm. The fourth line follows from

inequality (10), and the fifth line follows from Lemma 6. Therefore, (∂2/∂K2
i )Πi(K) < 0 for all

Ki ∈ [0, ¯̄Ki). Next, suppose Ki ∈ [ ¯̄Ki,∞). Because (∂2/∂K2
i )ri(K) = 0 (by Lemma 6), θ > 0, and

ck(Ki) is strictly increasing, Πi(K) is strictly decreasing in Ki on Ki ∈ [ ¯̄Ki,∞). Because Πi(K) is

strictly concave on Ki ∈ [0, ¯̄Ki) and strictly decreasing on Ki ∈ [ ¯̄Ki,∞), it follows that Πi(K) is

quasi-concave in Ki on Ki ∈ [0,∞).

Step 2: Because Πi(K), i ∈ {1, 2} are quasi-concave, the profit functions are symmetric, and the

truncated strategy space is compact and convex, there exists at least one symmetric equilibrium

on the truncated strategy space (Cachon and Netessine 2004).

Step 3: To show that there is at most one symmetric equilibrium on the truncated strategy

space, it suffices to show that the magnitude of the slopes of the best response functions K̃i(Kj), i =

{1, 2} are strictly less than one everywhere on the truncated strategy space (Cachon and Netessine

2004). By the implicit function theorem, the slope of K̃i(Kj) is given by |(d/dKj)K̃i(Kj)| =

|[(∂2/∂Ki∂Kj)ri(K)]/[(∂2/∂K2
i )ri(K) − θ(∂2/∂K2

i )ck(Ki)]Ki=K̃i(Kj)
|. Because K̃i(Kj) <

¯̄Ki and

θ < θm, it can be verified that inequality (10) implies |[(∂2/∂Ki∂Kj)ri(K)]/[(∂2/∂K2
i )ri(K) −
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θ(∂2/∂K2
i )ck(Ki)]Ki=K̃i(Kj)

| < 1. Therefore, there exists exactly one symmetric equilibrium on the

truncated strategy space, Ki ∈ [0, α/(2− γ/β)]. It can be shown using a parallel argument to the

proof of Lemma 9 that there cannot exist a symmetric equilibrium K∗ where K∗ > α/(2−γ/β). We

conclude that there exists exactly one symmetric equilibrium on the full strategy space Ki ∈ [0,∞).

Lastly, to see that (d/dθ)K∗ < 0, note that the proof of Lemma 10, which establishes this inequality,

continues to hold when ck(K) is not weakly convex, provided that (∂2/∂K2
j )Πj+(∂2/∂Ki∂Kj)Πi <

0 holds atKi = Kj = K∗. It remains to show the preceding inequality holds atKi = Kj = K∗ under

inequality (10). First, note that by Lemma 8, Dj(p
∗(K)) > Kj at Ki = Kj = K∗, which implies

K∗ < ¯̄Kj by definition of ¯̄Kj . Because K∗ < ¯̄Kj , and (∂2/∂K2
j )Πj < 0 for Kj <

¯̄Kj by Step 1 of

this proof, (∂2/∂K2
j )Πj < 0 at Ki = Kj = K∗. Next, note (∂2/∂Ki∂Kj)Πi = (∂2/∂Ki∂Kj)ri ≤ 0

at Ki = Kj = K∗, where the equality follows from the definition of Πi, and the inequality follows

from Lemma 6.�

Proof of Proposition 7: We prove the statements in order. (i). Define π̃(θ) = π(θ) + ck(0).

Because (d/dθ)K∗(θ) < 0 for K∗ > 0 by Assumption 1, it follows by parallel argument to Step

1 of the proof of Proposition 1 that limθ↑θm(d/dθ)π̃(θ) > 0 if and only if γ/β > g/b. Suppose

γ/β > g/b. It follows from Step 2 of the proof of Proposition 1 that there exists θ̄ < θm such that

π̃(θ) < Π0 for all θ ∈ (θ̄, θm). Because ck(0) ≥ 0, π(θ) ≤ π̃(θ). The result follows.

(ii). The proof of Proposition 3 continues to hold when the assumption that ck(K) = K is

replaced by Assumption 1, which ensures that (d/dθ)K∗(θ) < 0.

(iii). Define s̃w(θ) = sw(θ) + 2ck(0). Because (d/dθ)K∗(θ) < 0 for K∗ > 0 by Assumption 1, it

follows by parallel argument to Step 1 of the proof of Proposition 3 that limθ↑θm(d/dθ)s̃w(θ) < 0 if

and only if γ/β > g/b. It follows from Step 2 of the proof of Proposition 3 that if γ/β > g/b, then

there exists θ̂ < θm such that s̃w(θ) < SW 0 for all θ ∈ (θ̂, θm). Because ck(0) ≥ 0, sw(θ) ≤ s̃w(θ).

The result follows. �

Proof of Proposition 8: We prove the statements in order. (i) Let π(θ, bv) denote equilibrium

platform profit under (θ, bv), where bv > 0. This implies: ΠI = π(θm(1/bv), bv); and ΠM = π(θ, bv)

for θ < θm(1/bv). Suppose γ/β > η. Then, because φ = 1/bv, by Proposition 4 there exists

b̄v > 0 such that π(θm(1/bv), bv) < Π0 for all bv > b̄v. Fix bv > b̄v. By parallel argument

to the proof of Lemma 11, it can be shown that π(θ, bv) is strictly convex in θ for all bv ≥ 0.

Because π(θm(1/bv), bv) < Π0, π(θ, bv) is strictly convex in θ, and Π0 is invariant to θ, there exists

θ̄ < θm(1/bv) such that π(θ, bv) < Π0 if and only if θ ∈ (θ, θm(1/bv)). The result follows by setting

φ̄ = 1/b̄v and noting θm(1/bv) = θm(φ).

(ii). Let AW (K,K, bv) denote equilibrium agent welfare under (K,K) and bv, where bv > 0.

This implies: AW I = AW (0, 0, bv); and AWM = AW (K∗(θ),K∗(θ), bv) for θ < θm(1/bv). Suppose

γ/β < gl/bl. Then by Proposition 5, there exists b̃v > 0 such that AW (0, 0, bv) < AW 0 for all

bv < b̃v. Next, it can be verified algebraically that AW (K,K, bv) is strictly convex in K for any

bv ≥ 0. Fix bv < b̃v. Because AW (0, 0, bv) < AW 0, AW (K,K, bv) is strictly convex in K, and AW 0

is invariant to K, there exists K̄ > 0 such that AW (K,K, bv) < AW 0 if and only if K ∈ (0, K̄).

Next, it can be shown by parallel argument to Lemma 10 that K∗(θ) is strictly decreasing in θ on

θ ∈ (0, θm(1/bv)). It follows that there exists θ̄ < θm(1/bv) such that K∗(θ) ∈ (0, K̄) if and only if

θ ∈ (θ̄, θm(bv)). Therefore, AW (K∗(θ),K∗(θ), bv) < AW 0 if and only if θ ∈ (θ̄, θm(bv)). The result
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follows by letting φ̃ = 1/b̃v and noting θm(1/bv) = θm(φ).

(iii). Let sw(θ, bv) denote equilibrium social welfare under (θ, bv). Define θ′m = limbv→0 θm(1/bv)

and θ−(bv) = arg inf θ sw(θ, bv). Note SWP = sw(θ, 0) for θ < θ′m, SW
I = sw(θm(1/bv), bv) for

bv > 0, and SWM = sw(θ, bv) for bv > 0 and θ < θm(1/bv). Suppose γ/β > gl/bl and bv = 0.

Then by Proposition 3, there exists θ̂ < θ′m such that sw(θ, 0) < SW 0 for all θ ∈ (θ̂, θ′m). It follows

that sw(θ−(0), 0) < SW 0. By parallel argument to the proof of Lemma 11, it can be shown that

sw(θ, bv) is strictly convex in θ. Because sw(θ−(0), 0) < SW 0, sw(θ, bv) is strictly convex in θ, and

sw(θ′m, 0) = SW 0, (by definition of θ′m), we have θ−(0) < θ′m. Because θ−(0) < θ′m, by continuity of

θ−(bv) and θm(bv) in bv there exists b̂v > 0 such that sw(θ−(bv), bv) < SW 0 and θ−(bv) < θm(1/bv)

for all bv < b̂v. Select any bv < b̂v. Because sw(θ−(bv), bv) < SW 0, sw(θ, bv) is strictly convex in

θ, and SW 0 is invariant to θ, there exists θ < θ−(bv) and θ > θ−(bv) such that sw(θ, bv) < SW 0

if and only if θ ∈ (θ, θ̄). Note that θ < θm(1/bv) because θ < θ−(bv) and θ−(bv) < θm(1/bv).

Further, because sw(θm(1/bv), bv) > SW 0 by Proposition 6, it must be that θ̄ < θm(1/bv). The

result follows by letting φ̂ = 1/b̂v and noting θm(1/bv) = θm(φ). �

Proof of Proposition 9: We prove the statements in order. (i) Let ΠI denote equilibrium

platform profit under bv > 0 and gv ∈ [0, bv); that is, ΠI represents equilibrium profit un-

der access to AVs. Let Π0 denote equilibrium platform profit under bv = gv = 0; that is,

Π0 represents equilibrium profit under no access to AVs. We show that if γ/β > gl/bl, then

there exists b̄v > gv such that ΠI < Π0 for all bv < b̄v, where we define φ̄ = 1/b̄v. Sup-

pose γ/β > gl/bl. Note limbv→gv(∂/∂bv)Π
I = (γbl − βgl) · ξ(β, γ, gl, bl), where ξ(β, γ, gl, bl) =

−2α2β2bl(bl − gl)(2bl − gl)/ [β(β − γ)(2bl − gl) + (2β − γ)bl(bl − gl)]3 . Because ξ(β, γ, gl, bl) < 0,

γ/β > gl/bl implies that limbv→gv(∂/∂bv)Π
I < 0. By continuity of (∂/∂bv)Π

I in bv, for any gv ≥ 0

there exists b̄v > gv such that (∂/∂bv)Π
I < 0 if bv ∈ (gv, b̄v). Further, it is straightforward to verify

that limbv→gv ΠI = Π0. It follows that ΠI < Π0 for all bv ∈ (gv, b̄v). Because φ̄ = 1/b̄v, φm = 1/gv

and b̄v > gv, it follows that φ̄ < φm.

(ii). The proof is identical to that of Proposition 5, which considers the case where gv ∈ [0, bv).

(iii). It can be verified algebraically that limbv→gv(∂/∂bv)SW
I = limbv→gv(∂/∂bv)Π

I and

limbv→gv SW
I = SW 0. The remainder of the proof follows by parallel argument to the proof

of part (i), with SW I in place of ΠI and SW 0 in place of Π0. �

Appendix E: Derivation of Consumer Surplus and Agent Welfare
Consumer surplus. The representative consumer chooses (D1, D2) to maximize her utility τD1+

τD2− (χD2
1 + 2µD1D2 +χD2

2)/2− (p1D1 +p2D2). Using the first order conditions of the consumer

utility function, platform i’s inverse demand function can be written as pi = τ − χDi − µDj

for i ∈ {1, 2} and j 6= i. Let α = τ(χ − µ)/(χ2 − µ2) = τ/(χ + µ), β = χ/(χ2 − µ2) and

γ = µ/(χ2 − µ2). Rearranging yields platform i’s demand (1) for i ∈ {1, 2} and j 6= i. Under

the symmetric equilibrium prices p∗1 = p∗2 = p∗, platform i’s demand is Di(p
∗) for i ∈ {1, 2} and

the consumer’s utility (equivalently, consumer surplus) is CS = 2(τ − p∗)Di(p
∗)− (χ+ µ)Di(p

∗)2.

Further, note a = α/(β−γ), χ = β/(β2−γ2) and µ = γ/(β2−γ2). Therefore, CS = 2[α/(β−γ)−
p∗]Di(p

∗) −Di(p
∗)2/(β − γ). Noting that Di(p

∗) = α − (β − γ)p∗ and simplifying further yields

CS = Di(p
∗)2/(β − γ).
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Labor welfare. The representative worker chooses (L1, L2) to maximize her utility wl,1L1 +

wl,2L2 − (xL2
1 + 2mL1L2 + xL2

2)/2. Using the first order conditions of the worker utility function,

platform i ’s inverse supply function can be written as wl,i = xLi + mLj for i ∈ {1, 2} and j 6= i.

Let bl = x/(x2 − m2) and gl = m/(x2 − m2). Rearranging yields platform i ’s labor supply (2)

for i ∈ {1, 2} and j 6= i. Under the symmetric equilibrium wages w∗l,1 = w∗l,2 = w∗l , platform

i’s labor supply is Li(w
∗
l ) for i ∈ {1, 2} and the worker’s utility (equivalently, labor welfare) is

LW = 2w∗l Li(w
∗
l ) − (x + m)Li(w

∗
l )

2. Further, note x = bl/(b
2
l − g2l ) and m = gl/(b

2
l − g2l ).

Therefore LW = 2w∗l Li(w
∗
l )−Li(w∗l )2/(bl− gl). Noting that Li(w

∗
l ) = (bl− gl)w∗l and simplifying

further yields LW = Li(w
∗
l )

2/(bl − gl).
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